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Trainable quantization for Speedy
Spiking Neural Networks

Andrea Castagnetti*, Alain Pegatoquet and Benoît Miramond

LEAT, Université Côte d’Azur, CNRS, Sophia Antipolis, France

Spiking neural networks are considered as the third generation of Artificial

Neural Networks. SNNs perform computation using neurons and synapses that

communicate using binary and asynchronous signals known as spikes. They have

attracted significant research interest over the last years since their computing

paradigm allows theoretically sparse and low-power operations. This hypothetical

gain, used from the beginning of the neuromorphic research, was however

limited by three main factors: the absence of an e�cient learning rule competing

with the one of classical deep learning, the lack of mature learning framework,

and an important data processing latency finally generating energy overhead.

While the first two limitations have recently been addressed in the literature,

the major problem of latency is not solved yet. Indeed, information is not

exchanged instantaneously between spiking neurons but gradually builds up over

time as spikes are generated and propagated through the network. This paper

focuses on quantization error, one of the main consequence of the SNN discrete

representation of information. We argue that the quantization error is the main

source of accuracy drop between ANN and SNN. In this article we propose an

in-depth characterization of SNN quantization noise. We then propose a end-to-

end direct learning approach based on a new trainable spiking neural model. This

model allows adapting the threshold of neurons during training and implements

e�cient quantization strategies. This novel approach better explains the global

behavior of SNNs and minimizes the quantization noise during training. The

resulting SNN can be trained over a limited amount of timesteps, reducing latency,

while beating state of the art accuracy and preserving high sparsity on the main

datasets considered in the neuromorphic community.
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1. Introduction

The field of neuromorphic engineering, especially Spiking neural networks (SNNs),

is emerging as a new paradigm for the design of low-power and real-time information

processing hardware (Abderrahmane et al., 2020). The spike information coding used by

SNNs enables sparse and event-based computation through the network. The combination

of these properties may lead to more energy efficient hardware implementations of neural

networks, allowing state-of-the-art AI algorithms to be executed on mobile platforms with a

reduced power budget (Mendez et al., 2022). However, to achieve these energy gains while

simultaneously reaching the level of performance of Artificial Neural Networks (ANNs),

SNNs must be able to encode analog data with high precision using very compact codes, i.e.,

spike trains. The encoding precision in SNN is directly related to the latency of the network.

Increasing the conversion time, thus generating more spikes, lowers the quantization errors
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and improves performance at the cost of energy overhead. The

trade-off between conversion time, i.e., latency, and performance,

is an increasingly active area of research (Li et al., 2021, 2022)

and the main subject of this paper. Training methods for low

latency and high precision SNN can be divided in two categories:

ANN-SNN conversion and direct training. ANN-SNN conversion

generally lead to SNN with no accuracy degradation. However, this

comes at the cost of increasing latency. At the opposite, direct

training methods feature low latency, but suffered from accuracy

degradation, especially on deep neural networks such as ResNet

(Fang et al., 2021; Li et al., 2022).

In this paper, we propose a direct training method that

can achieve both low latency and high precision thanks to

Adaptive Threshold Integrate and Fire (ATIF) neurons. ATIF direct

training minimizes accuracy loss compared to ANN by applying

a novel trainable quantization scheme. By efficiently compressing

information we can achieve high accuracy with few timesteps even

for deep networks.

The main contributions of our work are listed below:

• Quantization noise in SNN: Spiking neurons quantize

information by converting their analog inputs into sequences

of spikes. We characterize the quantization error and its

relationship to the different parameters of a spiking neuron.

• Information compression through trainable quantization:

We propose a learning approach that reduces quantization

error by adapting the neuron’s parameters during training and

using a new neural model called ATIF.

• Low latency and sparse SNN: We validate our approach

on different image and audio classification problems, thus

defining new state of the art results in terms of accuracy and

latency. Moreover we show that these performance can be

achieved with a significant level of sparsity. Specifically, we

achieve 94.65% accuracy on CIFAR-10, and 94.31% on Google

Speech Commands with less than one spike per neuron.

2. State of the art

In the last few years, the development of SNN has been driven

by the need of matching the performance of the ANN on complex

image processing tasks. Early works focused on unsupervised

or semi-supervised learning algorithms based on spike timing

dependent plasticity (STDP) (Diehl and Cook, 2015; Srinivasan

et al., 2018). However, networks trained with STDP yield in general

to considerable lower accuracy than ANN or SNN trained with

backpropagation.

To take advantage of better performance provided by

supervised learning, several methods have been developed

to convert ANNs, trained using standard schemes like

backpropagation, into SNNs for event-driven inference (Diehl

et al., 2015; Rueckauer et al., 2017). The ANN-SNN conversion

is based on the idea that firing rates of spiking neurons should

match the activations of analog neurons. Early demonstration on

complex dataset like Imagenet or CIFAR-10 showed that SNNs

almost match the accuracy of ANN but at the cost of a higher

latency. As an example, Sengupta et al. (2019) was able to achieve

competitive results on CIFAR-10 with a latency of 2,500 timesteps.

Han et al. (2020) proposed a conversion-based training using

soft-reset spiking neurons. The Integrate and Fire (IF) with soft-

reset neuron implements a uniform quantization scheme between

its analog input and its spiking output, thus leading to a reduced

quantization error compared to hard-reset neurons. Moreover, to

ensure that spiking neurons operate in the linear regime the authors

proposed a technique to balance the firing threshold (Vth). With the

proposed model, the authors were able to achieve an accuracy of

60.30% with a latency of 32 timesteps on CIFAR-10 using a VGG-

16 network. In our work, we also use the IF with soft-reset neuron

model to take advantage of its uniform quantization.

Ding et al. (2021) applied a clipped ReLU during ANN training

to better emulate the behavior of spiking neurons. The clipping

point, which is the equivalent to the firing threshold of a spiking

neuron, is trained layer-wise. After conversion, the authors obtain

an accuracy of 85.40% with a latency of 32 timesteps on CIFAR-10

using a VGG-16 network.

Previous works have shown that threshold balancing clearly

helps reducing the quantization error, thus decreasing the accuracy

loss of SNNs. However, they fail to convert an ANN into an

SNN within extremely low time steps, where quantization errors

are higher. To overcome this issue, Li et al. (2021) proposed a

post-training calibration pipeline that fine-tunes, layer-by-layer,

the network parameters, including weights, bias and membrane

potentials, therefore minimizing the local conversion error (i.e.,

quantization error). An accuracy of 86.57% at 4 timesteps was then

obtained on CIFAR-10 using a VGG-16 network.

The authors of Li et al. (2022) went one step beyond by

proposing to convert a quantized ANN to an SNN. They use

a quantization-aware-training method called Learned step size

quantization (LSQ) (Esser et al., 2020) to train a quantized ANN. In

order to transfer the weights from the quantized ANN to the SNN,

the spiking neuron model was modified to match the response

curve of the quantized ReLU. However, for this method to be

effective, the proposed spiking neuron must be able to generate

spikes with negative polarity, which is not biologically plausible.

With the previous conversion method, an accuracy of 92.64% at

4 timesteps was obtained on CIFAR-10 using a VGG-16 network.

Beyond the excellent accuracy score, the authors of Li et al. (2022)

have shown that there is an equivalence between quantized ANN

and SNNs. Moreover, to obtain state of the art results, quantization

aware training must be used to jointly optimize accuracy and

quantization error.

Another method to obtain low latency SNNs is to train the

spiking network directly by surrogate gradients (Neftci et al.,

2019). Here, a surrogate function is used, during gradient back-

propagation, to replace the binary non-linearity of spiking neurons.

This allows gradient flowing thus making back-propagation

possible in the spiking domain. Direct training can optimize at

the same time, the network accuracy and the quantization error

introduced by the spiking neurons. It can therefore be considered

as a spiking-specific form of quantization aware training.

Rathi and Roy (2021) use direct learning to fine tune network

parameters transferred from an ANN. They are able to achieve an

accuracy of 92.70% at 5 timesteps on CIFAR-10 with VGG-16.
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The authors of Fang et al. (2021) used direct learning to

train ResNet without any previous conversion from ANN. They

proposed SEW-ResNet, a spiking adaptation of ResNet that

overcomes the vanishing/exploding gradient problem that occurs

with directly trained spiking deep residual networks. They achieved

an accuracy of 67.04% at 4 timesteps on Imagenet with a ResNet34.

Their results show that it is possible to train deep spiking neural

networks and obtain very competitive results on complex datasets.

Finally, in our work we make use of computationally efficient

spiking neuron models that approximate the behavior observed

in real neurons. In these models the action potentials, i.e., the

spikes, are approximated using binary pulses of infinitesimally

short duration. However, recent studies have shown that biological

neurons can generate several spiking dynamics and they can fire

spikes of different amplitudes and duration (Chakraborty et al.,

2022). Moreover, in contrast to the structure of the human cortex

(Panda et al., 2021), we only consider networks composed of layers

of neurons with identical characteristics. The integrate-and-fire

model used in this paper does take into account only a limited set

of features of the biological neuron. However, it is compact and

computationally efficient, thus well-suited for SNNs in the context

of the machine learning tasks that we target in our work.

In this paper we propose to use direct learning to jointly

optimize the network and the spiking neurons parameters.

Moreover, we show that it is possible to reach or outperform state of

the art results without using any non-biologically plausible artifacts,

like negative polarity or non-binary spiking signals. All the results

presented in this Section will be summarized in Tables 1, 2 in

Section 4.

3. Methods

3.1. Spike based information compression

Considering an n-layer fully connected or convolutional ANN,

the output of the layer l can be described as:

yl = h(xl W l + bl), l ∈ [1, n] (1)

Where, xl, W l, bl are the input activation, the weights and the

bias of the layer l, respectively. Moreover, h(·) denotes the ReLU

activation function. In SNNs the activation function is replaced

with a spiking neuron, whose role is to implement the ReLU non-

linearity (max(0, x)) and discretize its input signal into spikes. Here,

we use the Integrate-and-Fire (IF) neuron model with soft-reset

that can be described, at each timestep t, by the following equations:

Hl(t) = V l(t − 1)+ il(t) (2)

il(t) = zl−1(t)W l + bl (3)

zl(t) = 2(Hl(t)− Vth) (4)

V l(t) = Hl(t) (1− zl(t))+ (Hl(t)− Vth) z
l(t) (5)

Where,Hl(t) andV l(t) represents the membrane potential after

the input integration and after the reset operation that follows the

spike emission at time t, respectively. The spiking output at time t

is represented by zl(t). Here, we stress the fact that zl(t) can only

have binary values. The input of the spiking neuron, il(t), can be

expressed as the product of the weights with the binary signal,

i.e., the spikes, generated by the preceding layer plus a constant

bias. As can be seen from Equations (2) and (3), the product can

be replaced with an addition of the weights with the membrane

potential whenever zl−1(t) = 1. Moreover, the bias is added to the

membrane potential at each timestep regardless the value of zl−1(t).

Equations (4) and (5) describe the generation of a spike and the

soft-reset operation, respectively. The function 2(·) represents the

Heaviside step function.

The SNN forward operation described by the previous

equations, is repeated through T timesteps. The output of the

spiking layer l can be decoded as follows:

yls =
1

T

T
∑

t=1

zl(t) (6)

Equation (6) defines the decoding scheme for a rate-coded

network. In this scheme, the information is coded by the number

of spikes generated by a spiking neuron over a fixed length of

time T, i.e., the firing-rate. Since a spiking neuron generates spikes

proportionally to its input current, the time average described in

Equation (6) will converge to yl, when T → ∞. Moreover, the time

integration of zl(t) which is a binary variable, leads to a quantization

of the decoded output yls. Using the preceding equations, it is

possible to show that the quantization function of a IF with soft-

reset spiking neuron can be expressed in the following closed

form:

T
∑

t=1

z(t) = min

{

T,

∑T
t=1(z

l−1(t)W l)+ b T

Vth

}

(7)

The numerator of Equation (7),
∑T

t=1(z
l−1(t)W l) + b T,

represents the integral of the input current, noted in the following

il, overT timesteps. Figure 1 shows the effect of the different neuron

parameters on the quantization function.

As we can observe, by varying the neuron parameters we

can modify the quantization curve. For example, the rational

behind threshold balancing is to adapt the quantization range,

by modifying Vth to match the input distribution as shown in

Figure 1B. We can also observe that the quantization function

has exactly T + 1 uniform quantization intervals. We therefore

expect a lower quantization noise by increasing the latency of

the network, that is T. However, increasing the latency hinders

the computational efficiency of SNNs. So, in order to efficiently

compress information with spiking neurons and maintain, at the

same time, their computational efficiency we have to reduce the

quantization noise without increasing T. This can be achieved by

optimizing the quantization function of spiking neurons to better

match the input distribution of il as we will see in the next sections.

3.2. Quantization error analysis

Here, we characterize the quantization noise introduced by the

spiking neurons. The effect of the neuron parameters and the input

distribution on the quantization process are first studied. Let us

consider an analog signal x and its quantized version x̂. We define

the quantization noise introduced during the conversion process
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FIGURE 1

E�ect of the neuron parameters on the quantization function. (A)

Quantization functions for three di�erent bias values (T = 8,

Vth = 1.0, b = [0.25, 0,−0.25]). Adding a bias moves the curve in the

horizontal direction. (B) Quantization functions for three di�erent

threshold values (T = 8, Vth = [0.75, 1.0, 1.25], b = 0). Modifying Vth

changes the slope of the curve. The maximum value of the output

rate (1.) is reached when il = Vth.

using the Signal-to-Quantization-Noise-Ratio (SQNR) defined

below:

SQNR(x) = 10 log10

(

E[x2]

E[(x− x̂)2]

)

(8)

In ANNs the ReLU activation function does not introduce any

quantization noise. So, if we consider that x is the input of a

ReLU, then y = ReLU(x) = x when x ≥ 0. At the opposite

in SNNs, the input current of a spiking neuron is quantized as

shown in Equation (7). If we define x = il as the input of

the neuron, the decoded spiking output ys = IF(x) = x̂ is

the quantized representation of its input. This process is shown

in Figure 2.

From Figure 2B, we can observe that when the input of the

neuron is lower than Vth, the quantization error is bounded. At the

opposite, when x > Vth, the quantization error can grow without

any bounds. To minimize the quantization error within a uniform

FIGURE 2

Comparison between a ReLU activation and an IF spiking neuron.

(A) Quantization function of an IF with soft-reset (T = 8, Vth = 1.0).

We can observe that the output of the neuron saturates when the

input equals Vth. (B) The quantization error is bounded when x ≤ Vth.

The bounded error is called granular error. When the neuron

saturates, that is when x > Vth, the error is unbounded and is called

overload error.

quantization scheme it is thus necessary to set the saturation point,

that is Vth, to balance these two sources of error. To do so, we

must know the probability density function (PDF) of the input,

then optimize Vth to reduce the quantization noise, as we will see

in the next section.

3.3. PDF-optimized quantization for spiking
neurons

Let us consider an IF spiking neuron described by the Equations

(2)–(4). In this paper, the surrogate gradient method is used to

compute the derivative of the Heaviside step function during error

back-propagation, that is 2′(x) = σ ′(x). Where, σ (x) denotes

the surrogate function, i.e., an approximation of the step function.

Throughout our paper, we use the sigmoid (σ (x) = 1
1+e−x ) as

surrogate function.
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Let Vth be a trainable parameter of the spiking neuron , i and

z its input and output, respectively. Let us call ∂L
∂z the upstream

gradient to the neuron. The downstream gradient with respect to

Vth can then be computed using the chain rule by multiplying the

upstream gradient by the local gradient with respect to Vth. For the

sake of notation simplicity we define q = (H(t)−Vth), the input of

the Heaviside step function. We can then compute the downstream

gradient as follows:

∂L

∂Vth
=

∂L

∂z
·
∂z

∂q
·

∂q

∂Vth
(9)

Using Equation (4) and the derivative of the surrogate function

we can compute the gradient of z with respect to q as follows:

∂z

∂q
= σ ′(q) (10)

Then, from the definition of q we can determine:

∂q

∂Vth
= −1 (11)

Finally, by replacing Equations (10) and (11) into Equation (9)

we obtain the approximation of the downstream gradient:

∂L

∂Vth
= −

∂L

∂z
· σ ′(q) (12)

The neuron output, denoted ŷ, is computed by decoding the

spiking sequence after T timesteps. We would like to find the value

of Vth that minimizes the quantization error of the neuron. To do

so, we analyze the optimization process for a single spiking neuron

whose input current i follows a Gaussian distribution with zero

mean, i ∼ N (0, σ 2). We first compare trainable and fixed Vth

neurons with a fixed number of timesteps T = 4. The loss function

is defined as the RMS error between the input and the output of the

neuron:

L(i, ŷ) = E[(i− ŷ)2] (13)

As we can observe from Equation (13), by minimizing the loss

function we maximize the SQNR for a given input distribution. We

simulated the above optimization problem for both an IF neuron

with a fixed Vth = 1 and an IF neuron with its threshold modified

during the learning process. At each iteration, an input i is drawn

from a Gaussian distribution with σ = 0.1. The neuron then

converts the input into spikes, that are finally decoded to obtain the

estimate ŷ. Once the loss is computed with Equations (13), the error

is back-propagated andVth (the only neuron parameter), is updated

using standard gradient-based optimization (Adam optimizer, lr =

10−3). In the following this model is denoted as ATIF-u.

The threshold voltage is initialized to the value 1 for all neurons.

The resulting SQNR is shown in Figure 3A. As it can be observed,

the SQNR at the beginning of the optimization process is the same

for both neurons models. While the quantization error does not

vary for the model with a fixed Vth, optimizing Vth can increase

by more than 10 dB the SQNR compared to a fixed Vth model,

for the same amount of timesteps (T = 4). From Figure 3B, we

can observe that the gain in SQNR is obtained by decreasing Vth,

FIGURE 3

Learning the Vth of a spiking neuron. (A) SQNR of an IF with

soft-reset with both trainable and fixed Vth. Since Vth is modified to

match the input distribution the SQNR increases during the

optimization process. To obtain a similar SQNR with a fixed Vth we

must use five times more timesteps. (B) Vth decreases during the

optimization process and approaches the standard deviation of the

input, σi.

thus moving the quantization intervals near the region where most

of the input values fall, in our case [0, 2 σi]. By optimizing the

quantization function of the spiking neuron we have then been able

to significantly decrease the quantization error without increasing

the timesteps. As an example, to obtain the same SQNRwith a fixed

Vth, we should have used five times more timesteps, that is T = 20,

as it can be observed from Figure 3A.
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FIGURE 4

Non-uniform quantization scheme. The solid curve shows an

example of a non-uniform quantizer where steps have di�erent

sizes. The dotted curve shows the uniform quantizer where all the

steps have the same size Vth/T. As we can observe, in the

non-uniform quantization scheme the parameter p1 defines the

clipping point of the quantization function, like Vth does in the case

of an IF neuron. In this example T = 4 timesteps.

We have obtained the previous results by assuming that the

input of the neurons is normally distributed, which is a reasonable

hypothesis for SNN and ANN in general. However, similar results

and conclusions can be obtained for different type of distributions.

The optimization procedure described above, that can be integrated

into a Quantization-aware-training framework for SNN, is similar

to some extent to what LSQ (Esser et al., 2020) did for quantized

ANNs. That is, a uniform quantization scheme is tuned to match

the input distribution of the neurons.We can indeed further reduce

the quantization error, beyond what is possible with a uniform

quantization scheme, by modifying the size of the quantization

steps, thus making the quantizer non-uniform. We propose, in the

next section, a modified spiking neuron model able to implement

this quantization strategy.

3.4. PDF-optimized non-uniform
quantization for spiking neurons

In the uniform quantization scheme described in the previous

section, the size of each quantization step is equal to Vth/T, as can

be observed from Figures 1, 2. Since Vth is constant and does not

vary during time, the number of spikes generated by the neuron

only depends on the input amplitude.

Figure 4 shows an example of a non-uniform quantization

scheme. We can obtain this scheme by modifying the spiking

neuron, precisely, we letVth change during time. Let us start with an

example where T = 4. In this case, we would like to obtain exactly

four values of Vth(t) = [Vp1 ,Vp2 ,Vp3 ,Vp4 ]. In the first interval,

that is when i ≥ p4, the neuron outputs only one spike at the last

timestep. Let us denote this particular output with the following

FIGURE 5

Non-uniform quantization spiking neuron. The non-uniform

quantization scheme provides an increase of almost 3 dB compared

to the uniform quantization scheme on a gaussian distributed input

with σ = 0.1. In this example T = 4 timesteps.

notation: z(t) = [0001]. We can compute the threshold of the last

timestep (Vp4 ) as follows:

Vp4 = p4 T (14)

By setting Vth(t = 4) = Vp4 we constrain the neuron to

generate a spike at the last timestep whenever an input of amplitude

p4 is presented at the neuron input during T timesteps. We have

thus set the quantization step at the value i = p4. Let us now

consider the quantization step at value p1. When the input i ≥

p1, the neuron has to output the maximum rate, that is z(t) =

[1111]. This condition allows us to define the threshold for the first

timestep as follows:

Vp1 = p1 (15)

Following the same reasoning, when p3 ≤ i ≤ p2 the neuron

generates a spikes in the last two timesteps, that is z(t) = [0011].

This condition can be written as follows:

{

(T − 1) p3 ≥ Vp3 , t = T − 1

(T − 1) p3 − Vp3 + p3 = Vp4 , t = T
(16)

The first equation in 16 describes the state of the membrane

potential of the neuron at timestep T − 1. We set the neuron

threshold at the penultimate timestep to be equal to Vp3 to make

the neuron fire. Following a spike emission at timestep T − 1, the

membrane potential is soft-reset, then the input p3 is accumulated

at timestep T as shown in the second equation in 16. The equation

system shown in 16 has the following solution:

Vp3 = T (p3 − p4) (17)
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In the same way, when p2 ≤ i ≤ p1, the neuron will output

the following sequence z(t) = [0111] then the following three

conditions are met:















(T − 2) p2 ≥ Vp2 , t = T − 2

(T − 2) p2 − Vp2 + p2 ≥ Vp3 , t = T − 1

(T − 2) p2 − Vp2 + p2 − Vp3 + p2 = Vp4 , t = T

(18)

Which leads us to the following solution:

Vp2 = (T − 1) p2 − T (p3 − p4) (19)

In the following this model is denoted as ATIF-nu. We have

simulated the proposed neuron model for a gaussian distributed

input with σ = 0.1. The model has T trainable parameters, namely

[p1, . . . , pT]. The thresholds are then computed using Equation (15)

to Equation (19), for the case T = 4. We use the same optimization

procedure and loss described in Section 3.3. The simulation results

are shown in Figure 5 along with the uniform quantization neuron

with trainable Vth.

As it can be observed, using a non-uniform quantization

scheme can increase the SQNR by almost 3dB compared to the

uniform case, without increasing the number of timesteps. This

gain comes from the fact that using non-uniform quantization

steps, we can better approximate the input data in regions that

have more probability mass. As the input of neurons in SNNs can

often be modeled as gaussian sources peaked near zero, we expect

that a non-uniform quantization scheme can help improving the

performance of SNNs as we will see in the next section.

4. Experiments and results

4.1. Experimental setup

We trained both VGG-16 and ResNet-18 models using direct

training on two different image classification problems with

increasing complexity: CIFAR-10, CIFAR-100. We trained both

networks with the neuron models described in Sections 3.3 and

3.4. In our setup, the threshold of neurons are trained layer-wise,

so that all the spiking neurons of a given layer share the same

Vth. For each model and dataset, we also trained a formal version

of the network, where spiking neuron are replaced with ReLU

activation to compare SNN with a full precision ANN. Both SNN

and ANN were trained using stochastic gradient descent (SGD),

with a learning rate of 8 · 10−2. The learning rate is exponentially

decayed with a factor of 0.9 each 30 epochs. Each network is trained

for 900 epochs. In SNNs, the input is analog coded (Rueckauer

et al., 2017), that is the spiking neurons of the first layer receive a

constant input current. We use data augmentation (random resize

and horizontal flip) as well as mixup with α = 1.

TABLE 1 Benchmark results on CIFAR-10/100 datasets.

Method Architecture ACC (ANN) ACC (SNN) Latency θ

CIFAR-10

RMP (Han et al., 2020)⋆
VGG-16 93.63 60.3 32 -

ResNet-20 91.47 91.36 2048 -

ACP (Li et al., 2021)⋆
VGG-16 95.6 86.57 4 -

ResNet-20 96.72 84.70 4 -

QFFS (Li et al., 2022)⋆
VGG-16 92.44 (2/3 bits) 92.64 4 -

ResNet-18 93.12 (2/3 bits) 93.14 4 -

ATIF-u†
VGG-16 95.6 92.51 4 0.111

ResNet-18 95.96 93.84 4 0.113

ATIF-nu†
VGG-16 95.6 93.13 4 0.129

ResNet-18 95.96 94.65 4 0.148

CIFAR-100

RMP* (Han et al., 2020)⋆
VGG-16 71.22 63.76 128 -

ResNet-20 68.72 67.82 2048 -

ACP* (Li et al., 2021)⋆
VGG-16 77.93 55.60 4 -

ResNet-20 81.51 54.96 4 -

ATIF-u†
VGG-16 74.47 66.54 4 0.159

ResNet-18 74.35 71.42 4 0.192

ATIF-nu†
VGG-16 74.47 66.92 4 0.167

ResNet-18 74.35 70.83 4 0.191

Benchmark results on CIFAR-10/100 datasets. Best accuracy results for both ResNet and VGG-16 networks are highlighted in bold. Symbol ⋆ denotes ANN-to-SNN conversion methods while

† denotes surrogate gradient learning, i.e., direct training methods.
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TABLE 2 Benchmark results on Google Speech Commands V2 dataset (35 classes).

Method Architecture ACC (ANN) ACC (SNN) Latency θ

Recurrent (Cramer et al., 2022)† RSNN - 50.9 200 -

E2E (Yang et al., 2022)⋆ ResNet-8 - 92.9 32 -

ATIF-u† ResNet-18 94.46 94.31 4 0.12

ATIF-nu† ResNet-18 94.46 94.29 4 0.12

Best accuracy results are highlighted in bold. Symbol ⋆ denotes ANN-to-SNN conversion methods while † denotes surrogate gradient learning, i.e., direct training methods.

TABLE 3 The impact of Vth on the accuracy and the sparsity of the SNN.

Quantizer Vth ACC
(SNN)

Latency θ Spikes/neuron

Uniform Fixed 89.68 4 0.17 0.68

ATIF-u Trainable 93.84 4 0.113 0.452

ATIF-nu Trainable 94.65 4 0.148 0.592

Results are given for a ResNet-18 network on the CIFAR-10 dataset.

In addition to the image classifications problems described

above, we also carried out experiments on a keyword spotting

(KWS) dataset. In an automatic speech recognition system, KWS

consists in detecting a relatively small set of predefined keywords.

We used Google Speech Commands (GSC) (Warden, 2018) V2,

a dataset of audio signals sampled at 16 kHz composed of 1-s

recordings of 35 spoken keywords. Raw audio signals are pre-

processed to extract Mel Frequency Cepstral Coefficients (MFCC).

We used 10 MFC Coefficients, FFT of size 1024, a window size

of 640 with a hop of 320, and a padding of 320 on both sides.

The pre-processing generates a 48 × 10 coefficients matrix that

is subsequently processed by the neural networks. We trained a

Resnet-18 network using the same training configuration used for

CIFAR-10/100 except for the learning rate and the number of

epochs. The learning rate is initialized at 10−3 and exponentially

decayed with a factor of 0.1 each 20 epochs. Finally, each network

is trained for 80 epochs. We used PyTorch and the SpikingJelly

(Fang et al., 2020) framework for simulating SNNs. In the following

sections, we report the accuracy as well as the latency and the

sparsity of the SNN. We measured the sparsity of our networks,

that we call θ , by counting the average number of spikes generated

by the spiking neurons during the inference. The sparsity of a tensor

of size (m, n) is computed as follows:

θ =

T
∑

t=1

n
∑

i=0

m
∑

j=0

zi,j(t)

n×m× T
(20)

To report a single global sparsity, we average the sparsity of

each tensor in the SNNs. Moreover, the sparsity is averaged over

the entire test set that is composed of 10K images in the case of

CIFAR-10. The θ parametersmeasure the average activity of spiking

neurons. A low value means low activity and therefore a potential

increase in energy efficiency of the network when deployed on a

neuromorphic dedicated circuit (Lemaire et al., 2022).

4.2. Experimental results on CIFAR-10/100

Benchmark results on CIFAR-10/100 datasets are shown in

Table 1. Our models perform consistently better than recent state

of the art ANN-SNN conversion methods on both datasets. As an

example, we improve the top-1 accuracy of ResNet-18 on CIFAR-10

by 1.5% with respect to QFFS (Li et al., 2022). Experimental results

also show that our quantization approaches outperform previous

methods regardless of the network architecture. As an example,

we improve the top-1 accuracy on CIFAR-10 for both ResNet-18

and VGG-16 architectures. The non-uniform quantization scheme

provides the best accuracy scores in 3 out of four configurations,

while the uniform scheme provides a slightly better accuracy

score on ResNet-18 and CIFAR-100. It is worth noting that, these

improvements are obtained using only 4 timesteps. So, we are able

to improve the classification accuracy without degrading the SNN

latency compared to current state of the art methods. Besides the

latency, the sparsity parameter also has a strong impact on the

SNN efficiency. The amount of operations executed during SNN

inference is indeed related to the average firing rate of the neurons

(Lemaire et al., 2022). The sparsity parameter, θ , shows that our

networks are able to classify images using on average less than

one spike per neuron. As an example, for VGG-16 with a uniform

quantization scheme, each neuron generates on average 0.111 ×

4 = 0.44 spikes. It can also be observed that the non-uniform

quantization scheme generates more spikes on average than the

uniform quantizer. Since more quantization steps are allocated on

the region of the input where data appears more frequently, i.e.,

where the PDF has higher probability mass, the generation of spikes

increases accordingly.

4.3. Experimental results on Google Speech
Commands

The experimental results on the Google Speech Commands

dataset are shown in Table 2. We compared both our quantization
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schemes, ATIF-u and ATIF-nu, with two recently published SNNs.

The first network, called Recurrent (Cramer et al., 2022), is a single

layer recurrent-SNN composed of 128 Leaky-Integrate-and-Fire

(LIF) neurons and trained using surrogate gradient and BPTT.

E2E is based on a ResNet-8 architecture with IF spiking neurons

and is trained using ANN-SNN conversion. Notably, neither

networks use threshold balancing tomitigate the quantization error

introduced by the spiking neurons. As we can observe from Table 2,

Recurrent SNN proposed in Cramer et al. (2022), which features a

very simple architecture, is not able to match current state of the art

results on this particular task even with a latency of 200 timesteps.

At the opposite E2E reaches an accuracy score of 92.9% using 32

timesteps. This accuracy score, which is closer to the state of the

art, is nevertheless obtained at the cost of a high latency. At the

opposite, our models can consistently outperform recent state of

the art SNNs both in terms of accuracy and latency. As an example,

we obtain an accuracy of 94.31%, which is only 0.15% below the

accuracy of the full-precision ANN using only 4 timesteps. These

results confirm the importance of adopting a quantization-aware-

training strategy, i.e., direct learning, but also to jointly optimize

the spiking neurons parameters, to reduce quantization noise, as

our ATIF models do.

4.4. Ablation studies

We decompose the effects of our methods using an ablation

study on the CIFAR-10 dataset. Three ResNet-18 networks are

trained with different spiking neuron models. The baseline

corresponds to a network with IF soft-reset spiking neurons, where

all neurons share a fixed Vth = 1. We compare this network with

both uniform and non-uniform quantization schemes described

in Sections 3.3 and 3.4, respectively. In those schemes Vth is a

trainable parameter: it is trained layer-wise for each network. All

three networks are trained using surrogate gradient learning and

use the same training setup described in Section 4.1.

As shown on Table 3, a significant accuracy improvement can

be obtained by optimizing the Vth of spiking neurons during

training. As an example, comparing the uniform and fixed

threshold quantization scheme with the trainable one we can

observe that the accuracy increases by 4.16%. We can also observe,

that we achieve an accuracy improvement without increasing

neither the latency nor the number of the generated spikes. By

using a trainable Vth scheme, the sparsity can be further reduced,

so that we can improve at the same time the performance and

the computational efficiency of the network. Finally, using a

nonuniform quantization scheme provides a further improvement

of 0.81% on the accuracy. However using this scheme, neurons

generate slightly more spikes than the uniform quantizer with

trainable Vth.

5. Discussion and further
improvements

In this paper, we have approached the problem of SNNs latency

using tools and metrics available within the data compression

and information theory domains. We have shown that the source

of accuracy degradation between ANN and SNN resides in the

quantization error caused by the discretization of the information

exchanged by neurons. By leveraging the techniques used in data

compression, i.e., scalar quantization, we show that we can improve

the performance of spiking neurons. Moreover, by improving the

signal-to-quantization-noise ratio of the neurons we show that we

can significantly boost the accuracy of the SNNs overall. Finally,

our results are obtained without compromising the efficiency of

the resulting SNNs. We are able to approach the performance of

full precision ANNs (1.31% difference in the case of ResNet-18 on

CIFAR-10 and 0.15% difference onGSC) using only 4 timesteps and

0.5 spikes/neuron on average.

The SNNs presented in this paper are rate-coded networks. Rate

coding have long been considered as an inefficient coding scheme,

mainly because of the huge number of required timesteps on

early works (Sengupta et al., 2019) to approach ANNs accuracies.

However, this inefficiency is not intrinsically related to the rate

coding mechanism but rather to the quantization scheme used

to encode information. Moreover, the methodology that we have

used in our analysis can also be applied to other types of coding

mechanisms, such as time-coded networks.

While most of the works in the literature still use conversion

techniques, our SNNs were trained using a direct learning scheme.

With direct learning, time is taken into account during the training

process. We can therefore optimize the dynamic behavior of the

network. This has some advantages over conversion schemes. For

example, Li et al. (2022) identify a source of quantization error,

called occasional noise, produced by the oscillation of the input

current of the neurons. They reduce the impact of this noise source

by introducing a mechanism to generate spikes with negative

polarity. This phenomenon is not relevant when the network is

trained in the spike domain. Quantization errors caused by the

dynamic behavior of the network are taken into account and

minimized during the training process. Therefore, we do not need

to introduce non-biological plausible mechanisms in our networks.

One of the main drawbacks of the proposed method is the

complexity and the memory budget required by the direct learning

with surrogate gradient during training. Since each forward and

backward pass must be repeated T times to compute the gradients,

the training procedure is slower compared to the ANN-SNN

conversion where only the ANN is trained, then the weights and

biases are transferred to the SNN. Moreover, since direct learning

uses back propagation though time (BPTT) it is prone to the

vanishing and the exploding gradient problems. If the latter could

be mitigated using, for example, gradient clipping the former is

more difficult to deal with. With vanishing gradients the learning

process of the SNNs slow down. Therefore, to avoid underfit, SNNs

training requires a relative large number of epochs and generally a

higher learning rate compared to ANNs.

The time dimension is a fundamental part of the SNNs

paradigm. SNNs are therefore well-suited to process spatio-

temporal information. Therefore, another interesting future

direction could be the extension of our work for the case of

SNNs processing time varying signals. Our analysis of quantization

must be revisited since the input current of the neuron cannot be
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considered constant anymore. Finally, we only considered SNNs

were weights, biases and neuronal parameters are coded using full-

precision representations, e.g., floating point. To obtain full benefits

from the low-complexity computational model of the SNNs on

neuromorphic hardware the memory footprint of the model must

also be considered. In this case it could be possible to integrate

a quantization-aware-training procedure, e.g., LSQ, during SNN

training to quantize the network parameters using low-precision

representations.
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