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Modeling the development of 
cortical responses in primate 
dorsal (“where”) pathway to optic 
flow using hierarchical neural field 
models
Anila Gundavarapu 1 and V. Srinivasa Chakravarthy 1,2*
1 Computational Neuroscience Lab, Indian Institute of Technology Madras, Chennai, India, 2 Center for 
Complex Systems and Dynamics, Indian Institute of Technology Madras, Chennai, India

Although there is a plethora of modeling literature dedicated to the object 
recognition processes of the ventral (“what”) pathway of primate visual systems, 
modeling studies on the motion-sensitive regions like the Medial superior 
temporal area (MST) of the dorsal (“where”) pathway are relatively scarce. Neurons 
in the MST area of the macaque monkey respond selectively to different types of 
optic flow sequences such as radial and rotational flows. We present three models 
that are designed to simulate the computation of optic flow performed by the 
MST neurons. Model-1 and model-2 each composed of three stages: Direction 
Selective Mosaic Network (DSMN), Cell Plane Network (CPNW) or the Hebbian 
Network (HBNW), and the Optic flow network (OF). The three stages roughly 
correspond to V1-MT-MST areas, respectively, in the primate motion pathway. Both 
these models are trained stage by stage using a biologically plausible variation of 
Hebbian rule. The simulation results show that, neurons in model-1 and model-2 
(that are trained on translational, radial, and rotational sequences) develop 
responses that could account for MSTd cell properties found neurobiologically. 
On the other hand, model-3 consists of the Velocity Selective Mosaic Network 
(VSMN) followed by a convolutional neural network (CNN) which is trained on 
radial and rotational sequences using a supervised backpropagation algorithm. 
The quantitative comparison of response similarity matrices (RSMs), made out 
of convolution layer and last hidden layer responses, show that model-3 neuron 
responses are consistent with the idea of functional hierarchy in the macaque 
motion pathway. These results also suggest that the deep learning models could 
offer a computationally elegant and biologically plausible solution to simulate the 
development of cortical responses of the primate motion pathway.
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Introduction

Optic flow refers to global motion in the retinal image caused by the motion of the observer 
relative to the world (Gibson, 1950). It is used to compute useful quantities such as heading 
direction, which specifies the direction of self-motion relative to the direction of gaze, and the 
translational and rotational velocity of the observer. The Middle Temporal (MT) area contains 

OPEN ACCESS

EDITED BY

Qingbo Wu,  
University of Electronic Science and 
Technology of China, China

REVIEWED BY

Yong Gu,  
Chinese Academy of Sciences (CAS), China
Di Yuan,  
Xidian University, China

*CORRESPONDENCE

V. Srinivasa Chakravarthy  
 schakra@ee.iitm.ac.in

RECEIVED 30 January 2023
ACCEPTED 26 April 2023
PUBLISHED 22 May 2023

CITATION

Gundavarapu A and Chakravarthy VS (2023) 
Modeling the development of cortical 
responses in primate dorsal (“where”) pathway 
to optic flow using hierarchical neural field 
models.
Front. Neurosci. 17:1154252.
doi: 10.3389/fnins.2023.1154252

COPYRIGHT

© 2023 Gundavarapu and Chakravarthy. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 22 May 2023
DOI 10.3389/fnins.2023.1154252

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1154252%EF%BB%BF&domain=pdf&date_stamp=2023-05-22
https://www.frontiersin.org/articles/10.3389/fnins.2023.1154252/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1154252/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1154252/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1154252/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1154252/full
mailto:schakra@ee.iitm.ac.in
https://doi.org/10.3389/fnins.2023.1154252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1154252


Gundavarapu and Chakravarthy 10.3389/fnins.2023.1154252

Frontiers in Neuroscience 02 frontiersin.org

many direction-selective cells (Maunsell and van Essen, 1983a,b; 
Rodman and Albright, 1987) that encode the flow field of the evolving 
retinal image (Bülthoff et al., 1989; Wang et al., 1989; Newsome et al., 
1990; Movshon et al., 1992; Britten et al., 1993; Lappe et al., 1996). In 
Medial Superior Temporal (MST) area, many neurons respond to 
spatially extended random dot optic flow patterns (Saito et al., 1986; 
Tanaka and Saito, 1989; Duffy and Wurtz, 1991b). Cells in MST area 
have large receptive fields ~15–100° (Duffy and Wurtz, 1991a,b), that 
respond selectively to expansion, rotation, and combination motion 
stimuli that are generated due to observer motion (Saito et al., 1986; 
Tanaka and Saito, 1989; Graziano et al., 1994). MST cells receive their 
primary input from MT (Desimone and Ungerleider, 1986; Boussaoud 
et  al., 1990) where the initial processing of optic flow involves 
computation of direction and speed within a small region of the visual 
field. The emergence of MST and MT cell responses poses an 
important question: “How can local MT motion estimates 
be organized into the global selectivity for optic flow that helps in the 
estimation of heading?” Various models have been proposed to 
elucidate the possible implementation of optic flow and heading 
estimation in the area of MST.

Related modeling studies

Smith et al. (2006) proposed a computational model in which 
optic flow selectivity is derived by integrating over the MT region 
where neurons are selective for the local direction of optic flow at each 
point in the receptive field. However, it does not address how MST 
cells may facilitate navigation by helping to compute estimates of 
heading. Lappe and Rauschecker (1993) devised a network model of 
heading estimation in which a population of neurons codes for a 
specific heading direction. The line of modeling proposed by Perrone 
(1992), Perrone and Stone (1994), and Stone and Perrone (1997) took 
a different view where individual units directly code for heading 
direction as an early step in the cascade of processing necessary for 
self-motion perception and navigation. Some authors proposed that 
there are three main classes of biological models of neural processing 
at MST: differential motion, decomposition, and template models 
(Browning et al., 2008). On the other hand, the neural network model 
for the extraction of optic flow proposed by Tohyama and Fukushima 
(2005) and Fukushima (2008) suggests a different approach: the vector 
field hypothesis that any flow field can be mathematically decomposed 
into elementary flow components such as divergence and curl.

Most of these findings provide compelling evidence that heading 
perception is based on the evolution of the optic flow field but are not 
especially informative about the nature of the underlying neural 
mechanisms such as temporal dynamics that arise due to the 
integration of information over time. This motivated us to identify the 
role of temporal dynamics in visual information processing. 
Consequently, we proposed a neural field network to simulate the 
direction selectivity of V1 cells and pattern selectivity of MT cells in 
our earlier published work (Gundavarapu et al., 2019). In this study, 

we extended our earlier neural field model into direction selective 
mosaic network (DSMN) and velocity-selective mosaic network 
(VSMN), which can process optic flow sequences. We  framed our 
primary objective as designing a biologically plausible model that can 
simulate the optic flow selective responses of MSTd neurons and 
we came up with model-1 and model-2, each can successfully recognize 
the type of flow present in the given sequence. Later, we extended our 
objective toward the development of a more generalized model of 
motion processing with the inspiration of the following studies.

Recent deep learning approaches to 
modeling neuron selectivity in the visual 
system

Biological realism is the primary concern of most of the 
neuroscience models (Hubel and Wiesel, 1962; Simoncelli and Heeger, 
1998; Rousselet et al., 2002; Rust et al., 2006; Serre et al., 2007; Pack 
and Born, 2008). These models are designed to account for anatomical 
and neurophysiological data and did not scale up to solving real-world 
tasks. Currently, feed-forward convolutional neural networks (CNNs; 
LeCun et al., 2015), are the state-of-the-art for object classification 
tasks such as ImageNet, on occasion surpassing human performance 
(He et al., 2015). Recently several studies (Agrawal et al., 2014; Güçlü 
and van Gerven, 2015; Kriegeskorte, 2015) have begun to assess the 
convolutional neural network as a model for biological vision systems 
by comparing the internal representations and performance levels 
between artificial and biologically realistic neural network models. 
Studies also showed (Kriegeskorte, 2015) that deep convolutional 
neural networks trained on object recognition tasks not only have 
architectural similarities but also learn representations that are similar 
to the representations of the neurons in the ventral pathway. However, 
their suitability and performance on the dorsal-stream regions is an 
open area of research, which lead us to develop a generalized model 
of a motion processing system.

In this paper, we describe (i) a competitive learning algorithm/
design (model-2) that shows the emergence of optic flow sensitivity 
and (ii) a deep neural architecture (model-3) that can learn motion-
related properties similar to the representations of neurons in MT/
MST. Section 2 “Model architecture and learning rules” describes the 
architecture of the three models. Even though we described it as three 
distinct models, they have some common components; components 
that differ between the models perform equivalent functions 
(Figure 1). The main structure of these models is a multi-stage neural 
network composed of the initial stage simulating the direction-
selective neurons of V1, the middle stage simulating translational 
motion selective neurons of MT, and the output stage simulating the 
optic flow selective MST neurons. An important common feature of 
all these proposed models is the presence of 2D layers of neurons with 
lateral connections trained by asymmetric Hebbian learning (stage-1). 
The combination of lateral connectivity and asymmetric Hebbian 
learning provides an opportunity for extracting motion information. 
Section “Model architecture and learning rules” also discusses the 
training procedure of the three network models. Section “Results” 
shows the simulation results and compares the performances of the 
model with the biological properties of the MST neurons. Section 
“Discussion” and Section “Conclusion” consist of a discussion and 
conclusion, respectively.

Abbreviations: NF, Neural field; DSMN, Direction selective mosaic network; VSMN, 

Velocity selective mosaic network; CPNW, Cell plane network; HBNW, Hebbian 

network; RSM, Response similarity matrix; OFNW, Optic flow network; CNN, 

Convolutional neural network.
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Model architecture and learning rules

This section first describes various components/sub-networks 
used in all three models and then presents the complete pipeline for 
all three models. Before that, we list out various physiological evidence 
used in designing these models.

Physiological pieces of evidence used in 
designing the model

Neurophysiological studies (Saito et al., 1986; Tanaka and Saito, 
1989; Graziano, 1990; Duffy and Wurtz, 1991a,b) have found that 
most of the neurons in the dorsal part of the medial superior temporal 
(MSTd) area of the visual cortex in the primates’ brain are responsive 
to different types of optic flow stimuli. It also has been found that MST 
receives strong projections from the middle temporal (MT) area 
(Maunsell and van Essen, 1983a,b; Ungerleider and Desimone, 1986) 
where the neurons selectively respond to the orientation and velocity 
of the visual stimuli (Albright, 1984; Rodman and Albright, 1987). It 
is therefore natural to assume the MT area to be the preprocessing 
stage to the optic flow processing taking place in MST area. There is 
physiological evidence that translational motion is computed in area 
MT (Movshon et al., 1985) while radial and rotational motions are 
first seen in the response properties of cells in MSTd (Tanaka et al., 
1989; Tanaka and Saito, 1989; Duffy and Wurtz, 1991a,b). Thus, 
according to this view, optic flow stimuli are processed serially, 
starting in the striate cortex with the analysis of motion in local parts 
of the visual field by direction-selective cells with small receptive 
fields.1 This local motion information is globally integrated into area 
MT by cells with larger receptive fields, which compute pattern 

1 However, more recent studies have identified direction-sensitive cells as 

early as in the retina (Wyatt and Daw, 1975; Wei et al., 2011).

motion—in this case translational motion. Finally, global radial and 
rotational motion is encoded by MSTd cells with much larger receptive 
fields based on their MT input. The selective responses of some MSTd 
cells are said to be  position dependent, while those of others are 
position independent. In support of this view, it was suggested by 
several researchers (Saito et al., 1986; Tanaka and Saito, 1989) that the 
receptive field of an MST cell responsive to circular or radial motions 
is composed of a set of directionally selective MT cells arranged 
following the pattern of that optic flow component. Thus, the input 
MT cells would be arranged radially in the case of an expansion/
contraction MST cell, or arranged circularly in the case of a rotation 
MST cell. Keeping these earlier proposals in view, to understand the 
responses of MST neurons and to explain how motion information is 
extracted to discriminate the type of optic flow, we  proposed an 
architecture composed of three stages: the initial stage consists of 
direction-selective neurons that are trained to respond to the direction 
of motion of dots present in a given receptive field; the middle stage 
neurons are trained with translational sequences so that each neuron 
is selective to the direction of motion of local translational motion; 
neurons in the output stage are tuned to the type of the optic flow 
present in the input sequence. Compared to the algorithms of optic 
flow analysis proposed by the computer vision community, the 
proposed modeling approach is more physiologically plausible and 
can account for some of the response properties of MSTd neurons. 
Figure  1 shows the schematic representation of the three 
models proposed.

Direction selective mosaic network

The initial stage consists of a 16 × 16 mosaic of 2D arrays (“tiles”) 
of neurons, named Direction Selective Mosaic Network (DSMN). 
Every tile is an independent neural field (NF) wherein the neurons 
respond preferentially to the direction of motion of a dot present 
within their receptive fields. The neurons in an NF have lateral 
connections, thereby making the response of the NF neurons 

FIGURE 1

The multi-stage neural network models composed of the initial, middle, and output stages that are simulating the neurons at V1, MT, and MSTd, 
respectively.
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dependent on history. The input to DSMN can be visualized as 16 × 16 
non-overlapping image patches of size 5 × 5. Thus, the size of the input 
image is 80 × 80 [= (16 × 16) (5 × 5)]. Each NF is composed of 20 × 20 
neurons, receiving common input from a single 5 × 5 patch of the 
input image (Stage1: DSMN in Figure 2). Although all the neurons in 
a given NF respond to the same 5 × 5 patch of their input image, they 
develop distinct selectivities since they have random initial weights, 
and the initial differences are amplified by the competitive dynamics 
within the NF, as explained in more detail in the following section. As 
a result of training, NF neurons were clustered into various 
populations/ groups in such a way that each is selective to a specific 
direction of motion of a dot.

Training procedure: the neural field
As shown above, the input image provided to DSMN is of size 

80 × 80 pixels. Each NF is composed of 20 × 20 neurons. The neurons 
in a given NF receive common input from a 5 × 5 window of an input 
image. The initial response of NF neuron (i, j) is calculated as,

 
A W Xij aff ij rs rsrs= ∗ ( )( )∑σ γ ,

 (1)

where X is a 5 × 5 image window of neuron (i, j). W is the afferent 
weight matrix of neuron (i, j). Let Xrs be the pixel position in the image 
window then Wij, rs is the afferent weight connection from (r, s) to (i, j). 
γaff is a constant scaling factor and is initialized before training begins. 
σ is a piecewise linear sigmoid activation function.

The response of an NF neuron is influenced by both afferent 
inputs and the inputs from the lateral connections. Therefore, though 
the initial response is dominated by the afferent input, Aij, subsequently 
the response is further modified by the lateral connectivity of NF 

neurons. Lateral interactions are characterized by ON-center, 
OFF-surround neighborhoods. Two types of lateral connections exist 
(i) Excitatory laterals that connect neuron (i, j) with neuron (k, l) 
within a given neighborhood. The excitatory neighborhood is 
specified by the radius parameter rexc and is initialized before training 
begins. The rexc value is uniform for all the neurons within and across 
NFs. (ii) Inhibitory laterals inhibit the response of the neuron (i, j). It 
should be noted that the neuron (i, j) maintains inhibitory connections 
only with the neurons that are present outside the radius rexc and inside 
the radius rinhb.

For several time steps “s” (settling time), the response of the 
neuron (i, j) is modified by afferent and lateral interactions that take 
place simultaneously.
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where ηij stands for the activity of the neuron (i, j), Eij,kl and Iij,kl are 
excitatory and inhibitory weights from the neuron (k, l) to (i, j) that 
are randomly initialized before training begins. Aij, as defined in 
Equation 1, is the total afferent input into the neuron (i, j). The relative 
strengths of excitatory and inhibitory lateral effects are controlled by 
the constant scaling factors γexc and γinhb.

At the end of “s” time steps, NF response settles down and all 
three types of weights (afferent, excitatory laterals, and inhibitory 
laterals) are updated. Let “t” represent the time of presentation of the 
current frame to NF with the assumption that at t = 1, frame-1 is 
presented. The afferent weight connections are adapted using the 
symmetric Hebbian rule (Equation 3) and the lateral weight 
connections are adapted using the asymmetric Hebbian rule 
(Equation 4).

FIGURE 2

Model-1 architecture. All the neurons in NF receive the same input of size 5 × 5 but maintain random initial afferent weights. Response of one NF is 
passed to one cell-plane neuron. Thus, each cell-plane neuron maintains 400 (20 × 20) afferent connections with its input which were adopted during 
training. The response on eight cells-planes is converted into 1D vector and then concatenated to pass to OFNW/perceptron. OFNW is trained to 
classify four types of flow sequences.
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∆W t X t tij rs aff rs ij, ( ) = ∗ ( ) ∗ ( )α η

 (3)

where αaff  is the learning parameter for afferent weight 
connection. X is a 5 × 5 image window from which neuron (i, j) 
receives input. Wij, rs is the afferent weight between the pixel position 
(r, s) and the neuron (i, j). ηij(t) is the activity of neuron (i, j) after the 
settling process for the current frame “t.” The weights are updated after 
the presentation of each image in the input sequence as follows:

 
∆W t t t tij kl lat ij ij kl, max( ) = ∗ ( ) − −( )( )( ) ∗ −( )α η η η0 1 1,

 (4)
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where ɳij(t) is the settled activity on the neuron (i, j) produced in 
response to the current frame (the frame presented at time “t”), ɳij(t-1) 
is the settled activity on the neuron (i, j) for the previous frame. α is 
the learning rate. Separate learning parameters (in place of αlat) were 
used for excitatory (αexc) and inhibitory (αinhb) connections. All three 
types of weight connections are normalized separately as shown in 
Equation 5 to prevent the neural activity from growing out of bounds. 
Various parameters used in the simulation are specified in Table 1.

Note that the training procedure described above is for one tile 
(NF) that takes input from a 5 × 5 window of an input image. 16 × 16 
array of such tiles was trained sequentially one after the other by 
presenting an input image sequence consisting of 15 frames, each of 
size 80 × 80.

Cell plane network

The cell plane, according to Tohyama and Fukushima (2005), is a 
group of cells in which all cells have receptive fields of identical 
characteristics, but the locations of the receptive fields differ from cell 
to cell. For example, a group of cells with the same preferred moving 
direction is referred to as a cell-plane. The proposed CPNW consists 
of 8 cell planes (Stage 2: CPNW in Figure  2), each responding 
preferentially to the translational motion of a particular direction. This 
translational motion selectivity of each cell-plane is achieved through 
training. For simplicity, and also for the fact that MT neurons are not 
sharply tuned for speed, only the direction of each flow field (DSMN 
response) was used to represent motion in the MT stage.

Training procedure
Each cell-plane consists of a 2D array of neurons of size 16 × 16; 

there are Ncp (=8) cell-planes used in model-1. Neuron (p, q) in the nth 
cell-plane receives afferent input from all the neurons of (p, q)th tile. 
Note that DSMN has 16 × 16 tiles, where each tile is made up of 20 × 20 
neurons. The activity of the neuron (p, q) in the nth cell-plane is 
computed using Equation 6 and subsequently its afferent weights are 
updated using Equation 7. All the initial afferent weights are set 
randomly. The eight cell-planes were trained sequentially one after the 
other by considering different stimuli sets. In other words, cell-plane-1 
is trained using stimuli set consisting of dots translated coherently in 

0°, cell-plane-2 is trained using dots translated coherently in 45°, and 
so on. Thus, each cell-plane is trained independently using dots 
moving coherently in eight different directions. At the end of the 
training, the eight cells-planes develop selectivities to eight directions 
of dot motion.
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where σ is a sigmoid function. Cn
pq is the response on the neuron 

(p, q) in the nth cell plane. Z (20 × 20) is the (p, q)th tile response in 
DSMN. Wn

pq, rs represents the afferent connection from the neuron (r, 
s) within (p, q)th tile to the (p, q)th neuron in the nth cell-plane.
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where αaff is the learning parameter, set to 0.05 during the 
simulation. Weights are updated for each sequence presentation. 
Updated weights are normalized to prevent them from going out 
of bounds.

Hebbian network

The neurons in the Hebbian Network (HBNW) are arranged 
similarly to CPNW neurons, but trained differently using competitive 
learning (Fukushima and Miyake, 1982; Fukushima, 1988; Fukushima 
et al., 1997). In this learning, mode neurons compete in a winner-
takes-all fashion, and the neuron receiving the largest input wins the 
competition and the winner gets to modify its weights. Thus, neurons 
learn to respond to the inputs whose preferred direction best fits the 
local motion direction in the input. HBNW is composed of 16 × 16 × 8 
neurons (Stage2: HBNW in Figure 3) and is regarded as a 16 × 16 array 
of columns of neurons with 8 neurons in each column. A given 

TABLE 1 Parameters used to train tiles (NF) in DSMN and VSMN.

Parameter Tile in DSMN Tile in VSMN

NF Dimension 20 × 20 48 × 48

Receptive field 5 × 5 8 × 8

rexc 2 2

rinhb 5 4

γaff 1 1

γexc 21.6 50

γinhb 1 1.5

αaff 0.05 0.05

αexc 0.05 0.05

αinhb 0.05 0.05

Time step(s) 10 10

Epochs 500 250

Image size 80 × 80 80 × 80
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column of neurons at location (m, n) receives a shared input Zrs from 
a tile (m, n) in DSMN (that consists of 16 × 16 tiles). Similar to 
Equation 6, the response of a neuron (m, n, k) is computed as a scalar 
product of the response of the tile (m, n) and the afferent weight 
matrix of the neuron (m, n, k; eqn. Shown again below the paragraph). 
All afferent weights are initialized randomly, accordingly the neurons 
across the (m, n) column respond differently. The neuron in column 
(m, n) whose afferent weight matrix is closest to the input [which is 
the response of the tile (m, n) in DSMN] will produce the highest 
activity, subsequently becomes a winner and its weights get updated 
following Equation 8.

 
C W Zmn
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r s
mn rs
k

rs=
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where σ is a sigmoid function. During weight adaptation, the 
afferent weights of the winner alone were normalized. Ck

mn is the 
response of the neuron (m, n, k). Z (20 × 20) is the (m, n)th tile 
response in DSMN. Note that (m, n)th tile is NF made up of 20 × 20 
neurons. Zrs refers to the response on (r, s) neuron within NF in other 
wards the tile (m, n) in DSMN. Wk

mn, rs represents the afferent 
connectivity from the neuron (r, s) within (m, n)th tile to the (m, n, k)
th neuron in HBNW. αaff is a learning parameter for afferent weights, 
whose value is set to 0.05 during the simulation.

Difference between HBNW and CPNW
The arrangement of the receptive fields of the neurons in both 

networks is the same. CPNW neurons are grouped into 2D arrays and 
neurons in each group learn to respond preferentially to the same 
translational motion direction. Such grouping does not exist in HBNW, 
instead, neurons in each column compete in a winner-take-all fashion. 
During training, different CPNW 2D arrays have access to different 
stimulus sets. On the other hand, every neuron in HBNW has access 
to a continuum of input stimuli. Due to competitive learning, each 
neuron learns to discover a unique salient feature (direction of motion) 
present in the small part of the input. At the end of the training, a 
continuum of input stimuli is divided into a set of distinct clusters, 
where each cluster is represented by a particular set of HBNW neurons.

Optic flow network

A well-known perceptron and multi-layer perceptron with three 
hidden layers were used to implement the Optic Flow Neural Network 
(OFNW) in model-1 and model-2, respectively. Both networks are 
developed and trained in MATLAB 2015.

Multi-class perceptron
The multi-class perceptron implemented as OFNW has an input 

layer followed by an output layer. The response of the CPNW is 
rearranged as a 1D vector before it is fed into the OFNW. The perceptron 
output layer consists of four nodes, each being trained to recognize the 
type of optic flow (expansion, contraction, clockwise rotation, and anti-
clockwise rotation) present in the given input sequence.

Let the training examples be (X1, y1), (X2, y2),…,(Xn,yn), where Xi 
is an input vector and the labels yi are drawn from the set {l1, l2,... lk}. 
Let the set of weight vectors to be learned are {W1, W2,...,Wk}, then 
multiclass perceptron can be implemented as

FIGURE 3

Model-2 architecture. DSMN (consisting of 16 × 16 tiles) is similar to the one described in model-1. 16 × 16 NF responses were feed forwarded to 16 × 16 
columns in HBNW. HBNW response is rearranged as 2,048 × 1 vector before it is passed to the output stage-multi-layer perceptron (MLP) where the 
neurons are trained to recognize the type of optic flow present in the input sequence.
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Multi-layer perceptron
Multi-layer perceptron network consists of three hidden layers, 

and is trained using a regular backpropagation algorithm which was 
described in various studies (Rumelhart et al., 1986; Hornik et al., 
1989; LeCun et al., 1992; Bishop, 1995).

Velocity selective mosaic network

The velocity Selective Mosaic Network (VSMN) used in model-3 
(Figure 4) is nearly the same as model-1 except it is formed out of 
10×10 tiles and each tile is of size 48 × 48. Equation 1 and Equations 
3–5 are used for the calculation of VSMN initial response and weight 
adaptation. The equation for the calculation of settled response, 
Equation 2, is modified. The input sequences generated to train the 
DSMN have fixed speeds. Equation 10 is a modified form of Equation 
2 to make the network recognize variable speeds along with the 
direction of motion, i.e., to recognize velocity. In our simulations, 

we tried various scaling values for δ (see Equation 12) ranging from 
0.1 to 0.001. At higher values δ, the network fails to distinguish speed. 
At lower values of δ, the network response is unstable during the 
presentation of the sequence. In other words, the lateral interactions 
could not produce unique activity patterns in NF to encode the 
speed feature.
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Unlike in DSMN where each tile is trained separately, in 
VSMN, each tile or NF is trained using input sequences (frame 
size 8 × 8) made up of 2 × 2 tiny squares moving in eight directions 
and in each direction at two speeds. Thus, the training set of 
VSMN contains 16 sequences. The weights of a trained tile are 
copied to the remaining tiles in VSMN, to overcome the 
computational overhead.

Convolutional neural network

Velocity Selective Mosaic Network response generated at the end 
of the presentation of the entire sequence is used as input to the 
CNN. The responses on 10 × 10 tiles are concatenated to form an 
image of size 480 × 480. CNN is made up of one convolutional layer 
(with 36 feature maps) followed by four fully connected layers and a 
classification layer. CNN is trained to recognize the type of optic flow 
along with its speed (8 classes = 4 flow types × 2 speeds). The design 
and simulation of the deep network are carried out using MATLAB 
2020a deep learning toolbox.

FIGURE 4

Model-3 architecture. The initial stage consists of VSMN that takes the input from image sequence. Each tile in VSMN is NF (48 × 48) where neurons are 
trained to encode direction and speed of a dot (2 × 2) within RF (8 × 8). The VSMN response obtained at the end of presentation of sequence is used to 
train CNN after concatenating the 10 × 10 tiles responses as a 2D image.
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Pipeline of all the three models

Model-1
As shown in Figure  2, the three stages (DSMN, CPNW, and 

perceptron) in model-1 are trained one after the other, in three steps, 
using the procedure described in the previous sections. In the first step, 
each NF in DSMN is trained using the dot (1 × 1) moving in eight 
directions such that the NF neurons develop direction-selective 
responses. In the second step, CPNW is trained with translational 
sequences moving in eight directions (0, 45, 90, 135, 180, 225, 270, and 
315°) such that neurons in each cell-plane respond maximally to specific 
translational motion direction. Note that while training CPNW, the 
DSMN weights are fixed and only its responses are forwarded. In the 
third step, the perceptron is trained to recognize the type of optic flow by 
using four types (zoom in, zoom out, clockwise, and anti-clockwise) of 
optic flow sequences, while keeping DSMN and CPNW weights fixed.

Model-2
As shown in Figure 3, model-2 consists of three stages—DSMN, 

HBNW, and MLP and each are trained with moving dot sequences, 
translational sequences, and optic flow sequences, respectively, in 
three steps similar to model-1.

Model-3
As shown in Figure 4, model-3 consists of two subnetworks—VSMN 

and CNN. VSMN is trained using the dot (2 × 2) moving in eight 
directions such that the NF neurons develop direction sensitivity along 
with speed-selective responses (i.e., velocity). These VSMN weights are 
fixed and only its responses are used while training the CNN. CNN is 
trained to recognize the type of flow (eight classes: 4 flow types × 2 
speeds) present in the given input sequences. The training set of CNN is 
made up of dots that are allowed to make rotational (clockwise and anti-
clockwise) and radial (inward and outward) trajectories.

For a clear understanding of all the three models, the details about 
the preparation of training and test sets and the network performance 
were provided along with the results in Section 3.

Correlation measures used to construct 
response similarity matrix

Pearson correlation measures (Kpolovie, 2011; Emerson, 2015) 
and Euclidean distance measures (Dokmanic et al., 2015) were used 
to construct response similarity matrices. The Pearson correlation 
coefficient rxy is a statistical measure of the degree of linear correlation 
between the two variables x and y. rxy takes values in the closed interval 
[−1, +1] (Kpolovie, 2011; Emerson, 2015). The value rxy = +1 represents 
a perfect positive correlation between x and y, rxy = −1 represents a 
perfect negative correlation between x and y, whereas the value rxy = 0 
indicates that no correlation.

Creating input stimuli

Spatial distribution
For model-1 and model-2, moving dot sequences were created by 

positioning 64 white dots on a black background of size 80 × 80 pixels 
with a density constraint that each 10 × 10 window typically 

accommodates only one dot. Each sequence is comprised of 15 frames. 
For model-3, dot stimuli were created by positioning 100 tiny white 
squares of size 2 × 2 pixels upon a black square grid of size 80 × 80 pixels 
with a constraint that each 8 × 8 window can accommodate only one 
tiny square at any given time. Each sequence is comprised of 10 frames.

Translational motion
Each dot configuration is moved (displacing x, y coordinates) in 

eight directions (θ): 0, 45, 90, 135, 180, 225, 270, and 315°. The 
translational motion is incorporated in 15 or 10 frames as specified 
above, and each dot configuration adds eight translational trajectories 
to the training set. If the dot exceeds the square boundary of the 
frame, it is wrapped around to reappear on the opposite side of the 
frame; thus, the dot density across the frames was kept constant. The 
horizontal and vertical displacement of a dot to incorporate 
translational motion is calculated by the Equation 11.

 
x t x t vi i+( ) = ( ) + ( )1 cos α

 y t y t vi i+( ) = ( ) + ( )1 sin α  (11)

where α represents the direction of motion and the local speed is 
defined by “v.” In the case of input stimuli for model-1 and 2, v takes 
only a single value (=1) and for model-3 v takes two values (=1,2).

Optic flow motion
Each dot configuration is allowed to move along circular 

(clockwise, anti-clockwise) and radial (expansion, contraction) 
trajectories to create different flow sequences. Thus, each dot 
configuration adds four flow patterns to the training set. Let m and φ 
be the magnitude and orientation components of a dot at (x, y). Then, 
the trajectory of radial and circular motion is defined using the 
Equations 12, 13. Note that for radial trajectory magnitude (m) varies 
and for circular motion orientation (φ) varies.

 m t m t vcos+( ) = ( ) +1 θ  (12)

 ϕ ϕ θt t vsin+( ) = ( ) +1  (13)

where v defines the local speed; θ defines the direction of flow, and 
takes the values 0 for expansion, π for contraction, −π/2 for clockwise 
rotation, and π/2 for anti-clockwise rotation. Here also for models 1 and 2, 
v takes only a single value (= 1) and for model 3, v takes two values (=1,2).

Results

Model-1

DSMN response to translational dot sequences
Each tile in the DSMN is an NF. Each NF is trained with a dot 

(1 × 1) moving in eight directions (0, 45, 90, 135, 180, 225, 270, 
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and 315°) from three different initial positions. Thus, the 
training set is made up of 24 (8 directions × 3 positions) 
sequences. Trained NF response to the dot moving in eight 
directions and the corresponding direction selective map is 
shown in Figures 5A,B. Even though all the tiles are trained to 
encode the direction of motion of a dot present within their 
receptive field, the neuron preferences across the tiles vary due 
to random initial afferent and lateral connections. That is 
neurons at a specified location (i, j) in all the tiles, do not always 
respond in the same direction. Various network and learning 
parameters used in the simulation are given in Table 1. Figure 5D 
represents the map of direction selectivity of DSMN. By 
comparing the color patches in the maps produced by each tile, 
one can understand that different neuronal populations are 
active in different tiles in response to the translational dot 
pattern moving in a specific direction. Each colored patch 
indicates the direction preference of the neuronal population. 
Figure 5C represents the response of DSMN to the translational 
sequence moving in 8 different directions. The neural responses 
produced by different tiles in DSMN are concatenated and 
displayed in the “Resp” column in Figure 5C.

Two-stage network response/CPNW response to 
the translated motion

Here we present simulated results of the CPNW, which is the 
second stage of model-1. As described earlier, the cell-plane network 
(CPNW) takes responses from DSMN and is trained by repeatedly 
presenting translational motion sequences to DSMN (see sections 2.3 
and 2.8). Since the learning takes place in the different cell planes 
independently (neurons in different cell planes do not compete with 
each other), the responses of the cell planes are similar but not 
identical. Here we used eight cell planes to encode eight different 
motion directions. We could also choose to use more cell planes to 
model a variety of MT and MST cells. Fifteen different initial dot 
configurations were translated in eight directions to make 120 
sequences, which were divided into a training set (10 × 8 = 80) and test 
sets (5 × 8 = 40).

The responses of the network stabilize after the training for 1,000 
epochs. Before the testing phase, the training set is presented to the 
CPNW, and the winning cell plane for each translational direction is 
recorded and used as a label to estimate CPNW performance on the 
test set. Eight different cell planes showed maximum responses to 8 
different translational motion directions provided in the input stimuli. 

FIGURE 5

Neural field network and DSMN response. First and third columns in (A) display the first frame (5 × 5) of an input sequence and second and third 
columns display the corresponding NF (20 × 20) activity. (B) shows the direction selective map for one tile. In (C), first and third columns show the 
frame (80 × 80) of a translational sequence and the response it elicits in DSMN (16 × 16 tiles) is plotted in second and fourth columns. “Resp” column 
shows the concatenated response in all the tiles of DSMN. (D) Displays DSMN’s direction selectivity map (concatenated direction selective maps of all 
16 × 6 tiles). Each color on the map shows the neuron population with direction preference as specified in the color bar.
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Now we present the test set consisting of eight translational motions 
of eight different directions (0, 45, 90, 135, 180, 225, 270, and 315°) 
that are not seen by the network before. As shown in Figures 6A–H, 
each of the test sequences was responded to maximally and uniquely 
by one of the eight cell planes. We see that though each cell plane 
responded most strongly to its preferred translational motion 
directions, it also responded to the neighboring directions with lesser 
intensity. CPNW showed 100% accuracy on the test set.

Three-stage network response/perceptron 
response to optic flow sequence

Here we train the optic flow network (multi-class perceptron) 
simulating MST neurons and test the complete model-1 composed of 
all three stages: initial DSMN, middle CPNW, and output OFNW/ 
perceptron. The training set to train OFNW/ perceptron is composed 
of optic flow sequences including contraction, expansion, clockwise 
rotation, and counterclockwise rotation each with 15 initial dot 
positions distributed over the image space. Thus, the training set is 
made up of 40 (10 × 4) flow sequences (see subsection optic flow 
motion in 2.10). We  did not include planar translational patterns 
because here the main concern was the network’s response to different 
types of flow motion. The OFNW/ perceptron is trained by repeatedly 
presenting sequences in the training set in a random order to the 
DSMN. While training the perceptron, the weights of DSMN and 
CPNW that were trained earlier were kept constant and only their 
responses were fed forward to OFNW/perceptron. After 500 epochs, 
stable responses were obtained in OFNW/ perceptron. Now the test 
set comprising 20 sequences (5 initial dots x 4 flow types) is presented 
to the three-stage network (model-1) and the response is plotted in 
Figure 7. Figures 7A–D, respectively, show the model-1 response to 
anti-clockwise, clockwise, expansion (Zoom Out), and contraction 
(Zoom In) motions.

Model-2

Two-stage network response/HBNW response to 
translational motion

The first stage in model-2 is DSMN, which is the same as in 
model-1. The second stage, HBNW, is made up of a 16 × 16 × 8 array 
of neurons. The training set used to train the CPNW in model-1 is 
now used to train the HBNW. As a result of training, the neurons in 
the HBNW learn to encode the local flow direction present in the 
small part of the image and on the whole, continuum of neurons 
(16 × 16 × 8) encodes global motion information present in the input 
sequence. HBNW is trained by repeatedly presenting translational 
motion sequences to DSMN, whose responses in turn were forwarded 
to HBNW neurons. Training is carried out for 10,000 epochs (learning 
rate = 0.05).

Trained HBNW responses to translational sequences of 180° are 
plotted in Figure  8. Figure  8A displays the first frame of the 
translational motion sequence, Figures  8B,C represent the 
corresponding DSMN and HBNW responses, respectively. In 
Figure  8C, one can observe that, at each (m, n) location along z 
direction, only one neuron shows the highest response (winner) ~0.6 
as indicated in the color bar; also, the winners at each vertical column 
are quite distinct. This is because a group of neurons along each 
vertical column that takes the same DSMN tile response will 

be trained to recognize salient motion direction existing in the input 
pattern in the sense that a similar set of input patterns (i.e., patterns 
having the same translational motion direction) will always excite one 
particular neuron and inhibit all others. Thus, during the training 
process, due to initial random afferent connections, one neuron from 
the group (m, n) shows the highest response, becomes a winner, and 
gets its weights updated. During training, other neurons within the 
group will become winners when they encounter a different input. At 
the end of the training, all eight neurons within a group get tuned to 
eight different directions. The arrows are plotted in Figure 8C at each 
winner neuron to indicate their direction preferences. By the end of 
this competitive learning process, the continuum of input patterns is 
divided into a set of clusters, each cluster is represented by a particular 
population of responding neurons. Note that each input pattern 
activates a large number of HBNW neurons, but the response 
selectivity is represented by the population of winner neurons. Thus, 
the different motion patterns presented to the two-stage network form 
a set of separable clusters in the feature space, which is typical for 
competitive learning. However, the class boundaries are not as crisp 
as in the case of CPNW.

Trained HBNW neurons show the highest response when their 
preferred direction best fits the local motion direction in the input. 
We  observed the winner neuron responses by presenting all 120 
translational motion stimuli. Eight winner neurons were observed in 
response to 8 motion directions along each vertical column. The 
direction preferences of HBNW neurons are plotted in Figure 9. One 
can compare the winner neurons shown in Figure 8C with the neuron 
preferences shown in Figure 9. We observed that the HBNW neuron 
in each vertical column encodes eight different motion directions, 
without allowing the emergence of redundant and dead neurons.

Three-stage network response/MLP response to 
optic flow motion

Here we train the OFNW (multi-layer perceptron) simulating 
MST neurons and test model-2 composed of all three stages: DSMN, 
HBNW, and OFNW/MLP. The MLP consists of an input layer (2048 
× 1), three hidden layers each of size 256 × 1, 156 × 1, and 50 × 1, and 
an output layer (4 × 1; Figure  3). It is trained using regular 
backpropagation algorithm for 5,000 epochs (learning rate = 0.1). The 
activation function used by nodes in the hidden and output layers is 
sigmoid and SoftMax, respectively. Note that the neuron responses 
produced by CPNW are very different from the responses produced 
in HBNW during competitive learning.

As the nature of the input presented to the output stage varies 
in model-1 and 2, different classification algorithms were 
proposed for OFNW. Similar to model-1 the training and test set 
for MLP in model-2 is composed of 40 and 20 flow sequences, 
respectively, each including contraction, expansion, clockwise 
rotation, and anti-clockwise rotation. While training MLP, DSMN, 
and HBNW weights were kept constant. The accuracy obtained 
on a training set and test set is 100 and 95%, respectively. MLP 
recognized one anti-clockwise motion sequence in the test set as 
a clockwise one. Once MLP training is completed, the response of 
the three-stage network is observed for every sequence in the test 
set. The response for one “Zoom In” sequence is plotted in 
Figure 10 where “OFNW resp” represents the activity of the output 
layer neurons in MLP.
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At this stage, we  would like to discuss why we  used MLP in 
model-2 whereas perceptron in model-1. The second stage of model-1 
is a CPNW where each cell plane is trained independently with dots 
translating in a specific direction. As a result, each of the test sequences 
is encoded maximally by one of the eight cell planes, even though 
some activity is produced by other cell planes as shown in Figure 6. 
Thus, the data set created using CPNW responses to train third stage 
OFNW is linearly separable. Linearly separable data can be encoded 
by a simple perceptron. On the other hand, model-2 s stage consists of 
HBNW. In HBNW, a group of neurons along each vertical column 
takes the same DSMN tile response, and are trained to recognize 
salient motion direction existing in the input pattern through 
competitive learning. In other words, different neurons at different 
vertical columns (neurons highlighted with arrows in Figure 8C) have 
become winners and on the whole different continuum of neurons 
encode different translational motion directions. Thus, the data set 
created with HBNW responses are highly non-linear and can 
be encoded by only networks like multi-layer perceptron’s.

Model-3

Model-2 is a biologically plausible optic flow recognition model, 
in which training of initial, middle, and output stages is designed 
based on the knowledge of the response properties of the neurons 
present at various levels of motion pathway. On the other hand, in 
recent years, data-driven CNNs, developed based on early studies of 
the visual system (Schmidhuber, 2015), have been widely used as 
visual encoding models. These encoding models work by establishing 
a nonlinear mapping from visual stimuli to features, and a suitable 
feature transformation is critical for the encoding performance (Tang 
et  al., 2018). Studies have also shown that a deep network is 

comparable to the human visual system, which can automatically 
learn salient features from large data for specific tasks (Agrawal et al., 
2014; Cohen et al., 2017). Recent studies by Güçlü and van Gerven 
demonstrated the similarity between CNN and visual pathways, 
revealing a complexity gradient from lower layers to the higher layers 
(Güçlü and van Gerven, 2015, 2017). Along similar lines, we developed 
a data-driven optic flow recognition model (presented in Figure 1D) 
using CNNs.

VSMN tile response
In this study, we investigate whether CNN can serve as a model of 

the macaque motion-processing network. There is evidence that, 
unlike V1 neurons, a subset of neurons within the primate extrastriate 
cortex (MT) appear broadly tuned to local image speed and direction 
(Movshon et al., 1985; Maunsell and Newsome, 1987). The model is 
said to be  biologically plausible if and only if V1, MT, and MST 
representative neurons in the model show response properties 
analogous to those of real V1, MT, and MST neurons. Currently, the 
middle stage (CPNW, HBNW) neurons in model-1 and model-2 
estimate local flow motion purely based on the direction-selective 
responses from DSMN. To simulate MT-like responses to the local 
image motion according to the product of their direction and speed 
responses, we created Velocity Selective Mosaic Network (VSMN) in 
place of DSMN, which encodes speed together with direction.

Model-3 consists of VSMN followed by CNN (Figure 4). Each tile 
in VSMN is an NF and is trained to recognize the velocity of the input 
stimuli as described in section “Velocity selective mosaic network”. 
Figure 11A shows the response of a tile in VSMN for the input stimuli 
consisting of 2 × 2 dots moving in eight directions. Here dot is allowed 
to move one pixel and two pixels ahead for each time step constitutes 
two speeds. Thus, input stimuli consist of 16 inputs (eight directions 
and two speeds). Figure 11B plots the velocity selective map consisting 

FIGURE 6

CPNW response to translational sequences: In all figures, (A–H) a frame (80 × 80) of a translational sequence and its corresponding response on CPNW 
is displayed. The numbers 0, 45, 90 etc., represent the direction of motion of the input sequence. CPNW consists of eight cell-planes, each shows 
maximum response to specific translational motion direction as result of training. The amount of activity produced by cell-plane neurons can 
be estimated using color bars. One can also observe that, though only one cell-plane produces highest activity in response to given motion direction 
(e.g., 0°), the cell-plane that encode opposite motion direction (180°) produce relatively high activity compared to the cell-planes that encode other 
motion directions.
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of 16 populations. Each population is highlighted with a colored arrow 
(red for speed1 and black for speed2), indicating the preferred speed 
and direction of the motion.

Training CNN with optic flow sequences
Convolutional neural network is trained with eight classes. Thus, 

the training stimuli for CNN are made up of four types of flow 
sequences (expansion, contraction, clockwise rotation, and anti-
clockwise rotation) and each occurs at two speeds. A total of 80 
motion sequences (10 initial dot positions × 4 flow types × 2 speeds) 
were generated for the training set and 40 (5 × 4 × 2) sequences for the 
test set. The CNN is trained to recognize the type of optic flow present 
in a given input sequence, by repeatedly and randomly presenting 
input from the training set to its previous VSMN, whose final response 
is forwarded to the CNN. The architecture of the CNN and various 
learning parameters used to train the CNN are described in Table 2. 
Note that the CNN is trained only on optic flow stimuli and not 
exposed to translational stimuli. Figures 11C,D indicate the CNN 
architecture, the confusion matrix, and the learning curve, respectively. 
For the implementation of CNN and to visualize the CNN feature 
maps, we used MATLAB with Deep Learning Toolbox. The trained 
CNN gave classification accuracy—100% for training data and 90% 
for held-out test data.

CNN response to translational and flow 
sequences

Next, the trained CNN is presented with both translational and 
optic flow sequences, and the responses are plotted in Figure  12. 
“Conv1” layer consists of 36 feature maps (Figure 4). All these feature 
maps are arranged in a grid-like structure and plotted as shown in 
“Conv1 Resp.” Figures 12A,B plots the conv1 response to four types of 
optic flow stimuli moving with speed-1 and speed-2, respectively. 
Whereas Figures 12C–F display the conv1 response to translational 
stimuli moving eight directions with speed-1 and speed-2, respectively. 
Note that the CNN network was never exposed to translational 
patterns during training. Still diffuse and sparse response patterns 
could be observed under the conv1 response column, in response to 
translational and flow sequences, respectively. One can compare these 
responses with the responses of CPNW, as shown in Figures 6, 7, 
where we obtained similar diffuse responses to translational sequences 
and sparse responses to optic flow sequences.

Development of translational motion selectivity 
and speed selectivity in conv1

We may now ask whether the CNN trained on optic flow motion 
sequences developed selectivity to translational sequences in its lower 
conv1 layer. If that is the case, the conv1 layer is analogous to MT and 
CNN’s output layer is analogous to MST. To verify the above 
hypothesis, we presented the trained network with a test set, consisting 
of 240 translational sequences moving in eight directions, with two 
speeds, and started from 15 different initial dot configurations 
(15 × 8 × 2 = 16 classes with 15 sequences in each class). For all 240 
inputs, the conv1 feature map or a channel with a maximum response 
is noted and the bar graph against each class is displayed, as shown in 
Figure 13A.

As shown in Figure 13A, different channels respond maximally 
to different translational directions, and also more than one channel 
showed the highest activity in the same motion direction. These 

results are consistent with previous reports of a high degree of 
direction selectivity in MT with nearby units having similar preferred 
directions (Maunsell and van Essen, 1983a). These studies also 
reported that the MT units were sharply tuned for the speed of 
stimulus motion. However, the same channel in the conv1 layer 
seems to become highly active to the inputs with the same 
translational direction but moving at different speeds (as indicated by 
bars: blue-speed-1 and green-speed-2). MT neurons must have 
different speed characteristics to be consistent with the MT studies 
(Lagae et al., 1993). Orban et al. (1981) grouped cells in areas 17 and 
18 into four distinct classes based on the broadness of the speed 
tuning curve and the speeds to which they responded. To understand 
whether the conv1 layer developed speed selectivity as a result of 
training, we  computed correlation matrices and plotted them, as 
shown in Figures  13B–I. Initially, conv1 responses for all 240 
translational inputs are obtained. For each direction, the Pearson 
correlation between each pair of speed-1 and speed-2 (15 × 15 pairs) 
is calculated. The diagonal elements of a matrix (as highlighted with 
a red line) represent the correlation coefficient measured between the 
translational patterns moving at two different speeds (speed-1 and 
speed-2) starting with the same initial dot configuration. Smaller 
correlation values, as shown by the color bar and lack of block 
diagonal structure in plots (B–I), indicate that conv1 neurons display 
different responses to different speed stimuli, which is consistent with 
the cell properties in MT (Graziano, 1990; Duffy and Wurtz, 1991a,b, 
1995; Graziano et al., 1994; Duffy, 1998). Further to quantify this 
speed selectivity by conv1 channel, we  trained a two-class linear 
classifier for each case displayed in plots (B-I). The accuracies 
obtained on the test set for each direction 0, 45, 90, 135, 180, 225, 270, 
and 315° are 80, 70, 90, 80, 80, 70, 90, and 100%, respectively. Thus, 
when CNN is trained using optic flow motion stimuli, the lower 
layers develop selectivity to translational motion which is 
analogous to MT.

We also calculated the Euclidean distance between conv1 
responses to each pair of eight translational directions, and for each 
speed separately. As shown in Figure 14 (green lines), the responses 
to dot patterns moving in opposite directions (0–180, 45–225, 
135–315, and 90–270°) have a higher correlation compared to the 
other pairs. Similar responses were seen while comparing the 
responses to the speed-1 and speed-2 stimuli set. Thus, translational 
patterns with opposite motion directions develop similar activity 
patterns on the conv1 layer, suggesting that they are closer in 
feature space.

Correlating CNN responses with known 
properties of the motion processing hierarchy

To investigate whether the CNN can explain known tuning 
properties of the macaque motion processing network (Maunsell and 
van Essen, 1983a,b; Graziano, 1990; Duffy and Wurtz, 1991a,b, 1995; 
Graziano et al., 1994), we calculated the responses of CNN layers 
(conv1and fc4) to translational (240) and flow (120) sequences made 
out of training together with test sets. We  then calculated the 
correlation between the population responses to each pair of these 
sequences and constructed a population Response Similarity Matrix 
(RSM) of such correlations for all pairs.

Figure 15 shows RSMs for the convolution layer (conv1) and last 
hidden layer (fc4), for both translational motion and optic flow 
motion. In Figures 15A–D, the translational sequence numbers are 
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FIGURE 7

The response of Model-1 to optic flow sequences. The response of OFNW to (A) Anti-clockwise sequence, (B) clockwise sequence, (C) zooms out or 
radially outward sequence, and (D) zoom in or radially inward sequence. In each case, “DSMN Resp” represents the populations of neurons that are 
active in each tile of DSMN. “CPNW Resp” represents the subset of neurons that are active in each cell-plane in response to the given optic flow 
stimulus. The responses on eight cell-planes are arranged as a 1D vector before giving it to OFNW. OFNW is a four-class perceptron made up of two 
layers (input and output), and its response to four types of optic flow patterns is shown as OFNW Resp.

FIGURE 8

HBNW response to translational motion sequences. Here we plotted HBNW response to translational motion sequence: 180°. (A) represents a frame in 
an input sequence and corresponding DSMN response is shown in (B). Hebbian network (16 × 16 × 8) response titled as “HBNW Resp” is plotted in (C). At 
each vertical column, the winner is highlighted with the arrow whose head indicate the neuron’s direction preference.
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grouped according to the motion direction (each forming 
sub-matrices of size 15 × 15). In Figures 15E–H, the optic flow motion 
class numbers represent the type of the flow (here also each 
sub-matrix is of size 15 × 15). Each of the 15 × 15 response similarity 
matrices indicates the pairwise correlation coefficients calculated for 
sequences made out of 15 initial dot configurations. In the conv1 
layer, the RSMs corresponding to the translational stimuli 
(Figures 15A,B) show that different conv1 neuronal populations show 
selectivity to a different translational motion direction. In 
Figures  15A,B, the strong block-diagonal patterns can be  seen, 
indicating that the populations show selectivity to a specific direction 
of motion irrespective of the initial dot position. Also, RSM entries 
between opposite motion directions are positively correlated, whereas 
RSM entries between orthogonal pairs are negatively correlated, 
indicating that opposite motion directions at the input space are 

arranged more closely at the feature space than the orthogonal 
motion directions. Figures 15C,D display the RSMs corresponding to 
the translational stimuli in layer fc4 (the last hidden layer). Even 
though a weak block-diagonal pattern can be seen, the clear distinct 
response profiles to various translational directions were not seen. It 
appears neurons in layer fc4 do not have specific selectivity to 
translational motion direction; they instead respond to all 
translational directions more or less equally.

Figures 15E,F display RSMs corresponding to optic flow stimuli 
in the conv1 layer, showing a clear distinction between radial and 
circular motion types, with less prominent selectivity to specific flow 
types. Whereas, as shown in Figures  15G,H, very strong block-
diagonal along with distinct RSM entries of the fc4 layer, indicating 
that the units are highly selective to different flow types. To understand 
more about the above conv1 and fc4 responses and their selectivity to 
various types of translational and flow sequences, we built and trained 
a linear classifier. In case-1where perceptron trained with “conv1 
responses to translational stimuli” produced good recognition 
accuracy on the test set in both cases: 85% in speed-1 and 87% in 
speed-2. In case-2 where perceptron trained with “fc4 responses to 
translational stimuli” produced less recognition accuracy on the test 
set in both cases: 37% in speed-1 and 48% in speed-2. In case-3 where 
perceptron trained with “fc4 responses to optic flow stimuli” produced 
high accuracy on the test set (100% in both cases), However, in Case-4 
where perceptron is trained on “conv1 responses to optic flow stimuli” 
produced high accuracy (95% in both cases). It appears that lower 
layers in the CNN develop selectivity to translational motion while the 
higher layers code for only the optic flow motion. In sum, the bottom-
to-top layers of model-3 gradually shifted from direction selectivity of 
V1 cells to local flow motion estimation and finally optic flow type 
selectivity, which is reasonably consistent with the idea of functional 
hierarchy in the macaque motion processing (Hubel, 1988; Duffy and 
Wurtz, 1991a,b; Born and Bradley, 2005).

FIGURE 9

It shows the direction preferences developed by HBNW neurons in 
response to training (can be interpreted by observing colored arrows 
more carefully).

FIGURE 10

Model-2 responses to a “Zoom In” optic flow sequence. “Zoom In” represents frame in a radially inward flow. “DSMN Resp” represent the populations 
of neurons that are active in each tile to the input sequence. Hebbian network response (top view) is plotted under “HBNW Resp.” Each column is 
represented by a winner along with its direction preference (arrow). “OFNW Resp” represents the response of the classification layer nodes in MLP, 
each node is encoding specific flow type.
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Discussion

Over the last decades, vision research had unraveled a cascade of 
motion processing stages within the hierarchy of visual cortical areas 
(V1-MT-MSTd) along the dorsal pathway. V1 neurons have small 

receptive fields (~0.5–2°; Zeki, 1993; Duffy and Hubel, 2007) and 
therefore can analyze movement over only a tiny portion of the visual 
field. The extra-striate middle temporal area (MT or V5) has a 
receptive field 10 times the size of V1, while still covering only a 
relatively small fraction (~2–15°; Saito et  al., 1986; Komatsu and 

FIGURE 11

NF response in VSMN. In (A) first and fourth columns display the first frame (8 × 8) of an input sequence that consists of dots (2 × 2) moving in specific 
direction with two speeds. The second, third, fifth, and sixth columns represent the corresponding NF (48 × 48) activity. The same neuron population 
become selective to the inputs of same direction and different speeds, however within the population neurons have different speed preferences which 
are shown in (B) the velocity selective map. Neuron direction preferences are shown by head of the arrow and the speed preferences are shown by the 
arrow color. Color bars indicate 16 input types (8 directions × 2 speeds). 1–8 belong to speed-1 and 9–16 to speed-2. (C) shows the architecture of 
CNN. (D) shows the confusion matrix obtained for the test set.
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Wurtz, 1988a; Richert et al., 2013) of the visual field. However, optic 
flow covers the entire visual field. The medial superior temporal area 
(MSTd) has receptive fields (>30°; Raiguel et al., 1997; Amano et al., 
2009) that cover large parts of the visual field (Saito et  al., 1986; 
Komatsu and Wurtz, 1988b) are said to be  coding for optic flow 
motion. The three models described in this paper were based on this 
functional hierarchy and learn to recognize the type of optic flow 
present in the given dot sequence.

Here first we list out some of the key features of experimental 
MSTd cell responses (Graziano, 1990; Duffy and Wurtz, 1991a,b, 1995; 
Graziano et al., 1994), to interpret the performance of the proposed 
models. (i) The receptive fields of MSTd cells are (> 30°) much larger 
than those of the MT cells. (ii) MSTd cells respond to different types 
of motion stimuli such as unidirectional planar/translational motion, 
clockwise and counter-clockwise rotational motion, outward and 

FIGURE 12

Model-3 responses to optic flow and translational motion sequences. In (A,B), first and second columns display the frame of an optic flow sequence 
and the corresponding VSMN response, respectively. “Conv1 Resp”—indicates the activity on 36 feature maps of convolution layer. In (C–F), first, 
second, and third columns display the frame of a translational sequence, corresponding VSMN response, and the convolution layer activity, 
respectively. Out of 36 feature maps, the channel with the maximum response is plotted in the fourth column as “Max Channel.”

TABLE 2 CNN architecture and learning parameters used.

Layer Size

Convolution Layer (conv1) 48 × 48 × 36

Fully connected layer (fc1) 350 × 1

Fully connected layer (fc2) 150 × 1

Fully connected layer (fc3) 150 × 1

Fully connected layer (fc4) 100 × 1

Output layer 8 × 1

Learning parameters

Learning rate 0.01

Batch size 20

Epochs 350

https://doi.org/10.3389/fnins.2023.1154252
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gundavarapu and Chakravarthy 10.3389/fnins.2023.1154252

Frontiers in Neuroscience 17 frontiersin.org

inward radial motion, and various spiral motions (Graziano, 1990; 
Duffy and Wurtz, 1991a,b; Graziano et al., 1994). (iii) Some MSTd 
neurons respond maximally to the specific motion type and less 
strongly, to neighboring motion types (Duffy and Wurtz, 1995), while 
others respond moderately to all motion types. Some neurons do not 
respond selectively to any of the motion components (Duffy and 
Wurtz, 1991a; Graziano et al., 1994).

Based on the results provided in Sections 3.1 and 3.2, we can 
summarize the response properties of neurons in model-1 and 

model-2 as follows. (i) The neurons in the OFNW simulating MSTd 
neurons have much larger receptive fields than the neurons in 
DSMN. Also, they respond to different types of optic flow motion 
stimuli, including radial and circular motions. (ii) Many neurons in 
CPNW and HBNW respond most strongly to their preferred 
translational motion direction, while they also respond less strongly 
to neighboring directions and moderately to opposite directions. 
These features match well with the properties of experimental 
MSTd neurons.

However, neurons in MT that respond to different translational 
motion directions form a continuum of response selectivities instead 
of discrete classes (Recanzone et al., 1997) similar to the case with 
MSTd neurons. In CPNW, since there is no competition across cell 
planes, neurons form a discrete class with different directional 
preferences (i.e., all the neurons in one cell plane own the same 
direction preference, and neurons in different cell planes exhibit 
different direction preferences), which is not in agreement with 
properties of neurons found experimentally (Duffy and Wurtz, 1991a; 
Graziano et  al., 1994; Recanzone et  al., 1997). We  developed the 
Hebbian network (HBNW) by incorporating competition across the 
neurons as described in Section 2.4. Through competitive learning, 
HBNW neurons along each vertical column are trained to respond 
selectively to the different motion directions, which form a continuum 
of response selectivity along a 2D array of neurons. This continuum 
of responses divided, relatively evenly and randomly, into a set of 
clusters, each represented by a particular output neuron in OFNW, 
which is consistent with the empirical findings (Duffy and Wurtz, 
1991a; Graziano et al., 1994; Recanzone et al., 1997). Thus, for the 

FIGURE 14

Direction tuning in conv1 layer. (A, B) shows conv1 response 
similarity matrix (8 × 8) for speed1 and speed2 respectively. Entries in 
the matrix indicating pairwise Euclidean distance between responses 
to translational motion directions (one sequence considered for 
each direction). The directions are indicated along the axes. From 
the plot one can observe that the conv1 layer produce similar 
response to the sequences with opposite directions. Matrix entries 
along green lines are positively correlated and the entries between 
orthogonal angle are negatively correlated (values are <0).

FIGURE 13

Development of speed selectivity in Conv1 layer. Each bar in (A) indicates the active channel corresponding to each input class (16 classes = 8 
directions × 2 speeds; test set consists of 240 sequences: 15 initial dot positions × 16 classes; labels 1–8 belong to speed-1 inputs and are indicated by 
blue bars; labels 9–16 belong to speed-2 inputs and are indicated by green bars). For example, 0° translational sequence with speed-1 activates two 
channels 7 and 34. However, more inputs activate channel 34 as indicated by bar length. One can observe that different channels encode different 
motion directions. However, inputs moving in same direction with different speeds seems to activate the same channel in bar graph. Speed selectivity 
in Conv1 layer using RSMs. (B–I) represent the response similarity matrices (RSMs). The matrix entries (15 × 15) indicate the pairwise correlation 
coefficients for speed-1 and speed-2 translational motion sequences whose direction is indicated on top of each figure. The diagonal elements of a 
matrix (as highlighted with red line) represent correlation coefficient calculated for the pair of sequences having same initial dot configuration and 
moving with different speeds. Most of the RSMs have no strong block diagonal structure (except for 315 and 270°), indicating that different neuronal 
populations in conv1 respond to different speeds. For 315 and 270° block diagonal structure can be seen due to the very low correlation values, not 
because of similar responses of conv1 channel to both speeds, as the high correlation value is 0.6 as indicated in color bar. Thus, even though the 
same channel codes for a sequence with different speeds, within the channel different subpopulations code for different speeds.
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presentation of each class of translational motion sequence, the 
two-stage network (DSMN + HBNW) exhibits a sparsely distributed 
set of active neurons that represents the translation direction of the 
feature space, which is typical for competitive learning.

Also, HBNW winners corresponding to each input flow sequence 
are arranged by the pattern of that optic flow type. In other words, as 
shown in Figure  10, “HBNW Resp” displays radial arrangement 
(winner preferences) for the presentation of radial motion. Similarly, 
a circular arrangement for the presentation of rotational motion. This 
is consistent with the hypothesis proposed by various researchers 
(Saito et al., 1986; Tanaka and Saito, 1989) that the receptive field of 
an MST cell responsive to circular or radial motions is composed of a 
set of directionally selective MT cells arranged by the pattern of that 
optic flow component.

The first two models presented in this paper simulate the 
direction-selective properties of V1 cells, the local flow selective 
responses of MT cells, and selective responses to various optic-flow 
motion types found in the MSTd area. Both these models show that 
sophisticated neuronal responses to motion stimuli can be accounted 
for by relatively simple network models. We also verified whether the 
first two models develop speed-selective responses when simulated 
with optic flow sequences having multiple speeds. We  conducted 
experiments by replacing first stage of model-1 and model-2 with 
VSMN instead of DSMN. Simulation results indicate that model-1 and 
model-2 can recognize inputs with different speeds with an accuracy 
of 85 and 82.5%, respectively, (details are provided in the 
Supplementary material). On the other hand, recent deep convolution 
neural networks (CNNs) have emphasized the layer-wise quantitative 
similarity between convolutional neural networks (CNNs) and the 
primate visual ventral stream (Yamins and DiCarlo, 2016). However, 
whether such similarity holds for the motion-selective areas in the 
motion pathway, is not clear through the above studies.

In the studies with model-3, we investigate whether CNNs can 
reproduce the tuning properties observed in the visual motion areas 
of the macaque brain. We explore the correspondence between the 

trained model-3 CNN layers and the macaque motion areas by 
calculating RSMs. Note that we did not constrain model-3 to match 
neural data, instead by comparing RSMs corresponding to 
translational and flow motion sequences at the convolution layer 
(conv1) and last hidden layer (fc4), we showed that the top output 
layer is highly predictive of MSTd responses and the intermediate 
convolutional layer (conv1) is highly predictive of neural responses in 
MT, an intermediate motion area that provides the dominant cortical 
input to MSTd. The correlation results show that, in model-3, as one 
traverse from the input to the output layer, response selectivity 
gradually shifts from direction selectivity (in VSMN), to local flow 
selectivity (in conv1), to flow type selectivity (in fc4), which is 
consistent with the idea of functional hierarchy in the macaque 
motion pathway. Furthermore, these studies indicate that CNN, in 
combination with basic sequence processing capabilities offered by 
DSMN, can be used to build quantitative models of motion processing.

Biological relevance of model-2

Neurons in the individual NFs of DSMN are designed to have 
center-surround lateral connectivity, where the lateral connections are 
trained by asymmetric Hebbian learning. All these centers surround 
lateral connections and afferent connections are adapted through the 
asymmetric Hebbian rule. In the asymmetric Hebbian learning rule, 
the correlation between the presynaptic state at the current time and 
the postsynaptic state at a later time is used. Correspondingly, while 
training HBNW the symmetric Hebbian rule is used (Hebb, 1949a, 
1949b) wherein the pre-and postsynaptic states are considered at the 
same instant. If we combine this with the winner take all rule, post-
synaptic neurons compete with each other and the neurons that 
produce the largest response become the winner. Only the winner’s 
afferent connections are adapted by Hebbian learning. The winner-
takes-all rule used in HBNW facilitates competition across the neurons 
so that different neurons become selective to the different motion 

FIGURE 15

Correlating Conv1 responses with the cell responses in motion hierarchy. Plots display RSMs for CNN layer (conv1) and last hidden layer (fc4). Matrix 
entries in (A–D) indicate the pairwise correlation coefficients calculated for the translational responses, separately for each speed. Matrix entries in 
(E–H) indicate the pairwise correlation coefficients for the optic flow motion responses, separately for each speed. Elements of the matrices are 
grouped according to the direction and flow type as indicated along the axes.
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directions present in the input. The adaptable lateral connections, 
Hebbian rule, and winner take all mechanisms are biologically plausible 
and have been tested experimentally (Salzman and Newsome, 1994). 
Likewise, the initial afferent response of the neurons in DSMN is 
passed through the piecewise-linear sigmoid function, and in HBNW 
the responses are passed through the sigmoid function to make the 
response nonlinear. Experimental studies have shown that responses 
of cells in visual cortical areas show significant nonlinearities 
depending on spatiotemporal activity distribution and also such 
response nonlinearities have been demonstrated in the LGN and in 
area V1 and beyond (Williams and Shapley, 2007; Solomon et al., 2010).

Comparison between model-2 and 
model-3

Model-2 follows a bottom-up approach where neurons in the 
lower stages are trained first followed by the higher stages in the 
hierarchy. The initial/first stage neurons are trained to recognize the 
direction of moving stimuli present within the receptive field; the 
middle stage neurons are trained with translational dot sequences to 
encode the direction of local flow; and the last/output stage neurons 
are trained using different optic flow type sequences. In each stage, 
training is designed based on the experimental response properties of 
the neurons present at various levels of the motion pathway. This 
manner of modeling requires not only the knowledge of 
neurobiological findings but also a good grasp of various neural 
modeling approaches.

On the other hand, deep learning models are completely data-
driven, easy to design and training, and require very little 
pre-programming and domain knowledge. Moreover, various studies 
(Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013; Mur et al., 
2013; Yamins et  al., 2013; Kriegeskorte, 2015b) demonstrated the 
parallels along the hierarchy between layers of CNN and the visual 
areas of ventral pathway. Model-3 is trained end-to-end directly using 
optic flow motion sequences without any human intervention. 
Simulation results showed that CNNs can explain the experimentally 
observed tuning properties of motion areas MT and MSTd and also 
exhibit representational similarity with motion areas.

Limitations of the existing model

The scope of the current study is the simulation of computation 
performed by motion pathway neurons like MT and MST. As a result 
of training, the three models develop responses similar to the responses 
of motion pathway neurons. Also, model-1 model-2 are developed by 
keeping biological realism in view. Within the given scope, we could 
not see any limitations in the proposed models. However, model is not 
designed to take real-world scenarios/ videos as input. One can view 
this as the limitation of the current model. In all the simulations, the 
model is exposed only to the current frame and the history about the 
past frames is stored in form of lateral interactions. Lateral connections 
are one way in which networks can retain stimulus history, which 
differentiates them from other computer vision models where the optic 
flow extraction is done by considering a set of frames.

However, even though it is the out of the scope of the current 
study, it is interesting to study about the model’s adaptability and 

performance when exposed to real time videos, such as tracking of 
unmanned aerial vehicles (UAV). Some recent works (Yuan et al., 
2020, 2022) describe the state-of-the-art tracking methods such as 
spatio-temporal context-aware model and self-supervised deep 
correlation tracking. Another interesting study by same authors (Shu 
et  al., 2020) proposed adaptive weight part-based convolutional 
network for person re-identification. However, the current model is 
not designed to process real-word video data.

Conclusion

In this paper, we simulated three models to recognize the type of 
optic flow present in the input sequence. All the models explain 
different functional properties of neurons present in the motion 
pathway. Further model-3 can be viewed as the candidate model to 
explain the different aspects of motion processing apart from optic 
flow. In the future, we  further would like to simulate model-3 to 
understand other motion aspects such as structure from motion and 
recognition of biological motion.
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