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Both heart failure (HF) and cognitive impairment (CI) have a significant negative

impact on the health of the elderly individuals. Magnetic resonance imaging

(MRI) can non-invasively detect functional and structural variations in the heart

and brain, making it easier to explore the connection between the heart and

brain. According to neuroimaging studies, HF patients have a higher chance

of developing CI because they have a variety of different types of brain

injuries. To examine how HF and CI are influenced by one another, English-

language literature was searched in the Web of Science, PubMed EMBASE (OVID),

PsycInfo, and Scopus databases. The search terms included “high-frequency,”

“brain function,” “brain injury,” “cognition,” “cognitive impairment,” and “magnetic

resonance imaging.” Normal brain function is typically impaired by HF in the

form of decreased cerebral perfusion pressure, inflammation, oxidative stress, and

damage to the BBB, resulting in CI and subsequent HF. Early pathophysiological

alterations in patients’ brains have been widely detected using a range of novel

MRI techniques, opening up new avenues for investigating the connection

between HF and CI. This review aims to describe the pathogenesis of HF with

CI and the early diagnostic role of MRI in the heart-brain domain.
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1. Introduction

A common tendency in population growth around the world is aging. Due to their
significant incidence in the senior population, heart failure (HF) and cognitive impairment
(CI) are receiving increasing amounts of attention. HF is a common clinical disease
characterized by a decrease in the blood supply of the heart due to anatomical or functional
problems with the heart. In China, studies on the epidemiology of HF have revealed an
increase in the prevalence rate among people over 35, from 0.9% in 2000 to 1.3% in 2019
(Hao et al., 2019). CI refers to one or more impairments of cognitive function that affect
daily or social abilities for various reasons, such as memory and learning. It covers all stages,
from mild CI to dementia. Studies have confirmed that up to 50% of HF patients develop
a certain level of CI, and 10% of them have more serious symptoms (Vogels et al., 2008;
Almeida et al., 2012).
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Ischemic cardiomyopathy and hypertension are considered
major causes of HF and are associated with cognitive function
(Schmidt et al., 1991). Decreased systolic function of the heart
and blood redistribution are symptoms of HF, which is frequently
a subsequent condition to myocardial infarction (Roy et al.,
2017; Jinawong et al., 2021). The fundamental etiology of brain
functional injury is thought to be the decrease in cerebral perfusion
pressure brought on by decreased cardiac output and inflammation
worsened by oxidative stress (Harkness et al., 2014; Cannon et al.,
2017). Although anatomical abnormalities in the brain were linked
to biomarkers of myocardial injury and cardiac failure, only older
people with poorer cognitive reserves displayed cognitive deficits
(Feola et al., 2013; Hjelm et al., 2014). HF and CI patients with poor
self-care abilities witness a significantly decreased quality of life
and higher rates of readmission and mortality (Yang et al., 2022).
Participants in previous studies have not always been categorized
according to the subtype of HF. Consequently, the phrase “heart
failure” broadly refers to a variety of cardiac failures.

In recent years, an increasing number of studies have
verified that CI frequently occurs in patients with HF. Magnetic
resonance imaging (MRI) technology and its derivatives can detect
spontaneous brain activity and investigate image biomarkers,
which offer the foundation for early identification of CI. However,
the specific pathogenesis of HF has not yet been clarified, and
the correlation between HF and cognitive function needs to be
further researched by MRI. Understanding the impact of the heart
on the brain in HF patients as well as the function of MRI in
early diagnosis in the heart-brain area are the main objectives
of this review. Two separate researchers examined the English
literature in the PubMed EMBASE, Web of Science, PsycInfo,
and Scopus databases after receiving systematic review training.
The search terms included “high-frequency,” “brain function,”
“brain injury,” “cognition,” “cognitive impairment,” and “magnetic
resonance imaging.”

2. Pathogenesis of HF with CI

2.1. Cerebral perfusion pressure
decreased

To keep the brain functioning normally, there must be
enough oxygen and glucose in the blood—approximately 20 and
25%, respectively, of the body’s energy (Sabayan et al., 2016).
Endothelial dysfunction in HF patients may result in aberrant
cerebrovascular reactivity (the brain’s blood vessel response to high
amounts of carbon dioxide), decreased automatic brain regulation,
and other symptoms (Zuccalà et al., 1997). Cardiovascular
illnesses are significantly influenced by hypoperfusion, which
is caused by poor cardiac output and low blood pressure.
Aging and vascular risk factors both enhance the likelihood of
developing Alzheimer’s disease and chronic cerebral hypoperfusion
(Georgiadis et al., 2000). Patients with HF often have decreased
myocardial contractility and cardiac output, which lead to
decreased cerebral perfusion pressure. Compared with age-
matched healthy controls, HF patients’ resting cerebral blood
flow (CBF) was 31% lower (Vogels et al., 2008). Patients with
mild and moderate HF experienced lower middle cerebral artery

blood flow (47.3 and 56.1 cm/s, respectively) (Scherbakov and
Doehner, 2018). Other complications, such as sleep apnea, diabetes,
hypertension, and depression, are exacerbated by a decrease in
CBF (Lorenzi-Filho et al., 2002). There is evidence of reduced
CBF in the bilateral hippocampus, parahippocampal gyrus, and
right posterior cingulate gyrus cortex in people with HF (Gruhn
et al., 2001; Sabayan et al., 2015), which is typically associated
with AD. Reduced CBF makes HF patients more susceptible to
brain parenchymal injury, particularly gray matter injury (Muller
et al., 2011). Various cortical areas linked to executive cognitive
performance are affected by reduced gray matter volume (Amanzio
et al., 2021). In conclusion, brain tissue loss and dysfunction caused
by brain hypoperfusion can speed up CI in people with HF. Further
correlation studies are required since the impact of local CBF
reduction on molecular cognitive performance has not yet been
fully understood.

2.2. Inflammatory response and oxidative
stress

Interdependence between the inflammatory response and
oxidative stress is common and is linked to brain dysfunction
following heart disease (Zhu et al., 2007). Myocardial damage in HF
patients usually results in increased inflammation and the immune
response (Gill et al., 2010), and low perfusion caused by decreased
heart function also results in cerebral inflammation (Akiguchi et al.,
1997). In the cortex and hippocampus of HF mouse models, the
expression of inflammatory genes such as Toll-like receptor 4
(TLR4), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6)
increases dramatically (Hong et al., 2013). TNF-α is a key regulator
of the brain’s proinflammatory response, increasing neurotoxicity
through glutamate secretion by neurons and leading to cell damage
and death (Perry et al., 2001), affecting synaptic plasticity as well
as brain learning and memory function. A brain with decreased
cognitive function results from IL-6’s increased expression of beta-
secretase and aberrant increases in beta-amyloid formation and
deposition. These inflammatory cytokines pass through the blood–
brain barrier (BBB) and enter the brain, where they trigger an
inflammatory reaction that impairs cognition.

2.3. Damage to the blood-brain barrier

The BBB is crucial in preventing metabolic waste and harmful
substances from passing into the central nervous system through
the blood circulation (Liori et al., 2022). The pathophysiology of CI
linked to HF is greatly influenced by aberrant BBB function, which
includes pericellular breakdown, endothelial cell activation, and
an excessively tight linkage between endothelium and pericellular
(Ritz et al., 2013). The primary cell type that make up the
blood–brain barrier, endothelial cells, has been demonstrated to
be vulnerable to harm from elevated intracellular calcium ion
levels (Doyle et al., 2008). BBB dysfunction worsens microvascular
damage worse, fosters secondary inflammation, damages vascular
tone, leads to stenosis of the cavity, and causes tissue ischemia
(Vancheri et al., 2020), which promotes contact between neurotoxic
proteins and neurons.
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2.4. The neurohumoral axis

The neurohumoral axis of patients with HF plays a role in
cognitive and structural changes in the brain. The sympathetic
nervous system and the renin-angiotensin-aldosterone system
quickly come into action when the output decreases to restore
perfusion pressure and stop dehydration and traumatic bleeding
(Gruhn et al., 2001). The hormone cortisol, which is linked to
stress, has an impact on cognitive function. Temporary high
cortisol levels have been linked to impairments in cognitive
function. Other studies have shown that persistently elevated
cortisol levels may result in atrophy in specific brain areas
because of reduced neurogenesis (Chetty et al., 2014). The
brain’s hypothalamus, hippocampus, and amygdala showed the
highest levels of glucocorticoid receptor expression, whereas the
hippocampus, amygdala, and prefrontal cortex margin showed
the highest amounts of halocorticoid receptor expression (Gallina
et al., 2014). Cortisol levels are much higher in HF patients with
depression and CI than in HF patients without these symptoms
(Huffman et al., 2013), which raises the possibility that cortisol
levels in HF may impact how rapidly CI develops.

2.5. Alimentary deficiency

An increasing number of studies have found that there is a close
relationship between nutritional deficiency and CI. Researchers
have found that nutritional deficiencies can lead to decreased
attention, memory, and cognitive function in humans with HF
(Stewart et al., 2015). Patients are prone to nutritional deficiency
due to increased body consumption and changes in systemic
metabolism, and nutritional deficiency will also aggravate the
degree of HF (Alosco et al., 2013).

2.6. Depressive disorder

According to research, depression is linked to greater
levels of CI, structural alterations in the brain (Sheline et al.,
1999), inflammation (Schiepers et al., 2005), and neurohormone
biomarkers, which are also present in HF patients. CI performance
also improved in patients with depression who received medication
(Halvorsen et al., 2012). Further research is necessary to fully
understand the function of depression in HF and CI.

3. Advances in brain imaging of HF
and CI

3.1. Conventional magnetic resonance
imaging

The approach to craniocerebral evaluation most frequently
utilized currently for the clinical diagnosis and care of HF patients
is conventional MRI scanning. MRI can detect whether there
are ischemic lesions, infarction lesions, brain atrophy, and other
structural changes in patients’ brains. The two main contributing

factors to HF are thought to be ischemic heart disease and
hypertension (Vogels et al., 2007a). It is believed that overall
brain shrinkage and aberrant cerebral vascularization are the root
causes of cognitive decline in HF patients (Schmidt et al., 1991).
White matter hyperintensity (WMH) was connected to sorrow and
anxiety, and atrophy of the medial temporal lobe was connected to
cognitive problems such as memory loss and executive dysfunction
in HF patients (Vogels et al., 2007a). Reduced hippocampal volume
is present in HF patients, which may contribute to depression
and short-term memory loss (Woo et al., 2015). According to the
studies above, patients with HF and CI will have brain structure
changes. Conventional MRI is only applicable to lesions with
significant brain structure and cannot fully identify the pathological
mechanism. With this limitation, it should be combined with other
more effective MRI-derived techniques for observing changes in
brain microstructure and function.

3.2. Functional magenetic resonance
imaging

Functional magnetic resonance imaging (fMRI) uses computer
refinement of multiple images to measure changes in neural signals
caused by changes in brain structure and neural activity. fMRI
combines the advantages of the high-resolution anatomic imaging
capability of conventional MRI with the specificity of blood flow
dynamics to directly and accurately observe the large activity
processes of the brain during the implementation of cognitive tasks.
Lower cardiac function results in decreased task-related brain area
efficiency and reduced verbal working memory task performance
in older patients with cardiovascular illness (Irani et al., 2009). HF
patients showed a reduced neural activation response to Valsalva
in a number of autonomic and motor control regions, including
the cerebellar cortex and vermis, amygdala, hypothalamus, ACC,
left insula, left putamen, and bilateral posterior central gyrus
(Ogren et al., 2012; Song et al., 2018). These regions may
influence emotional transmission, attention, perception, and long-
term memory through structural and functional connections in
brain tissues such as the visual cortex. Brain MRI imaging analysis
in HF patients has shown that brain dysfunction is connected to
cardiac remodeling and results in less gray matter in the primary
motor cortex and hippocampus. It might be affected by daily
activities and lessen depression symptoms in HF patients (Suzuki
et al., 2013). These results support the notion that HF patients
experience CI and anatomical alterations to the brain. fMRI has a
diverse set of applications in brain cognitive research and neural
activities, but much in-depth research is still needed to elucidate
the changes in higher brain functions.

3.3. Structural magnetic resonance
imaging

In recent years, a variety of image analysis and detection
techniques have been applied in structural magnetic resonance
imaging (sMRI) research, reducing the influence of subjective
manipulation on the experiment, including voxel-based
morphometry (VBM) (Frey et al., 2021). VBM is a technique
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that involves reflecting subtle changes in gray and white matter
volume or density at the unit level to measure brain structure
images accurately. Surface-based morphometry (SBM) can extract
a variety of anatomical parameters, such as cortical surface
area, cortical thickness, and the gyri index, which measures
the morphological characteristics of the cerebral cortex more
comprehensively (Naegel et al., 2022).

Structural magnetic resonance imaging showed brain atrophy
and other static tissue abnormalities in patients with CI. Patients
with HF had a greater frequency of medial temporal lobe atrophy
than healthy controls (Frey et al., 2021). Many studies have used
sMRI to explore the relationship between CI and brain structural
changes. The entorhinal cortex and hippocampus of the medial
temporal lobe were the first areas of the brain to exhibit cerebral
atrophy (Du et al., 2004), and it progressed in line with the Braak
stage. Gray matter loss affects the middle temporal gyrus, fusiform
gyrus, parahippocampal gyrus, and temporal pole in people with
chronic HF. Moderate medial temporal lobe atrophy is where the
loss starts, and it progresses to the rest of the temporal lobe (Li
et al., 2011). The degree of medial temporal lobe atrophy was
assessed using the visual Scheltens score with great sensitivity and
specificity (Kilimann et al., 2014). Selective attention impairment,
verbal and visual memory deficits, and other cognitive skills are all
tightly associated with medial temporal lobe atrophy in HF patients
(Frey et al., 2018). CI in HF patients is associated with loss of gray
matter density in the lateral, anterior cingulate, and medial frontal
cortex. They have been discovered to be connected to psychological
functions such as emotion, pain, and cognitive control (Merkler
et al., 2019). In fact, both HF and coronary heart disease exhibit
the same pattern of brain injury (Mueller et al., 2020). However,
investigations have shown that there is gray matter loss in specific
areas in patients with HF and that this loss is more widespread
than that in patients with coronary heart disease and in unaffected
controls. Reduced gray matter density in sizable brain regions such
as the hippocampus, prefrontal cortex, and precuneus may enable
CI (Vogels et al., 2007b). In addition, the decrease in GMD was
correlated with the decrease in left ventricular ejection fraction and
the increase in NT-proBNP.

When referring to T2-weighted images or T2 fluid decay
inversion recovery sequences, the term “WHM” refers to high
signal expression in deep cerebral or periventricular white matter.
Small artery disease-induced coronary microvascular dysfunction
is a common pathogenic mechanism of WMH and HF (Camici
et al., 2020). As a specific variation in CI concomitant with HF,
the speed of information processing and executive function have
been linked to an increase in WMH (Tan et al., 2022). The severity
and duration of HF are associated with decreased cardiac function,
which can have a significant impact on the deep white matter
of the brain (Vogels et al., 2007a). According to Vogels et al.
(2007b) research, individuals with HF who did not also have stroke,
dementia, or depression were more likely to have WMH on brain
MRI. WMH refers to high signal expression in deep cerebral or
periventricular white matter on T2-weighted images or T2 fluid
decay inversion recovery sequences. WMH was still substantially
more common in HF patients even if IHD, age, and other affecting
factors were excluded (Vogels et al., 2007a). These results imply that
individuals with HF display localized brain abnormalities on sMRI
that are comparable to those in patients with CI, with cognitive

function being impacted by gray matter density reduction and
white matter microstructure loss. However, most of the studies on
brain atrophy have focused on the medial temporal lobe, not other
brain regions.

3.4. Cerebral perfusion imaging

Magnetic resonance perfusion imaging is an examination
technique that detects microcirculation distribution and
hemodynamic changes in brain tissue to assess local tissue
and function. It can be used to assess CBF and metabolic status.
HF can lead to cerebral hypoperfusion and decreased metabolic
activity, resulting in decreased cognitive function. Arterial spin-
label perfusion imaging and magnetic resonance perfusion imaging
were the imaging methods employed to assess CBF (Chandra et al.,
2019). Arterial spin-labeled perfusion imaging is a non-invasive
method for measuring arterial blood flow based on nuclear
magnetic flow markers. Changes in local cerebral perfusion can
be assessed without the use of radiation or contrast agents. In
patients with HF, reduced CBF and brain tissue injury were found
in many areas, such as the frontal vascular bed, parietal lobe,
occipital cortex, hippocampus, thalamus, and cerebellar region
(Woo et al., 2003, 2009). In addition, the decrease in CBF was
significantly lateralized, with the main decreased areas in the right
cortex and diencephalon. According to studies, perfusion imaging
can diagnose Alzheimer’s disease and moderate CI with 87 and
67% accuracy, respectively (Lacalle-Aurioles et al., 2014). Cerebral
perfusion imaging has strong repeatability and can effectively
reflect changes in cerebral hemodynamics. However, there are few
studies on the use of MRI perfusion imaging in people with HF
and CI, and its clinical utility is not frequently used.

4. Conclusion and future directions

There is growing evidence that HF and CI are linked and
brought on by HF-induced brain damage. Patients with HF
will have apparent CI as well as changes in brain structure,
function, and metabolic status due to decreased cerebral
perfusion pressure, an inflammatory response, oxidative stress,
and BBB breakdown. New MRI techniques such as sMRI,
fMRI, and brain perfusion imaging are conducive to further
research on the early pathophysiological changes of CI in
HF patients. Brain sites with tissue damage in HF patients
include the cingulate gyrus, hypothalamus, hippocampus,
insula, brainstem, amygdala, and cerebellar regions. Attention
deficit hyperactivity disorder, learning disabilities, memory loss,
language impairments, and decreased visuospatial performance
are all closely associated with HF. It is important to note
that neuroimaging studies on HF with CI are still in the
beginning stages. Most studies are retrospective, and the
application of new techniques needs to be expanded. To better
understand the connection between HF and CI, extensive
cohort studies on HF, cognitive function, and MRI will be
required in the future. Additionally, early magnetic resonance
diagnostics play an important role in achieving early detection,
diagnosis, and treatment.
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