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Bandpass filters play a core role in ECoG signal processing. Commonly used

frequency bands such as alpha, beta, and gamma bands can reflect the normal

rhythm of the brain. However, the universally predefined bands might not be

optimal for a specific task. Especially the gamma band usually covers a wide

frequency span (i.e., 30–200 Hz) which can be too coarse to capture features that

appear in narrow bands. An ideal option is to find the optimal frequency bands for

specific tasks in real-time and dynamically. To tackle this problem, we propose

an adaptive band filter that selects the useful frequency band in a data-driven

way. Specifically, we leverage the phase-amplitude coupling (PAC) of the coupled

working mechanism of synchronizing neuron and pyramidal neurons in neuronal

oscillations, in which the phase of slower oscillations modulates the amplitude

of faster ones, to help locate the fine frequency bands from the gamma range,

in a task-specific and individual-specific way. Thus, the information can be more

precisely extracted from ECoG signals to improve neural decoding performance.

Based on this, an end-to-end decoder (PACNet) is proposed to construct a

neural decoding application with adaptive filter banks in a uniform framework.

Experiments show that PACNet can improve neural decoding performance

universally with di�erent tasks.

KEYWORDS

electrocorticography (ECoG), phase-amplitude coupling, deep learning, band-pass filter,
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1. Introduction

Electrocorticography (ECoG) has been widely used for clinical diagnoses and brain-

computer interfaces (BCIs) (Wolpaw et al., 2002; Miller et al., 2010a). Compared with

electroencephalography (EEG), which mostly reflects spectral activities below 50 Hz, ECoG

contains high-frequency activities (up to 200 Hz), which encodes rich information for motor

and cognitive behaviors. The rich information in the ECoG signals has enabled various

applications, such as the decoding of motor behaviors (Pan et al., 2018; Wang et al., 2018;

Xie et al., 2018; Qi et al., 2022) and synthesis of spoken words or sentences (Chakrabarti

et al., 2015), demonstrating great potential in rehabilitation and neuroprosthesis (Miller

et al., 2010b).

To extract frequency domain features in ECoG signals, bandpass filters are widely used

to focus on the neural activity in a certain frequency band. Commonly used frequency bands

such as delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma

(above 30 Hz) bands can reflect the normal rhythm of the brain. However, the universally

predefined bands might not be optimal for a specific task. Especially the gamma band

usually covers a wide frequency span (i.e., 30–200 Hz). Existing studies further divide the
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gamma band into low-gamma (30–70 Hz) and high-gamma (70–

200 Hz), however, it is also too coarse to capture features that

appear in narrow bands. Studies have shown that the sub-frequency

bands in the gamma band contain useful information (Miller et al.,

2009). Therefore, how to make better use of the abundant high-

frequency components in ECoG signals is a very important but

thorny problem. To select informative frequency bands from the

high-gamma band, efforts have been made in previous studies. One

widely used way to locate useful frequency bands in ECoG signals

is brute force search. These decoders usually use Fourier transform

or wavelet transforms to extract the power of certain frequency

bands as the features and evaluate the features in a task-driven

manner to select the effective narrow bands (Yanagisawa et al., 2011;

Chestek et al., 2013; Bleichner et al., 2016; Branco et al., 2017; Li

et al., 2017; Zhu et al., 2021; Qi et al., 2019). The other widely used

way is using end-to-end decoders via deep learning technology.

Deep learning decoders have recently gained prevalence in ECoG

signal studies due to their capacity to directly learn with raw data.

These decoders, such as CNNs and RNNs have a strong learning

ability to automatically locate the effective frequency domains (Pan

et al., 2018; Xie et al., 2018). The last few years have seen the

emergence of some very efficient deep learning models for EEG

signals, such as EEGNet (Lawhern et al., 2018), DeepConvNet,

and ShallowConvNet (Schirrmeister et al., 2017). Although deep

learning models have made progress in designing end-to-end brain

signal decoders, these methods still have some limitations. On the

one hand, the training of deep models requires a large amount of

data which is usually impractical for brain signals; on the other

hand, frequency band selection using these models mostly lacks

explainability.

From the perspective of neuroscience, studies have shown

the coupled working mechanism of synchronizing neurons and

pyramidal neurons in neuronal oscillations (Bragin et al., 1995;

Canolty et al., 2006; Canolty and Knight, 2010), which can

provide guidance for effective frequency band selection. Miller

et al. (2010a) proposed that rhythms may also play a role

in suppressing local cortical computation, with the cortically

suppressed (disengaged) state one in which widespread populations

of cortical neurons are phase-coupled to the rhythm. These

neuronal mechanisms, collectively known as Cross-frequency

coupling (CFC) is widely used to coordinate neural dynamics

across spatial and temporal scales (Bleichner et al., 2016), but

both types of decoders ignored this mechanism. There are three

forms of coupling neural dynamics: phase-amplitude coupling

(PAC; Canolty et al., 2006), phase-phase coupling (PPC; Canolty

et al., 2007), and amplitude-amplitude coupling (AAC; Bruns and

Eckhorn, 2004; Voytek et al., 2010). Especially PAC, where the

phase of the low-frequency component modulates the amplitude

of the high-frequency activity, plays an important role in neural

information processing and cognition, for example, in learning

and memory.

These findings inspire us to ask whether PAC can help find

influential frequency bands adaptively in a task-specific way? In

this paper, we propose a PAC-based adaptive band filter for

neural signals. Leveraging the PAC mechanisms of synchronizing

oscillations, in which the phase of slower oscillations modulates

the amplitude of faster ones, we can use low-frequency bands to

locate the sub-frequency bands from the high-gamma range in a

task-specific and individual-specific way. Thus, the information can

be more precisely extracted from ECoG signals to improve neural

decoding performance. Based on this, an end-to-end decoder

(PACNet) is proposed to construct a neural decoding application

with adaptive filter banks in a uniform framework. The proposed

approach achieves higher decoding performance improvement

over previous decoders.

2. Materials and methods

Here we will present the proposed method in detail. Firstly,

we will introduce the dataset we used and the preprocessing

method. Then we will present our data-driven band filter in detail.

Finally, we propose the PACNet that constructs a neural decoding

application with PAC-based filter banks in a uniform framework.

Figure 1 shows framework of the proposed method, including

the flow chart of our kernel module: Event-related PAC based

frequency band selection algorithm which is represented in Section

2.2 and PACNet in Section 2.3. We will open our source core code

of Event-related PAC based frequency band selection algorithm and

PACNet on GitHub, our code can be found at: https://github.com/

PuddingZJU/PACNet.

2.1. Electrocorticography dataset

Two publicly available ECoG datasets are adopted in our study,

including a motor task and a visual task. These public data can be

found at Miller (2019).

2.1.1. Motor dataset
We used KJM’s FingerFlex dataset (Miller et al., 2012), which

is based on finger movement. During the finger movement task,

subjects were cued with a word displayed on a bedside monitor

indicating which finger to move during 2 s movement trials. The

subject performed self-paced movements in response to each of

these cues, and they typically moved each finger 2–5 times during

each trial, but some trials included many more movements. A 2

s rest trial (blank screen) followed each movement trial. There

were 30 movement cues for each finger, and trials were interleaved

randomly. Finger positions were recorded using a 5-degree-of-

freedom dataglove sensor (5 dt, Irvine, CA). Since the original

data is a study on the fitting of finger bending trajectory, we

here transform it into a classification problem of finger motion

through the maximum threshold of bending, that is, which finger

moves in this movement. This is a five-classification problem, so

we need the decoding performance of multi-classification in the

test period. Through the pre-processing of the data, we finally

found that there were nine subjects in the data set, and the total

number of effective trials reached 7,150, among which 406 were

the subjects with the least trial and 1,682 were the subjects with

the most.
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FIGURE 1

Framework of the PACNet, including the flow chart of our kernel module: Event-related PAC based frequency band selection algorithm (ERPAC-FBS)

and the proposed deep network structure. First, we use ERPAC-FBS to get two best sub-bands in the high-gamma range based on each

low-frequency band, and then these two sub-bands are used to carry out band-pass filtering on the high-gamma signal, and the corresponding

target signal is obtained. Finally, we put these mixed corresponding target signals into the proposed decoder.
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2.1.2. Visual dataset
Face-House discrimination task Subjects performed a basic

face and house stimulus discrimination task (Miller et al., 2016).

They were presented with grayscale pictures of faces and houses

(luminance- and contrast-matched) that were displayed in random

order for 400 ms each, with 400 ms blank screen inter-stimulus

interval (ISI) between the pictures. The 10 cm-wide pictures were

displayed at 1 m from the patients while they were seated at the

bedside. There were three experimental runs with each patient, with

50 house pictures and 50 face pictures in each run (for a total of 300

stimuli). In order to maintain fixation on the stimuli, patients were

asked to verbally report a simple target (an upsidedown house),

which appeared once during each run (1/100 stimuli). There were

a few errors in reporting the upside-down target house in any run

(∼2–3 across all 21 experimental runs).

2.2. PAC-based adaptive band filter design

2.2.1. Event-related PAC based frequency band
selection

Here we divide the ECoG signal into two components:

low-frequency narrowband signal and high-frequency broadband

signal. Based on previous researches (Miller et al., 2010a), low-

frequency narrowband signals contain five bands: δ(1–3Hz), θ (4–8

Hz), α (8–12 Hz), β (12–20 Hz) and “Canonical γ ” (30–50 Hz).

While the high-frequency broadband frequency band (above 50

Hz) has not been finely divided. We propose a Phase-amplitude

coupling (PAC)-based method to infer the relevant high-frequency

band from the known low-frequency band for adaptive filtering

of ECoG signal, and combine some frequency bands with similar

carriers (low-frequency bands) to synthesize a new composite

frequency band signal, to act as the band filter.

2.2.1.1. Computing of instantaneous phases and

amplitudes

The first step is to extract instantaneous phases from low-

frequency bands and amplitudes from high-frequency signals.

Specifically, we use the Hilbert transform and a bandpass

Butterworth filter to separate the original signal low-frequency

phase signal and high-frequency amplitude signal from the original

data. First we put xraw[t] into bandpass Butterworth filters, to

generate low-frequency time series xδ[t], xθ [t], xα[t], xβ [t] and high

frequency time series xγ [t]. Then the Hilbert transform (Pilcher

and Rusyniak, 1993)

y[t] = H(x[t]) =
1

π

∫

−∞

∞

x[τ ]

t − τ
(1)

is applied to each filtered time series to convert the cosine wave

into a sine wave which delays the original signal by π
2 at each

frequency band. After that, we can compute the instantaneous

phase by the original and transformed signal. Finally, we can apply

the transform on two paired low-high frequency time series tomake

them become analytic signals, for example, we compute alpha band

and high-gamma band signals as

zα[t] = xα[t]+ iyα[t] = aα[t]e
iφα [t] (2)

zγ [t] = xγ [t]+ iyγ [t] = aγ [t]e
iφγ [t] (3)

where φα[t] and φγ [t] are the instantaneous phases, and aα[t]

and aγ [t] are the instantaneous amplitudes of the Xα[t] and Xγ [t]

time series. These instantaneous phases and amplitudes are used to

compute phase-amplitude coupling.

2.2.1.2. Computing of event-related PAC

Most techniques for calculating PAC provide a numerical

index that represents an average value across an arbitrarily

long time period. But our datasets are usually event-based and

need to respond to mutation events. Here we use event-related

phase/amplitude coupling (ERPAC) (Voytek et al., 2013) designed

to capture the temporal evolution of task-related changes in PAC

across events or between distant brain regions that is applicable to

human or animal electromagnetic recording. The ERPAC is based

on a circular-linear correlation (Zar, 1999) which evaluates the

Pearson correlation, across trials, of the amplitude αt and with the

sine and cosine of the phase φt . We denote by c(x, y) the Pearson

correlation between two variables x and y, rsx = c[sin(φt),αt], rcx =

c[cos(φt),αt], and rsc = c[sin(φt), cos(φt)] hence, the circular-linear

correlation pcl is defined as

pcl =

√

r2sx + r2cx − 2rsxrcxrsc

1− r2sc
(4)

Thus, we can obtain PAC significance on the time scale. We

used the implementation of ERPAC in tensorpac (Combrisson

et al., 2020). After that, we get a matrix representing the PAC

intensity in the temporal dimension, in order to select the effective

frequency band, we use the maximum PAC intensity of each

frequency in the temporal dimension to turn the matrix into a

one-dimensional vector. Then we use the Savitzky-Golay filter to

compute the local maximum value as the effective frequency, We

sorted the intensity values of these frequency points, taking the

frequency with high intensity as the center point of the target

frequency band first, and finally taking these center points plus

width BW as the effective frequency band, the value of BW we used

is 10.

The event-related phase-amplitude coupling-based frequency

band selector is presented in Algorithm 1. According to the

previous work (Aru et al., 2015), if 1f2 < 2f1, it will cause false

negative results. We drop the “Canonical γ ,” and just use four

low-frequency bands to calculate the results. After obtaining the

optimal high-frequency band corresponding to each low-frequency

band through screening, we first apply band-pass filtering to

the original signal using each sub-high-frequency band and then

superimpose them together to obtain themost relevantmixed high-

frequency band signal in this low-frequency band. However, there

is a question of whether the original low-frequency signal should be

added to the newly obtainedmixed-frequency signal. At present, we

have not found a fixed answer, so we conducted experiments in both

cases to verify the role of low-frequency signals in the decoding

process.
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Input: Input single channel raw signal vector x containingN trials,

the shape of x is (N, samplerate× time).

Output: A list of mixed adaptive sub-bands in high-gamma band

named as Band_result

1: Step 0: Initialization

2: Initialize Erpac_results as an empty list

3: Initialize Band_results as an empty list

4: Step 1: Calculate Event-related phase-amplitude

coupling of each low-frequency band (LB) phase

with high-gamma band amplitude

5: for each LB in [delta, theta, alpha, beta] do

6: PAC_Weight ← EventRelatedPac(x, phase_band = LB,

amplitude_band = high-gamma )

7: Put PAC_Weight into Erpac_results for temporary

storage

8: Step 2: Frequency band selection

9: for each E in Erpac_result do

10: E is two-dimensional matrix (time × frequency),

compress the time axis using the mean, got a

vector on frequency axis f

11: use Savitzky-Golay filter to calculate local

maximum value of f named as f_peaks

12: sort f_peaks by its f value, the order in which

the larger the value is, the higher the priority

is, finally chose top 2 peaks.

13: for each p in f_peaks do

14: best_band← [p-10,p+10]

15: Put best_band into Band_results for storage

16: return Band_results

Algorithm 1. Event-related phase-amplitude coupling based frequency

band selection.

2.3. PACNet: a deep neural network
architecture with the PAC-based band filter

PACNet is an example of integrating this filter with existing

deep-learning decoders. Here, the basic deep learning model we

choose is EEGNet, a trendy model. Its advantages are compact

design, few parameters, and less demand for computing resources.

On the other hand, EEGNet can process Raw data without

manually extracting features, such as power spectrum in the

frequency domain, which reduces information loss. At the same

time, it can better reflect the impact of input data noise on the

deep learning network decoder, indicating the role of the filter we

designed (Lawhern et al., 2018). For PACNet, As mentioned above,

the input data became four signals of different frequency bands

after filtering, which were independent of each other. Therefore,

we divided the first sequential winding layer into four layers

and carried out the separate one-dimensional winding operation

on the four signals to extract independent features to prevent

mutual interference between different frequency bands. We have

represented that PACNet is an end-to-end decoder proposed to

construct a neural decoding application with adaptive filter banks

in a uniform framework. So PACNet can have more than one

version introduced in this paper. It can quickly build another

PACNet based on other decoders with an independent temporal

module and split them into four parts for four signals of different

frequency bands after filtering, and we think this is a uniform

framework. The PACNet is developed using Python 3.9 and

Tensorflow 2.5, and runs on a computer with NVIDIA GeForce

RTX 3090 graphics cards. We will release PACNet based on other

models in the future on our GitHub repository.

3. Results

3.1. Neural decoding performance and
comparison

In this section, we will introduce the process and results of our

decoding performance test on filter and PACNet in detail. First, we

detail the existing algorithms and test methods we compare. After

that, we present and analyze the results.

3.1.1. Approaches in comparison
To reveal the performance of adaptive band filters and PACNet,

we used 100 times repeated k-fold cross-validations and paired t-

test for each competitor on the ECoG dataset to test a decoder that

has been popular recently. Because our filter is based on the filtering

of raw data, the decoder that can best reflect its effectiveness is the

one that can directly process raw data, so we choose the currently

commonly used deep learn-based decoder for a comparison test,

and the decoders for comparison including three representative

neural network-based models of EEGNet (Lawhern et al., 2018),

DeepConvNet, and ShallowConvNet (Schirrmeister et al., 2017).

The common feature of these three decoders is that they do not

need to extract features in advance and can directly accept raw data

input for feature extraction and classification of signals.

We tested the approaches with two data sets, one from the

motor task and the other from the visual task. We all use all data

sets with the subject of the test method. In each type of data on

the classification test, the test accuracy calculation method adopted

10-fold cross-validation 100 times. Then we used paired t-test for

each competitor to evaluate the significance of the results, and our

only hypothesis is that our model has better decoding performance

than other models. In 10-fold cross-validation, the data according

to the label equal proportion randomly into 10 portions, take turns

to take nine serving for training and validation steps, 1 for testing

steps, turns 10 times. The final accuracy value is the average result

of the 10 training tests 100 times.

3.1.2. Performance and analysis
The overall results are shown in Table 1, and the results of each

subject are shown in Tables 2, 3. Table 2 represents the results of

the accuracy in fingerflex dataset. Compared with the EEGNet,

our method is improved by about 6.2%. Compared with the

DeepConvNet, the accuracy of our method is improved by about

9.4%. Compared with the ShallowConvNet, The accuracy of our

method is improved by about 11.4%. In paired t-test, the overall

p-value is smaller than 0.05, so the improvement of our method

compared to other methods is significant.
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TABLE 1 Overall decoding performance on fingerflex dataset and facehouse dataset.

Fingerflex dataset Facehouse dataset

Methods Accuracy P-value Accuracy P-value

Ours 0.6258± 0.1502 – 0.9781± 0.0184 –

EEGNet 0.5678± 0.1402 0.0170∗∗ 0.9390± 0.0338 0.0104∗∗

DeepConvNet 0.5315± 0.1612 0.0004∗∗∗ 0.9476± 0.0301 0.0243∗∗

ShallowConvNet 0.5118± 0.1699 0.0008∗∗∗ 0.9507± 0.0455 0.0750∗

∗P < 0.05, ∗∗0.01 < P < 0.05, ∗∗∗P < 0.01.

TABLE 2 Decoding performance on fingerflex dataset of each subject, the best results in each domain are bolded.

Subject ID Ours EEGNet DeepConvNet ShallowConvNet

1 0.5391 ± 0.0204 0.5184± 0.0135 0.4813± 0.0157 0.4463± 0.0140

2 0.4772 ± 0.0052 0.4592± 0.0061 0.3800± 0.0065 0.3653± 0.0063

3 0.7716± 0.0093 0.7782± 0.0060 0.7709± 0.0041 0.7796 ± 0.0078

4 0.5657 ± 0.0110 0.4992± 0.0107 0.4356± 0.0081 0.3654± 0.0081

5 0.4605 ± 0.0046 0.4537± 0.0061 0.3896± 0.0063 0.3900± 0.0057

6 0.7581 ± 0.0154 0.6135± 0.0261 0.6175± 0.0240 0.5218± 0.0122

7 0.8633 ± 0.0080 0.6834± 0.0113 0.7131± 0.0124 0.7490± 0.0374

8 0.4870 ± 0.0161 0.3930± 0.0095 0.3334± 0.0105 0.3467± 0.0101

9 0.7098±0.0163 0.7120 ± 0.0121 0.6617± 0.0158 0.6425± 0.0091

Average 0.6258 ± 0.0118 0.5678± 0.0113 0.5315± 0.0115 0.5118± 0.0123

TABLE 3 Decoding performance on facehouse dataset of each subject, the best results in each domain are bolded.

Subject ID Ours EEGNet DeepConvNet ShallowConvNet

1 0.9820 ± 0.0014 0.9180± 0.0054 0.9373± 0.0016 0.9245± 0.0029

2 0.9915 ± 0.0020 0.8927± 0.0053 0.9175± 0.0050 0.8787± 0.0052

3 0.9725 ± 0.0015 0.9372± 0.0048 0.9195± 0.0008 0.9703± 0.0017

4 0.9640± 0.0011 0.9573± 0.0047 0.9693 ± 0.0033 0.9677± 0.0025

5 0.9618± 0.0057 0.9550± 0.0055 0.9710± 0.0035 0.9732 ± 0.0025

6 0.9867 ± 0.0027 0.9662± 0.0026 0.9803± 0.0031 0.9712± 0.0013

7 0.9885 ± 0.0016 0.9467± 0.0054 0.9388± 0.0028 0.9700± 0.0011

Average 0.9781 ± 0.0023 0.9390± 0.0048 0.9477± 0.0029 0.9508± 0.0024

We also conducted experiments with the facehouse dataset,

the results are in Table 3, compared with EEGNet, DeepConvNet,

and ShallowConvNet, the performance improvement is about 3.9,

3.1, and 2.8%, respectively. In paired t-test, the results show

the improvement of our method compared to other methods is

significant.

3.1.3. Ablation experiments on fingerflex dataset
In order to verify the influence of the PAC filter on the

results, we designed an ablation experiment using 2 PACNets

with consistent parameters for training and testing, one of which

removed the adaptive filter, which means it only had high-gamma

(70–200Hz) band, to test its influence on the network, we used

10-fold cross-validation for each subject of the fingerflex dataset

with more than 7,000 trials in total. The final test results are shown

in Table 4. Our method has about 2% higher than the control

group in the total average value. In the test of a single subject,

the vast majority of the test results are higher accuracy using our

data-driven filter. So our adaptive filter is adequate. In paired t-test,

the p-value is 0.0068, which shows that the improvement of the PAC

filter compared to the non-PAC filter is significant.

3.2. Analysis of the PAC-based frequency
band selection

Firstly, an aforementioned ablation experiment is designed to

verify the effectiveness of band selection. This experiment compares
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TABLE 4 Ablation experiment on fingerflex dataset.

Subject ID With PAC Without PAC

1 0.6009± 0.0566 0.5885± 0.0850

2 0.5005± 0.0357 0.4824± 0.0301

3 0.7918± 0.0482 0.7763± 0.0325

4 0.6251± 0.0362 0.6219± 0.0486

5 0.4672± 0.0373 0.4696± 0.0206

6 0.8073± 0.0933 0.7642± 0.0528

7 0.8867± 0.0363 0.8771± 0.0289

8 0.5413± 0.0625 0.5115± 0.0716

9 0.7432± 0.0439 0.7387± 0.0361

Average 0.6627± 0.0500 0.6478± 0.0451

the results of whether our filter is used. The results with PAC are

better than those without PAC. Therefore, we believe that the filter

is adequate. For further analysis, we visualized our data-driven

filter selection weights. As shown in Figures 2A, B are in motion

and rest states, respectively. In each sub-graph, the vertical axis

represents the high frequency, and the horizontal axis represents

the four low-frequency bands: delta, theta, alpha, and beta. Due

to space limitations, we randomly selected two subjects in the

fingerflex dataset for display. There are four columns in Figures 2A,

B, and each column represents a subject. At the same time, we

show the specific situation of each finger of the subject. There are

five rows in Figures 2A, B, and each row represents a finger. In

Figure 2A, we can find that in the condition of movement, each

has had significant PAC weights in the low-frequency band, it

shows that the motion between high-frequency and low-frequency

signals have a significant coupling, but from the point of view of

different subjects, not between subjects in the movement of high-

frequency coupling is different, this also shows each subject’s signals

are unique. It can be found in Figure 2B that in the resting state, a

small amount of PAC weight is generated in some low-frequency

bands, which indicates that there is some coupling between low-

frequency signals and high-frequency signals at rest. However, the

performance of these coupling quantities is much less than that

in motion. This phenomenon shows that our filter can find some

influential strong coupling frequency bands in motion and filter

them out, thus improving the decoding accuracy.

3.3. Analysis of channel selection

Array electrodes collect ECoG signals. The electrode of each

channel not only has its temporal property but also has spatial

property in its position. Electrodes spatial properties represent

the actual active regions of the cerebral cortex in the activity, so

the practical analysis of electrode spatial properties can help the

understanding of the working mechanism of the brain, in other

words, through the known brain work mechanism of electrode

space attribute verifies the consistency, can reflect the decoder will

make it successful in avoiding noise, and whether the truly valid

signal is analyzed and decoded to achieve its target function.

In this case, since we are using deep learning decoders,

these decoders are somewhat uninterpretable initially, but as

the technology develops, we can use the DeepLIFT algorithm

(Schirrmeister et al., 2017) to interpret our model. We export the

trained model in the motor dataset, calculate the contribution of

each electrode’s inputs through the DeepLIFT algorithm, and finally

map it back to the actual brain model through rendering. As shown

in Figure 3A, the right column is EEGNet, and the left column is

our model. It can be seen intuitively that the model trained by

our method can accurately hit the electrode in the motor cortex

area near the central such of each subject. It is very concentrated,

while the electrode activation distribution of the model trained

by EEGNet is relatively scattered, and some electrodes on other

cortexes are also activated, which may be one of the reasons for

the low decoding performance of the decoder. The essence may

lead the decoder to overfit some noises during the training step.

To verify the actual validity of the channel contribution, we also

designed a controlled experiment of 10-fold cross-validation on

each subject in the fingerflex dataset, and the statistical analysis

was conducted by paired t-test. As shown in Figure 3B, we tested

the decoding performance of PACNet under different channel

choices. We chose the top-1 and top-3 contribution channels and

randomly selected 1 and 3 channels as controls for comparison.

For further analysis, we add the test results of EEGNet using top-

1 and top-3 channels from PACNet as a non-PAC comparison.

Finally, we added the decoding performance of all channels as

the baseline. It can be seen from Figure 3B that the selected

top-1 and top-3 contribution channels are significantly better

than randomly selected channels. In addition, top-3 contribution

channels sometimes have higher decoding performance in baseline

comparison, and the improvement of the decoding performance

of Top-3 channels selection PACNet compared to EEGNet was

significant (p = 0.0004).

4. Discussion

In this work, we propose an adaptive band filter that selects the

proper frequency sub-bands in the high-gamma band in a data-

driven way. Specifically, we leverage the phase-amplitude coupling

(PAC) of the coupled working mechanism of synchronizing neuron

and pyramidal neurons in neuronal oscillations, in which the

phase of slower oscillations modulates the amplitude of faster

ones, to help locate the fine frequency bands from the high-

gamma range, in a task-specific and individual-specific way.

Thus, the information can be more precisely extracted from

ECoG signals to improve neural decoding performance. Based on

this, an end-to-end decoder (PACNet) is proposed to construct

a neural decoding application with adaptive filter banks in a

uniform framework. The test results show two phenomena. On

the one hand, when compared to the results in this, in which

the input of EEGNet, DeepConvNet, and ShallowConvNet is the

original raw ECoG recordings, We can see that these models

cannot process a wide range of signals, this defect is evident

in the test, so our method is very effective in dealing with

this situation.
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FIGURE 2

Comparison diagram of filter weight on two subjects in the fingerflex dataset, (A, B), are in motion and rest states, respectively. In each sub-graph,

the vertical axis represents the high-frequency in the high-gamma band, and the horizontal axis represents the four low-frequency bands: delta,

theta, alpha, and beta. There are four columns in (A, B), and each column represents a subject. At the same time, we show the specific situation of

each finger of the subject. There are five rows in (A, B), and each row represents a finger.

On the other hand, we can see the phenomenon in Tables 2,

3. When other methods show poor decoding performance, our

method can sometimes show a considerable improvement in

decoding performance. While other methods show better decoding

performance than ours, the decoding performance of our method

is almost the same as other methods. From this phenomenon, we

propose a hypothesis that due to the uneven quality of ECoG signal

acquisition, our method can eliminate the influence brought by
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FIGURE 3

Channel contribution analysis: (A) To analyze three subjects in the ECoG electrodes channel contribution of visualization in the actual network

model, the image is divided into two columns, the left is the use of our filter, filter is not used on the right is, network model after the training, each

channel’s contribution to the classification results of di�erent weights are obtained. (B) Our electrode with high contribution for our elected the

decoding performance tests of di�erent method.

these data with poor quality and much noise. The above gives us a

new way of thinking, combining traditional methods with the latest

machine learning methods, which may lead to some breakthroughs

in current research. However, our approach is only a simple

combination of PAC and EEGNet, which is a shortcoming of our

approach. In the future, we will design a more integrated model to

improve decoding performance better. In Section 3.3, compared to

PAC and non-PAC methods, we can see that EEGNet can achieve a

considerable performance improvement after data noise reduction.

However, the performance of our method is still a little bit low. This
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phenomenon proved that our filter could help the deep learning

decoders more accurately and automatically locate the electrodes

on the corresponding cortex related to the task and achieve a better

noising canceling effect to obtain higher decoding performance. It

is an exciting discovery for us, and in future work, we will take

advantage of this feature to make the decoder more automatic

and precise.

5. Conclusion

This paper proposes a new adaptive band filter driven by phase-

amplitude coupling for ECoG signals. We also propose a new

general decode pipeline for current decoders to fit. Our method

can use the existing mechanism of neuronal activity in the brain

to dynamically calibrate the influential band in an unsupervised

manner without a large number of data tags and can simply be

combined with the existing classifier to improve the performance

of the entire decoder. From the experiments in Section 3, we

can conclude that our filter can help the deep learning decoders

more accurately and automatically locate the electrodes on the

corresponding cortex related to the task and achieve a better

noise-canceling effect to obtain higher decoding performance,

and to toward the big vision of cyborg intelligence (Wu et al.,

2013).
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