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Introduction: Spiking neural networks (SNNs) are a model of computation that

mimics the behavior of biological neurons. SNNs process event data (spikes) and

operate more sparsely than artificial neural networks (ANNs), resulting in ultra-

low latency and small power consumption. This paper aims to adapt and evaluate

gradient-based explainability methods for SNNs, which were originally developed

for conventional ANNs.

Methods: The adapted methods aim to create input feature attribution maps for

SNNs trained through backpropagation that process either event-based spiking

data or real-valued data. The methods address the limitations of existing work on

explainability methods for SNNs, such as poor scalability, limited to convolutional

layers, requiring the training of another model, and providing maps of activation

values instead of true attribution scores. The adapted methods are evaluated on

classification tasks for both real-valued and spiking data, and the accuracy of the

proposedmethods is confirmed through perturbation experiments at the pixel and

spike levels.

Results and discussion: The results reveal that gradient-based SNN attribution

methods successfully identify highly contributing pixels and spikes with

significantly less computation time than model-agnostic methods. Additionally,

we observe that the chosen coding technique has a noticeable e�ect on the input

features that will be most significant. These findings demonstrate the potential of

gradient-based explainability methods for SNNs in improving our understanding

of how these networks process information and contribute to the development of

more e�cient and accurate SNNs.

KEYWORDS

spiking neural networks, explainable artificial intelligence, XAI, brain-inspired

computation, neuromorphic, event-based encoding, MNIST, CIFAR

1. Introduction

Conventional neural networks, also known as artificial neural networks, although proven
to be useful for numerous tasks, have latency, energy and storage requirements that may
not be adequate for many real-time tasks in energy-constrained environments. The field
of neuromorphic computing, inspired by the efficiency of biological neural networks,
attempts to replicate this efficiency through brain-inspired models of computation such as
SNNs (Maass, 1997).

The base substrate of communication in biological neurons are parallel, asynchronous
and discrete action-potentials or more commonly: spikes (Kress and Mennerick, 2009).
Spikes can be regarded as an “all-or-none” binary format, where the information is
transmitted in the timings between the spikes rather than in the spike magnitude as in
real-valued data. SNNs process these spikes by integrating them over time. The dynamics
of an SNN are governed by the spiking neuron model, such as the Spike Response Model

(SRM) (Gerstner, 1995; Gerstner et al., 2014) and the Leaky Integrate-and-Fire (LIF)
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model Gerstner et al. (2014). These neuron models use a
thresholding function – the spiking function – as an analog to the
activation function in ANNs. Spiking neurons integrate incoming
spikes over time, and only fire spikes themselves when their inner
potential reaches a predefined threshold. Thus, contrary to ANNs,
whose input traverses the whole network, SNNs deeper neurons
only activate when previous neurons integrated enough spikes to
propagate. This results in less neuron activations for SNNs than
ANNs. Optimally, SNNs are paired with event-based sensors, which
naturally generate sparse spiking data at thousands of frames per
second (FPS), such as event-based cameras or spiking cochlear
sensors (Vanarse et al., 2016; Gallego et al., 2022). Pragmatically,
conventional (real-valued) data, such as 2D images, can be encoded
into the spiking domain allowing its processing using SNNs as well.
To enable an efficient processing of SNNs, several neuromorphic
chips have been developed (Akopyan et al., 2015; Davies et al., 2018,
2021; Haessig et al., 2019; Pehle et al., 2022) that provide a native
hardware computing platform.

The focus on SNNs in recent research has been on addressing
challenges related to energy consumption, performance, and
interpretability. Notably, two recent studies have proposed novel
frameworks for improving SNN performance in specific tasks.
The first study introduces a spike-based framework, MeMEE,
which utilizes minimum error entropy to enhance online meta-
learning performance in SNNs (Yang et al., 2022a). This approach
emphasizes the integration of advanced information theoretic
learning methods into spike-based learning algorithms. Similarly,
the second study presents HESFOL, a heterogeneous ensemble-
based spike-driven few-shot online learning framework that
leverages entropy theory to enhance few-shot learning performance
in SNNs (Yang et al., 2022b). These studies collectively contribute
to the ongoing efforts to optimize SNNs for various learning tasks.

While there are somemethods available to explain the decisions
made by SNNs, there are still significant gaps in our understanding
of these networks. One of the key challenges is the lack of effective
Explainability methods for SNNs. In Section 1.2.1, we discuss some
approaches that have been proposed to explain SNN inference
results, such as attribution maps. Attribution maps provide a
visualization of the input features that are most important to the
SNN’s inference decision. However, none of the existing approaches
for SNNs can provide true attributions, which are a mechanism
to accurately and efficiently compute the contribution of each
input feature to the network’s output. Moreover, existing methods
are not applicable to all types of layers, and they cannot be
used post hoc without retraining or supplementing the model.
Therefore, there is a need for more robust Explainability methods
for SNNs that can address these challenges and provide true
attributions.

The work at hand explores, for the first time, gradient-based
attribution methods for SNNs trained with the backpropagation
approach. Figure 1 illustrates an end-to-end flow for SNN
attribution map generation, starting from a 2D image and
producing both 3D spike-domain and 2D pixel attribution
maps. We perform our experiments on image classification on
conventional 2D data encoded into the spiking domain through
neural codings as well as on event-based data obtained from an
event-based camera. To note, our methods are not specific to
image classification, and can be used to explain the input feature

importance for any model trained with an SNN backpropagation
approach.

The major contributions of this work are the following:

1. We evaluate the efficacy of the vanilla Saliency
method (Simonyan et al., 2014) on SNNs for spiking event-data
to obtain input spike-attribution maps. This method will be
referred to as SNN-Grad3D. Saliency in ANNs computes
the gradient of the output neuron with the highest score with
respect to input changes. Our proposed method adapts this
procedure for SNNs by computing a surrogate gradient of the
output, this time consisting in the neuron with the highest

number of binary spikes w.r.t to a change to an input spike.
2. We propose SNN-IG3D: a novel adaptation of the Integrated

Gradients (IG) method (Sundararajan et al., 2017) for spiking
event-data, to obtain input spike-attribution maps. IG in
ANNs computes the vanilla saliency across many interpolations
between the image and a baseline to afterwards integrate them.
Our proposed method adapts the idea of a path of integration
to the time dimension, where the sampling of input spikes
according to a given heuristic is performed.

3. We propose an efficient generation of Saliency and IG
attribution maps for SNNs with real-valued inputs (e.g., pixel-
level for 2D input images) through (a) spike encoding, (b)
spike-attribution map generation, and (c) mapping from spike-
attribution map to an attribution map of the input. These
methods are referred to as SNN-Grad2D and SNN-IG2D. Note
that although the end result is the same as a typical ANN
attribution map, i.e., a 2D image, an SNN operates with one
discrete dimension more and thus traditional ANN methods
cannot be directly used in SNNs.

4. We qualitatively assess our methods through visual inspection,
giving an insight on how SNNs classify with different neural
encodings and demonstrate through quantitative perturbation
analysis that the resulting attribution maps for both spiking
event-based data and real-valued 2D images are quantitatively
superior to the alternative post hoc existing approaches for
SNNs.

1.1. Background and related work:
neuromorphic computing

Spiking neural networks are biologically inspired neural
networks, which possess similar topology as artificial neural
network but differing in terms of base neuron units. Information
is transmitted across neurons through the synapses connecting
pre- and post-synaptic neurons. Incoming spikes are integrated
into the neurons’ membrane potential. As the membrane potential
reaches a critical threshold, the neuron fires a spike to the next
connected neurons and the potential is reset. A positive membrane
potential is continuously reduced, or leaked, so the timing of the
incoming spikes is critical. SNNs aim to reproduce these properties
of biological neurons using differential equations for the neuron
models and consuming and producing spiking data rather than
floating point numbers as in conventional ANNs. As the spiking
neurons only propagate spikes after integrating multiple incoming
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FIGURE 1

Illustration of general computational flow for explainability attribution methods for SNNs. Spike- and pixel-level attribution maps (3D and 2D,

respectively) are generated for an inference result of a two dimensional image input. The methodology is based on surrogate gradients to identify the

most important input spikes to the SNN. Neural coding strategies are used to transform an image to a spiking representation and mapping strategies

are finally applied to reduce the 3D spike attributions to the original 2D image. Iterative inference runs on interpolated inputs at pixel or spike-level

performed by advanced attribution methods are not shown here for clarity.

spikes, data passed through the SNN is sparse, and thus a great
number of neurons remain silent during a forward pass. These are
the main reasons for the sparsity and energy-efficiency of SNNs.
Please refer to the Appendix 3 for a concise formal description of
the neuron model. There are nowadays three different approaches
to create a trained SNN:

1.1.1. Spike-timing dependant plasticity
Unsupervised learning based on timing causality of pre- and

post-synaptic spikes: if an input spike preceded an output spike
it probably had a causal relationship. STDP has been successfully
used to train a variety of shallow SNNs (Hu et al., 2014; Hao
et al., 2020). However, scaling up STDP training to deeper
networks remains cumbersome, requiring training each layer
individually (Kheradpisheh et al., 2018; Lee et al., 2018) resulting
in a large training time.

1.1.2. ANN-to-SNN conversion
Takes a pretrained ANN model and converts all neurons to

spiking neurons and then converts the ANN weights to SNN
weights keeping the activation patterns of the neurons similar
between ANNReLU neurons and spiking neurons. It has been used
to generate trained SNNs for multiple tasks and models with great
success (Sengupta et al., 2019). However, Lee et al. (2020) has shown
that spike efficiency, is vastly reduced for SNNs trained with this
method, as converted SNNs require a large amount of timesteps to
reach sufficient inference power, compared to other methods.

1.1.3. Backpropagation using a surrogate function
As the spiking function is not inherently differentiable (Bellec

et al., 2018; Zenke and Ganguli, 2018; Zenke and Vogels,
2021), surrogate functions have been used to approximate its
derivative. Surrogate functions for backpropagation have been
extensively used to train shallow and deep-SNNs on many tasks,
such as classification tasks on images (MNIST, CIFAR-10,...)
and on neuromorphic event-based data (DVSGesture, N-MNIST,
CIFAR10-DVS) (Shrestha and Orchard, 2018; Neftci et al., 2019;
Li et al., 2021). While existence of a backpropagation mechanism
in the brain remains contested; backpropagation for SNN training
gives us access to well-established state-of-the art optimization
procedures (Kingma and Ba, 2015) for ANN which can then be
directly used to train the SNN, enabling training of deep-SNNs in
an efficient manner. We take advantage of this training approach in
our work, to research explainability methods for deep-SNNs.

1.2. Background and related work:
explainable AI

Within the vast literature on explainable artificial intelligence
(XAI) for neural networks, we restrict the discussion solely to
input attribution and layer activation methods for image data, and
present the existing XAI methods for spiking neural networks. XAI
methods can be divided into two categories; (i) model-agnostic and
(ii) model-specific methods.

Model-agnostic methods, such as LIME (Ribeiro et al., 2016)
and RISE (Petsiuk et al., 2018), treat the model as a black-box and

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1153999
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bitar et al. 10.3389/fnins.2023.1153999

explain the models’ decision by perturbations, such as occlusion, at
the input. These methods can be readily applied to SNNs as they
are independent of their inner-workings. However, model-agnostic
methods are very computationally intensive, and thus slow and
typically configured to provide coarse-grained results due to their
poor scalability as the perturbation experiments are combinatorial.

On the other hand, model-specific methods make
use of the knowledge we have of the model to generate
explanations. Known model-specific approaches for ANNs
are deconvolution models (Zeiler and Fergus, 2014) created
during training (Zhou et al., 2015) or (post hoc) gradient-
based approaches, such as Saliency Maps (Simonyan et al.,
2014), Integrated Gradients (Sundararajan et al., 2017),
Grad-CAM (Selvaraju et al., 2017), and other extensions, (e.g.,
Chattopadhay et al., 2018; Srinivas and Fleuret, 2019).

1.2.1. Explainable neuromorphic computing
For spiking neural networks, however, research into their

explainability and interpretability is still rather sparse. Some
initial studies have been done initiating and coining research
into explainable neuromorphic computing. Kirkland et al. (2020)
take inspiration from Zeiler and Fergus (2014) to create a spike
segmentation algorithm by extending their spiking convolutional
neural network with extra deconvolution layers to reconstruct
the segmentation map. They provide experimental results using
STDP for training on both spiking and spike-encoded datasets.
The main disadvantage of this approach is the necessity to train
the additional deconvolutional layers. In Kim and Panda (2021),
two explainability methods for SNNs are proposed: SNN-crafted
Grad-CAM and Spike Activation Map (SAM). Both methods
produce activation maps for SNNs, i.e., which input regions
triggered a layer the most. The former uses backprop up to
the convolutional layer of interest, while the latter only forward
propagates the effect of a spike to successive layers. Afterwards,
the activation maps at particular convolutional layers can then
be scaled to the input image size for superposition. These
two approaches to create visual 2D feature maps are however
limited to convolutional layers. In this work, we evaluate through
input perturbation experiments the efficacy of SAM as a tool to
obtain input attribution maps as Kim and Panda (2021) only
validated its results against the output of Grad-CAM as ground
truth.

1.2.2. Metrics for attribution maps
Most explainability methods have been evaluated through

subjective visual inspection susceptible to human interpretation
bias. In recent years, less biased quantitative methods for evaluation
of explainability methods based on input perturbation have begun
to appear (Ancona et al., 2017; Montavon et al., 2017; Samek
et al., 2017; Petsiuk et al., 2018). Generally, these methods work
by iterativeley perturbing the most or least salient pixels and then
re-evaluating the models performance on the perturbed input.
Other methods, such as RemOve And Retrain (ROAR) (Hooker
et al., 2019) retrain the model after each iteration of salient-input
perturbation, and then evaluate the resulting models’ performance.
In this paper, we evaluate using deletion and insertion perturbation

experiments without retraining, as, besides the huge computation
savings, the accuracy degradation of retrained models on perturbed
inputs indicates the potential of input features to be informative
as ANN models are able to perform a good job by re-training
with very few inputs (Hooker et al., 2019), whereas the accuracy
degradation of the same (not retrained) model on perturbed
inputs informs us about input feature importance of the model
under test.

2. Materials and methods

This section presents the theoretical motivation, data,
neural codings, SNN-crafted gradient-based XAI methods,
mapping of spiking attribution map to real-valued input
attribution map, and experimental setup used in our study
on neuromorphic computing. The goal of this study is to
investigate the use of spiking neural networks for image
classification tasks and to develop gradient-based explainable
AI methods that can be applied to SNNs. In particular, we
focus on using SNNs to classify images from the Cifar 10
and DVS128 Gesture Dataset, and developing methods to
understand the decisions made by SNNs through the use of
attribution maps.

In Section 2.3 and onwards, we present our approach to obtain
spike- and pixel-level attribution maps for 2D input images. The
methodology comprises a three-phase system (refer to Figure 1),
which involves: (1) encoding 2D input images into a 3D event
stream (discussed in Section 2.3), (2) computing the 3D input
spike attributions of the SNN’s output (detailed in Section 2.4),
and (3) mapping the 3D spike attribution to a 2D pixel-attribution
map that corresponds to the original input image (elaborated in
Section 2.4.3). We also present our methods for event input data,
which does not require the initial encoding and final mapping parts.
Our first method, SNN-Grad3D, employs gradients to compute 3D
attributions across time, and to compute pixel-level attributions, we
propose SNN-Grad2D. For our second group of methods, SNN-
IG (2D and 3D), based on Integrated Gradients, we compute the
3D attributions using a time-based sampling heuristic applied on
the input data. In Section 2.6.1, we present the experimental setup,
including SNN architectures, the employed training methodology
and the evaluation process for the resulting explanations.

2.1. Theoretical motivation

Our hypothesis is that gradient-based methods will enable to
obtain better attribution maps than activation-based methods for
SNNs, as the gradient encapsulates the knowledge of the changes
in the input that are needed to see a change in the output.
Activation maps do not capture this relationship necessarily.
ANN’s Class Activation Maps (CAM) had to be trained to
learn that relationship, and GradCAM introduced gradient back
propagation to estimate an attribution map from pure activations.
Furthermore, a better model-specific attribution method will also
allow to avoid the huge cost of model-agnostic computational
combinatorial explosion.
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2.2. Data

The experiments in this study were conducted using two
datasets: Cifar 10 and DVS128 Gesture Dataset.

Cifar-10 (Krizhevsky, 2009) is a widely used dataset for image
classification tasks, consisting of 60,000 32 × 32 color images in
10 classes, with 6,000 images per class. There are 50,000 training
images and 10,000 test images. It is important to note that the RGB
color images were first grayscaled and then scaled to a range of
0–255 before being used in the experiments.

DVS128 Gesture Dataset (Amir et al., 2017)is a dataset for
gesture recognition tasks, consisting of events generated by a
Dynamic Vision Sensor (DVS) with a 128 × 128 resolution. The
dataset contains 10 different gestures, each performed by 5 different
subjects, for a total of 50 gestures per class.

2.3. Neural codings for real-valued input
data (2D images)

The input of SNNs requires to be in the spiking domain. In
this work, we explored various neural codings, with varying degrees
of temporal and spatial complexity. These different encodings
distribute the input information differently throughout the spiking
domain, e.g., a pixel value could be conveyed as a single spike, or
as a rate of spikes; potentially influencing the computation of input
attributions.

2.3.1. Time To first spike
TTFS (Park et al., 2020) is a form of latency coding

which encodes each input pixel-value into a corresponding
spike occurring at a timestep proportional to the pixel value.
This encoding results in the sparsest input-encoding and lowest
temporal complexity, as any pixel will have a singular spike. In
this work, the grayscale resolution is maintained and thus TTFS
spike-timings fall in a window between 0 and 255 timesteps. The
description and equations of TTFS and further neural codings,
not discussed here due to space constraints, can be found in the
Appendix 4.

2.3.2. Comparison of encodings based on their
robustness to hardware noise

Additionally, we conducted a comparative analysis of different
neural encodings in terms of their robustness to noise encountered
in realistic scenarios, including noise from neuromorphic sensor
recordings and noise within neuromorphic chips (Park et al., 2021;
Nagarajan et al., 2022).

The subsequent paragraphs describe the experiments
conducted to assess the robustness of various neural encodings to
noise. Drawing inspiration from Park et al. (2021), we designed
experiments where input spikes are perturbed using two noise
models: spike deletion and jitter, the latter of which introduces
temporal fluctuations to spike timing. Spike deletion can emulate
scenarios where a sensor fails to generate spikes or an input neuron
fails to fire, while jitter can be caused by various factors such as

spike transmission malfunctions or altered voltage thresholds of
spike functions.

2.3.2.1. E�ect of input noise

We replicated the experiment from Park et al. (2021) by varying
the intensity of jitter from 0 to 4 time steps, allowing spikes to occur
earlier or later. Spike deletion noise was modeled with a probability
of spike deletion for each spike. We performed a sweep of deletion
probabilities from 0% to 90%.

Figure 2 illustrates the results for (a) jitter and (b) deletion
noise. Following the application of jitter or deletion noise,
we measured the relative accuracy of the model. Relative
accuracy is defined as the network’s accuracy compared
to its accuracy on the original non-perturbed data. The
analysis focused on a subset of data correctly classified by all
four neural encodings to maintain parity in input samples,
accounting for variations in network accuracy. Although
network accuracy varied across different encodings for CIFAR10,
we used this approach to ensure fairness, acknowledging
that bias might be introduced due to selective sample
picking.

Consistent with Park et al. (2021), we observed strong
robustness of Poisson coding against jitter noise. We attribute
this to the inherent stochastic nature of Poisson coding, which
manifests during training. Interestingly, our experiments
indicate greater robustness of TTFS against jitter noise than
previously reported. Even at maximum jitter intensity, the
relative accuracy of TTFS-SNN only drops to 60% accuracy,
contrasting with the 10% reported in the original study. We
speculate that this difference could arise from methodological
variations, including the training approach and the reduced
number of time steps employed in the original TTFS
study.

Regarding deletion noise, our findings align with Park et al.
(2021), except for TTFS, which displayed higher vulnerability
to deletion noise in our experiments compared to its reported
robustness. We hypothesize that the reduced number of time steps
used in the original TTFS study could explain this discrepancy.

2.3.2.2. E�ect of network noise

In Figure 3, we explore the SNNs’ robustness to
noise at the network level, excluding input noise. We
introduce similar noise models, but this time perturbing
layers and neurons throughout the network instead of
limiting the perturbation to input data. Neuromorphic
hardware, as discussed in Nagarajan et al. (2022), can
experience such noise due to external attacks or electrical
interference.

Consistent trends emerged, with Poisson and TTFS
encodings maintaining robustness against jitter noise
throughout the network. Additionally, phase and burst
coding exhibited improved jitter robustness within the
network compared to the input. We hypothesize that
network jitter is less disruptive due to the dense spike traffic
within the network, which stabilizes membrane potential
levels.

Conversely, deleting just 20% of spikes within the network led
to significant performance degradation. Spike deletion within the
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FIGURE 2

E�ects of (A) jitter and (B) deletion noise at the input level on model accuracy.

FIGURE 3

E�ects of (A) jitter and (B) deletion noise at the network level on model accuracy.

network appears more effective at disrupting network operation.
This outcome aligns with expectations, as spike deletion encourages
leakage of membrane potential, leading to reduced spike frequency
and neuron activation within the network. In contrast, jitter
affects spike timing without necessarily promoting leakage, thereby
exerting a milder impact.

2.4. SNN-crafted gradient-based XAI
methods

Based on established gradient-based pixel-attribution methods
for ANNs, we propose two classes of SNN-Crafted counterparts,
namely SNN-Grad (Gradients) and SNN-IG (Integrated
Gradients) to obtain spike-level and pixel-level attribution
maps. For all methods, to compute the gradients through the
post inference backward pass, we use a surrogate-gradient
approach, as the spiking function is non-differentiable and thus an
approximation is necessary.

2.4.1. SNN-Gradients (SNN-Grad)
Saliency maps, first introduced by Simonyan et al. (2014),

compute the gradient of class probability with respect to the input
values, i.e., it allows to determine how much a specific output for
one class changes if an input feature (pixel) is slightly changed.
In SNNs trained through backpropagation, a classification decision
is typically obtained by selecting the output class with the highest
amount of spikes in a time window as all other classes are expected
to produce a pre-defined reduced amount of spike activity too. This
is the expected behavior induced during training for convergence
reasons.

2.4.1.1. SNN-Grad3D for event-based data

We define our SNN-Grad3D similarly to the original
Saliency Map (Simonyan et al., 2014). As the output of the SNN
is not a logit or a class score, but rather a spike train, we define our
class score (SC) as the sum of spikes per output neuron. Indeed,
the classification decision of an SNNs output is usually decided
by the most spiking output neuron. Thus output neuron with the
highest number of spikes is naturally the winning class. We define
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our SNN-Grad3Dmap to represent the gradients of the class score
(SC) with respect to the input. Using the surrogate-gradient, for
an image of size height×width encoded in t timesteps, we obtain
a spike attribution map of size height×width×t indicating how
much would the class score SC change if a spike could be added
or removed at any point in this 3D space.

2.4.1.2. SNN-Grad2D for real-valued data

To obtain an attribution map for 2D images SNN-Grad3D is
simply combined with a mapping strategy (Section 2.4.3), to reduce
the temporal dimension.

2.4.2. SNN-Integrated Gradients (SNN-IG)
The second set of proposed gradient-based

attribution methods, are an adaptation of the Integrated
Gradients (Sundararajan et al., 2017) approach. The original
Integrated Gradients aims to provide better attribution maps
than the simple Saliency approach by solving the locality problem
of a gradient only reflecting changes of the output due to
small variations of the input. It achieves this by first creating a
monotonous path from a baseline input to the original input in
n_steps. IG is then computed by integrating gradients along this
path.

2.4.2.1. Choice of baseline

Usually, pixels values are set to black in conventional 2D
images (Sundararajan et al., 2017; Petsiuk et al., 2018). However,
replacing of pixels with black ones creates artifacts which may start
being detected by the model (Srinivas and Fleuret, 2019). In spiking
data, e.g., with TTFS encoding, each pixel-value can be assigned a
specific spike-timing. The equivalent of a black pixel is in this case
a spike at the earliest time. On the other hand, event-based cameras
generate spikes only when movement is detected, thus deleting
spikes directly translates to missing information. Therefore, for our
spike-level experiments on our 2D system, we used an encoded
black baseline, and for spiking data, we used “no spike” as the
baseline.

As event stream inputs are binary timeseries, intermediary
steps between “off” and “on” spikes do not exist, thus a
path cannot be created by reducing spike values (contrary
to pixels which can be, e.g., dimmed). However, recall that
the information is encoded across spikes in the timing
between the spikes. For this work, we adapt IG into
two SNN-Crafted IG versions depending on the original
input: 2D image (SNN-IG2D) and event-based sensor
(SNN-IG3D).

2.4.2.2. SNN-IG2D for real-valued data

Leveraging our knowledge of the original 2D input data,
similarly to Integrated Gradients (Sundararajan et al., 2017)
we create a path from a fully black baseline image to the
source (2D) image. We then encode every single image along
the path into event streams, compute the individual SNN-
Gradients with respect to the input and integrate them along that
path.

2.4.2.3. SNN-IG3D for event-based data

Contrary to the 2D image procedure, event-based data exists
purely in the binary spiking domain and does not require an
encoding. Thus, as the individual spikes cannot be further divided
to create a straight path from a baseline, we adapt our approach to
create a path along the time-dimension. Inspired by the temporal
and sequential properties of the event-based data (similar to
video data), we create a path from an empty 3D event stream,
to the original input event-data sequence by sampling timesteps
from the original event-data input with iteratively increasing
sampling-rate along the path, up to the complete original event
stream over i steps. Doing this, we end-up with i event streams
creating a path from a baseline to the original data. Details and
visualization of the two sampling-rate approaches explored to
create path of event-based data can be found in Appendix 10.
Similarly, we then compute the individual SNN-Gradients with
respect to these new inputs, and integrate them along the
path.

2.4.3. Mapping of spiking attribution map to
real-valued input attribution map

To close the explanation loop for real-value input data, a
mapping from the spike-level attribution-box to the original
input space is necessary (see Figure 1). For 2D image data,
this corresponds to a mapping from a 3D attribution-box
to a 2D attribution map. In this work, we explored various
basic mappings, such as max, sum, and avg, to aggregate the
gradients across the three dimensional space (height, width,
and time) to the two dimensional space (height, width).
For the following presented experiments, we chose the best
performing mapping on SNN-Grad2D and SNN-IG2D,
which was the summation across time for both. Further
mappings and their equations can also be found in the
Appendix 9.

2.5. Inverted SAM

In this subsection, we introduce Inverted SAM (ISAM),
a modified version of the SAM method used in the
perturbation experiments for interpreting the encoded event
stream. ISAM aims to enhance the attribution mapping
performance specifically in the context of spiking neural
networks.

ISAM is derived by taking the negative of the SAM
scores obtained from the convolutional layers of the SNN.
This inversion of scores provides an alternative perspective
by highlighting regions that are deemed less important or
influential in the decision-making process of the SNN. By
utilizing ISAM, we can explore the impact of suppressing or
removing specific spikes on the overall performance of the
SNN.

The application of ISAM in our experiments shows promising
outcomes, which motivates further investigation into its
effectiveness and implications. Understanding the underlying
reasons behind the observed performance improvements and
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the characteristics contributing to its efficacy at different layers
requires more in-depth analysis.

2.6. Experimental setup

This section of the paper presents the details of the
spiking neural network architecture and training as well as
the evaluation process used in our study. In Section 2.6.1, we
describe the SNN architecture and training methodologies used
for image classification tasks. We also present the parameters
used for training the SNNs and how the networks were
trained. In Section 2.6.2, we describe the evaluation process
used to evaluate the performance of the SNNs, as well as
the metrics used to measure the performance of the SNNs
and the XAI methods. This section provides a comprehensive
overview of the experimental setup used in our study and
will enable readers to reproduce the results presented in this
paper.

2.6.1. Spiking neural network architecture and
training

We conduct all experiments on a LeNet-5 (Lecun et al.,
1998) inspired convolutional network spiking-architecture to be
able to compare to related work currently limited to convolutional
layers. The architecture consists of 3 sets of spiking convolutional
layers followed by feature extractor pooling layers and a set of
classification fully connected layers.

To train the SNNs, we employed SLAYER (Shrestha and
Orchard, 2018) as training-framework to access surrogate gradients
from backpropagation. Two SNN were created, one for the
CIFAR-10 (grayscale) dataset (Krizhevsky, 2009) with 63%
validation accuracy and one for the event-based DVS128 Gesture
dataset (Amir et al., 2017) with a final validation accuracy of 81.4%.
DVS128 consists of gestures which have been recorded with an
event-based camera, thus generating data directly in the spiking
domain. Each sample has been recorded over a period of 1400ms.
Please refer to Appendix 7 for details about network parameters,
configuration and comparison of training results. Parameters for
the baseline post hoc approaches LIME and RISE and SAM can be
found in Appendix 8.

2.6.2. Evaluation process
We conduct visual inspection and quantitative assessments

on real-valued image inputs and spiking event data.
First, we evaluate our end-to-end method for pixel-level
attributions on CIFAR-10 comparing four types of neural
coding algorithms, with differing spatio-temporal properties.
Second, we use the DVS128 dataset to compute spike-
attribution maps. For each dataset, a SLAYER trained
Spiking-CNN was used to classify the inputs, and retrieve
their gradients.

In the following, qualitative and quantitative results of selected
methods will be presented, complementary results can be found in
the Supplementary material.

3. Results

3.1. Visual inspection of pixel attribution
maps

In Figure 4A, we show the effect of different neural codings
on the resulting attribution maps of our SNN-IG2D method. To
aid the visualization of the most important features/pixels per
image, each shown heatmap Hi is linearly normalized between
0 and 1 and then take the absolute values as follows: Hi′ =

|
Hi−Hi

min

Hi
max−Hi

min

|. We see that the four neural codings using the mapping

by summation result in vastly different maps. Attribution map’s
qualitative analysis cannot assess its correctness. Learned patterns
need not be intuitive. TTFS produces the cleanest map, identifying
more defined clusters than the rest.

Second, Phase coding looks to focus on similar features as TTFS
but in a noisier manner, this might be partly due to the fact that
Phase coding elicits more spikes, and a simple summation across
time might not be as effective as for TTFS. Poisson and Burst
coding generate heatmaps which are visually very noisy and don’t
seem to focus on the object. From here on onwards, we focus on
TTFS neural coding with summationmapping for visualization and
quantitative results.

In Figure 4B, we compare the resulting attribution maps from
different attribution methods for SNNs. We compare two model-
agnostic methods, which directly work on the 2D input and
generate 2D heatmaps without intermediary spike attributions –
LIME and RISE. We then compare to SAM, the latest model-
specific explainability method for SNNs with convolutional layers
utilizing spike-timing information. Finally the last two columns
show the results obtained from our proposed gradient-based
methods, SNN-Grad2D and SNN-IG2D.

As expected, LIME, RISE and SAM appear to distribute
importance rather strongly to a large amount of input pixels, in
contrast, SNN-Grad2D and SNN-IG2D are much more fine-
granular and identify more detailed attribution scores. The reason
for this is the trade-off of model agnostic models of accuracy vs.
compute time, and the use of intermediate activation layers in SAM
which are projected to a large area of pixels. By non-formal visual
inspection, clusters of attribution seem to bemore defined to abrupt
changes in texture in SNN-IG2D than SNN-Grad2D.

3.2. Quantitative assessment

The average latency overhead to compute 2D attribution maps
for 100 samples of the CIFAR-10 image with SNN-Grad2D is
~26 ms, SNN-IG2D (n=50) ~1.54 s, SAM ~8.39 s, RISE ~13.27 s
and LIME ~49.78 s. See Table 1 for measurements on CIFAR-10,
F-MNIST and MNIST using TTFS encoding.

3.2.1. Deletion and insertion scores for 2D
attribution methods

Perturbation of high scoring features should cause a higher
output variation. In Deletion (Insertion) experiments, as
used in Samek et al. (2017) and Ancona et al. (2017), the k most
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FIGURE 4

Qualitative visual inspection of 2D end-to-end pipeline attribution results. (A) Comparison of SNN-IG2D attribution maps on di�erent neural

encodings: Time to first spike, Phase, Poisson, and Burst coding. (B) Comparison to related post hoc attribution methods for SNNs, for TTFS

encoding: model-agnostic methods (LIME, RISE), activation map visualization method (SAM) and ours (SNN-Grad2D, SNN-IG2D). SAM, SNN-Grad2D,

and SNN-IG2D using summation mapping to map spike attributions to pixel-attributions. Shown visualizations have been normalized for ease of

comparison.

TABLE 1 Average measured latency [in seconds] (SD) to compute an attribution map on 100 sampled images on a PC with a Core i9-10980XE CPU and

GeForce RTX 3090 GPU—Lower is better.

SNN-Grad2D SNN-IG2D SAM RISE LIME

C-10 (TTFS) 0.026 (0.001) 1.54 (0.04) 8.39 (0.17) 13.27 (0.37) 49.78 (0.67)

F-MNIST (TTFS) 0.026 (0.001) 1.54 (0.03) 9.23 (0.15) 14.81 (0.57) 51.94 (0.66)

MNIST (TTFS) 0.027 (0.001) 1.52 (0.04) 9.14 (0.11) 15.87 (0.20) 56.18 (0.22)

important features—spikes or pixels—based on the attribution
map are removed (inserted), and the degradation (improvement)
of the classification score and class recall accuracy are iteratively
recorded. We perform these perturbation experiments on a subset
of 600 samples of the validation data sets that the network
correctly classified, to avoid a doubtful correctness evaluation of
an attribution map obtained from wrong predictions. Perturbation

of features means changing it to some predetermined value (the
baseline). The choice of baseline is an important factor to keep in
mind when evaluating attribution methods, as it can create some
artifacts, which confuse the models as seen in Samek et al. (2017)
and Ancona et al. (2017). To reduce the effect of the artifacting by
the baseline choice, we evaluate our method with both Deletion
and Insertion strategies. In Deletion pixels are iteratively
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FIGURE 5

Quantitative results on feature attribution maps based on spike and pixel perturbations. X axis: Percentage of input perturbations. Y axis: Average

accuracy of the SNN (using TTFS on 600 correctly identified images in the original CIFAR-10 dataset). (A, B) Spike perturbations: Deletion respectively

insertion of k% most salient input spikes (after input image encoding) comparing: SNN-Grad2D, SNN-IG2D, SAM(layers:1,3,5), I-SAM(layers:1,3,5), and

Random spike-perturbations as baseline. (C, D) Pixel perturbations: The pixel-level 2D attribution map scores obtained after summation mapping are

used to perturb the input image to measure their e�cacy to detect the most important input pixels; comparing: SNN-Grad2D, SNN-IG2D, I-SAM,

LIME, RISE, and Random spike-perturbations as baseline. Gray shaded area highlights performance worse than random. See Figure 7 and

Supplementary material S13 for individual plots with error bars.

replaced with three baselines: black, gray, and white, while for
spikes the baseline is no spike. For Insertion the starting point
is the corresponding baseline.

In Figure 5, we assess the performance of our 2D SNN
attribution methods. As the 2D pipeline produces two attribution
maps (first in spikes, then in pixels) we apply the perturbation
experiments at both stages. Figures 5A, B measures the
perturbation of the event stream (after the image encoding).
Here, we compare our methods SNN-Grad2D and SNN-IG2D to
SAM (at different convolutional layers) and random perturbation as
baseline. Our gradient-based methods produce positive or negative
attribution scores. We evaluate our methods with both the raw
score, or with the absolute value (postfix ABS) as commonly done
in the equivalent XAI related work for ANNs.

3.2.1.1. Interpretation of perturbation results for encoded

event stream

In spike perturbations (Figures 5A, B), SAM (at all layers)
performs worse than random. SAM captures neuronal activity at
convolutional layers, but results indicate that this activity map does
not directly translate to a true input attribution map. This matches
our expectation of the non-linear relationship between activation
and attribution. We decided to evaluate the inverted version
ISAM (the negative of SAM scores), and its performance surpassed
the random baseline. Our method SNN-IG2D(ABS) performs
better than SAM in both perturbation experiments. Remarkably,
inverse SAM at layers 3 and 5 do better in spike removal and
competitively in spike insertion. We speculate that the SAM

attention maps are in this case indicative of a dominant sensory
suppression behavior (Kim and Panda, 2021). In spike insertion,
SNN-IG2D(ABS) quickly identifies important features, which
rapidly, with about 5% of spikes, increase the SNNs performance
to around 50% accuracy in classifying the data. At around 30%
insertion, SNN-Grad2D(ABS) and ISAM at layer 3 overtake
SNN-IG2D(ABS). The reason behind this behavior and why
ISAM at layer 3 performs better than a later or an earlier layer is
not clear to us.

Next, Figures 5C, D measure the perturbation results of 2D
pixel data (before encoding). We compare again SNN-Grad2D,
SNN-IG2D (on three baselines) and SAM, ISAM using summation
mapping to obtain 2D attribution maps, as well as the model-
agnostic methods RISE (Petsiuk et al., 2018) and LIME (Ribeiro
et al., 2016).

3.2.1.2. Interpretation of perturbation results for input

pixel data

In pixel perturbations, the model agnostic methods are capable
to identify important features quite well and justify their high
computation cost. Both SAM and ISAM perform worst than
random in pixel removal and better than random in pixel insertion.
Again, we believe this is due to activation maps not representing
good attribution maps. Our method SNN-IG2D(ABS) performs
the best among the model-specific methods. It is possible that our
methods did not outperformmodel-agnostic ones in part due to the
simplistic mapping across the time dimension. For pixel removal,
the black baseline produces better results, while in pixel insertion a
gray baseline is better. This can intuitively understood: removing a
pixel with the lowest value (black) is a stronger perturbation than
“removing it” with a bright value (white). Similarly, inserting a few
important features in a completely empty (black) background is a
significant deviation from the training data distribution, thus a gray
baseline recreates a closer sample of the training distribution.

3.2.2. Deletion and insertion scores for 3D
spike-attribution methods

We evaluate our SNN-Grad3D and SNN-IG3D methods on
event-based data, using the same perturbation strategy.

3.2.2.1. Interpretation of perturbation results for native

event stream

As seen in Figure 6, SNN-IG3D, using the spike sampling (ii)
of Appendix 10, vastly achieves to identify most important spikes
quickly: with deletion (or insertion) of less than 5% of the potential
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FIGURE 6

Spike-perturbation experiment (spike removal: A and spike insertion: B) on SNN trained on event-based DVS128 Gesture dataset. Comparison of

SAM(layers 1&2), I-SAM(layers 1&2), SNN-Grad3D, and SNN-IG3D. Additionally, compared to a Random perturbation baseline (yellow, dashed). Gray

shaded area highlights performance worse than random.

FIGURE 7

Error bars for Figure 5A—% spikes removed vs. E[Winning Class]. Error bars for the other experiments can be found in the Supplementary material.
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spike-locations resulting in total degradation (restoration) of the
original winning class expectation. To note, inversely to the
encoded image dataset, the sparse and temporal properties of
this DVS128 Gesture dataset seem to more naturally fit with
SAM method. The original SAM method now is better than the
inverse ISAM at all layers. In the previous experiment, as better
appreciated in Figure 7, it can be seen that ISAM was better. Also
interestingly, and arguably due to the aforementioned nature of
activation maps, there is no guideline as to which layer is most
useful. Here, in spike removal layer 1 (earlier) is clearly superior to
layer 2 while in the image experiments, sometimes the outer layers
were better. Finally, the signed or absolute value version of our
methods also result in different performances. Both SNN-IG2D

and SNN-IG3D get better results in all out experiments in the
ABS case. The SNN-Grad3D signed version is better for both
insertion and deletion and SNN-Grad2D is significantly improved
by taking the absolute value in all but the spike removal experiment,
where it moderately decreases. This behavior seem to be related to
the difference of information carried by each method. Gradients
capture very local behavior, so big local negative change is not
necessarily the same as indicating that the pixel is not a positive
influence.

4. Conclusions and future work

Explainability of SNNs poses unique challenges, requiring
specialized methods to understand their decision-making
processes. In this paper, we have investigated the effectiveness of
gradient-based attribution methods for SNNs trained with the
surrogate backpropagation approach.

Our findings indicate that gradient-based methods, namely
SNN-Grad2D, SNN-Grad3D, SNN-IG2D, and SNN-IG3D,
offer several advantages over existing approaches. Firstly, these
methods require significantly less computation time compared to
other techniques. Secondly, they are not limited to convolutional
operations as methods producing activation maps, which enhances
their applicability to various neural coding schemes. Thirdly,
unlike deconvolutional methods, they do not necessitate training
an extension of the model. Lastly, the perturbation experiments
demonstrate that these methods provide true attribution scores.

While discussing the preference between Integrated Gradients
and Gradient methods, it is worth noting that SNN-IG has shown
particular superiority. SNN-IG excels in providing finer-grained
attribution maps compared to model-agnostic or activation-based
methods for SNNs. The integration of gradients along the input
space, as employed by SNN-IG, enables a more comprehensive
understanding of the influence of different input features on the
SNN’s decisions.

In future work, we envision several avenues for enhancing
Explainable Neuromorphic Computing. Firstly, it would be
valuable to refine the surrogate-gradient approach to mitigate
inaccuracies that may impact gradient-based methods. This
would further improve the reliability and interpretability
of the attribution maps generated. Secondly, exploring the
adaptation of other gradient-based eXplainable Artificial
Intelligence methods from ANNs to SNNs could provide
valuable insights and potential advancements. Lastly, developing

specific mapping techniques based on neural codings to accurately
map 3D attributions back to the pre-encoded source data would
enhance the interpretability of SNNs operating on event-based
inputs.

Overall, this study contributes to the understanding of
explainability in SNNs and opens up avenues for future
research, bridging the gap between neuromorphic computing and
interpretable artificial intelligence.
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