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Previous studies have shown that short-term monocular pattern deprivation can 
shift perceptual dominance in favor of the deprived eye. However, little is known 
about the effect of monocular pattern deprivation on contrast sensitivity (CS) and 
its corresponding mechanisms. Here, contrast sensitivity function (CSF) in the 
nondominant eye of normal subjects was evaluated before and after 150  min of 
monocular pattern deprivation. To obtain a CSF with high precision and efficiency 
before deprivation effect washout, a quick CSF (qCSF) method was used to 
assess CS over a wide range of spatial frequencies and at two external noise 
levels. We  found that (1) monocular pattern deprivation effectively improved 
the CS of the deprived eye with larger effect on high spatial frequencies, (2) CS 
improvement only occurred when external noise was absent and its amount 
was spatial frequency dependent, and (3) a perceptual template model (PTM) 
revealed that decreased internal additive noise accounted for the mechanism of 
the monocular pattern derivation effect. These findings help us better understand 
the features of short-term monocular pattern deprivation and shed light on the 
treatment of amblyopia.
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Introduction

Neuroplasticity, which refers to the ability to modify neural circuits to adapt to 
environmental changes under the influence of experience, is a fundamental property of the 
nervous system (Wiesel, 1983; Pascual-Leone et al., 2005). Before critical period (7–9 years), 
visual deprivation resulted in impaired visual acuity (Freeman and Bradley, 1980), spatio-
temporal sensitivity (Hess et al., 1981), as well as shape and depth perception (Fine et al., 2002, 
2003) in individuals with untreated congenital cataracts. Patching therapy is based on the 
principle of visual deprivation. Researchers force amblyopia to use lazy eye by covering their 
fellow eye (Ramamurthy and Blaser, 2021).

It is widely accepted that the brain undergoes limited plasticity beyond the critical period, 
with minimal experience-dependent changes. For instance, patching therapy was traditionally 
considered effective for amblyopia before 7–9 years of age. However, recent studies have 
questioned this notion. Using the classic binocular rivalry paradigm (in which different visual 
stimuli are presented to both eyes at the same time), researchers have found that 150 min of 
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monocular deprivation, which eliminated pattern information but 
retained mean luminance (for short, we use the term “monocular 
pattern deprivation, MPD” in this article), shifted perceptual 
dominance to the deprived eye (Lunghi et al., 2011). This effect can 
be validated in a variety of binocular tasks, including the binocular 
phase combination task, dichoptic global motion coherence task, and 
binocular contrast matching task (Zhou et al., 2013a). The same was 
true when researchers used other methods of deprivation, such as 
opaque patching (eliminating both pattern information and mean 
luminance), continuous flash suppression (Kim et  al., 2017), and 
kaleidoscopic deprivation (Ramamurthy and Blaser, 2018). Moreover, 
studies have shown that the MPD effect in the normal group is smaller 
than that in the adult amblyopic group, which suggests that the 
amblyopic visual cortex has a greater degree of plasticity (Zhou et al., 
2013b). In addition, researchers investigated the cumulative effects of 
MPD on adults and old children with amblyopia and observed a long-
term improvement in visual functions (Zhou et  al., 2019). The 
researchers even recommended MPD as a conventional treatment for 
amblyopia. Given that MPD is not only low-cost but also convenient 
to operate, here, we  paid attention to the effect of MPD on 
visual function.

Technically speaking, monocular deprivation can be considered a 
form of low-contrast adaptation or contrast deprivation for one eye. 
The impact of monocular deprivation can be viewed as a unique type 
of contrast adaptation, where the average contrast level diminishes 
close to zero (in the case of a translucent patch) or reaches zero (in the 
case of an opaque patch) in the affected eye. However, one recent 
review demonstrated that contrast adaptation is fundamentally a 
between-eye effect, whereas monocular deprivation is fundamentally 
a within-eye effect (Hess and Hyun Min, 2023). Their underlying 
neural mechanisms are expected to differ. For examples, following 
low-contrast adaptation, both eyes benefit, although the adapted eye 
experiences a greater advantage (Kwon et  al., 2009). In contrast, 
monocular deprivation enhances the effectiveness of the deprived eye, 
while diminishing the effectiveness of the other eye (Zhou et  al., 
2013a). The changes after contrast deprivation is orientationally tuned 
(Zhang et al., 2009), while monocular deprivation is not (Zhou et al., 
2014; Wang et al., 2017). Furthermore, the effect of the duration of 
adaptation seems to be uniquely different between contrast adaptation 
and monocular deprivation (Min et al., 2022).

The measure of CS has fundamental implication for visual 
sciences, as it can be used to distinguish between visible and invisible 
objects, i.e., defines the threshold (Pelli and Bex, 2013). Many studies 
concerning the retina, glaucoma, and neuro-ophthalmology have 
shown that CS deficits were evident even when individuals’ 
performance on visual acuity tests appeared normal (Jindra and 
Zemon, 1989; Woods and Wood, 1995; Pelli and Bex, 2013). Thus, 
there is no denying that the CS measure is a better predictor of 
functional vision than visual acuity in clinical applications. In 
reviewing previous studies, the measurement of CS was rarely used for 
evaluating the MPD effects. Specifically, Zhou et al. measured the 
effect of MPD on the monocular contrast threshold (Zhou et  al., 
2013b). Nevertheless, the MPD effect was investigated at only one 
spatial frequency (i.e., 0.3 cpd), and only two subjects were involved, 
so the results lacked generalization. The contrast sensitivity function 
(CSF) indicates sensitivity (1/threshold) as a function of spatial 
frequency, and it allows a comprehensive characterization of human 
vision. Therefore, it is necessary to systematically investigate the effect 

of MPD on CS over a broad range of spatial frequencies. However, a 
long testing duration is required to measure the whole CSF by 
traditional methods, e.g., 3 down/1 up staircases, and the peak of 
short-term MPD effects lasts only approximately 10 min (Zhou et al., 
2013a, 2014; Lunghi et al., 2015). Using the constant stimuli method, 
Zhou et al. (2017) investigated the effect of MPD on the contrast 
threshold for achromatic and chromatic stimuli, with each 
measurement requiring 15 min and conducted at a single spatial 
frequency (Zhou et al., 2017). Recently, Chen et al. (2023) reported 
that internal neural states can affect the short-term impact of MPD on 
contrast threshold at 2 cycles per degree (cpd) (Chen et al., 2023). 
However, it should be noted that the adjustment method in this study 
may lead to an overestimation of the threshold by the subjects. 
Fortunately, Lesmes et al. proposed the quick CSF (qCSF) algorithm 
for accurately and precisely estimating spatial CSF (Lesmes et al., 
2010). This algorithm immensely improves the measurement 
efficiency by combining Bayesian adaptive inference with a trial-to-
trial information gain strategy, allowing us to measure the effect of 
MPD on the CSF during its peak period. Thus, the first aim of the 
current study was to investigate the effect of MPD on monocular CSF 
by taking advantage of the qCSF algorithm.

The perceptual template model (PTM) is an ideal tool for 
characterizing the psychophysical mechanism of visual function 
alteration. In the context of the PTM, there are two types of internal 
noise that can affect sensory processing: internal additive noise and 
internal multiplicative noise. Internal additive noise refers to a 
source of variability that adds an independent random component 
to the neural activity representing sensory stimuli. In contrast, 
internal multiplicative noise refers to a source of variability that 
scales the neural activity representing sensory stimuli. Rather than 
adding a constant value to the response, this noise multiplies the 
response by a scaling factor that varies randomly over time. The key 
difference between internal additive noise and internal 
multiplicative noise lies in how they affect information processing 
in the brain. Additive noise has the effect of reducing the signal-to-
noise ratio of sensory responses, making it more difficult to 
distinguish between different stimuli. Multiplicative noise, on the 
other hand, changes the shape of the response distribution, making 
it more skewed and elongated. This can have important effects on 
the perceived similarity of stimuli, the tuning of individual neurons, 
and the coding efficiency of neural populations (Lu and Dosher, 
1999; Pelli et al., 2006; Rhodes and Vargas, 2014). In the context of 
PTM, external noise images are added to the signal, requiring 
observers to eliminate the interference caused by these external 
noise images. Improved observers’ performance through MPD may 
lead to the reduction of internal additive noise, optimization of 
perceptual template for improved external noise exclusion, or a 
decrease in internal multiplicative noise (in accordance with 
Weber’s law) (Dosher and Lu, 1998).

By varying different external noise levels (mask images) and 
measuring the corresponding CSF, researchers have explored the 
mechanisms of system changes after perceptual learning (Dosher and 
Lu, 1998; Bower and Andersen, 2012; Zhang et al., 2018), long-term 
action video games playing (Bejjanki et  al., 2014), and attention 
modulation (Lu and Dosher, 1998; Dosher and Lu, 2000). Thus, the 
second aim of the current study was to quantify the psychophysical 
mechanisms underlying MPD-induced CS improvement using the 
external noise method and PTM approach.

https://doi.org/10.3389/fnins.2023.1155034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1155034

Frontiers in Neuroscience 03 frontiersin.org

To achieve the above objectives, the qCSF procedure was adopted 
in the current study to evaluate the short-term MPD effects on 
monocular visual function. Specifically, the following two assessments 
were performed. First, we  measured CSF twice with a grating 
detection task before and immediately after MPD to verify whether 
the CS of the deprived eye increased and to determine how CS 
improvement was modulated by spatial frequency and the external 
noise level. Second, we examined the psychophysical mechanisms 
underlying MPD-induced CS enhancement.

Methods

Subjects

A priori power analysis was conducted with G*Power 3.1.9.7 to 
determine the required sample size (Faul et al., 2007). We set the effect 
size (η2) of the deprivation effect as 0.251 according to a previous study 
(Ramamurthy and Blaser, 2021). It showed that at least seven subjects 
were needed to obtain a power of 0.8. Therefore, we recruited nine 
undergraduate students aged 19–23 with normal or well-corrected 
(≥20/20) vision. Prior to participating in the experiment, each subject 
underwent the hole-in-the-hand test to determine which eye was the 
dominant eye. All subjects were not aware of this study’s purpose and 
expressed their informed consent before participating in the 
experiment. The Ethical Review Committee of Hebei Normal 
University authorized all procedures, which were carried out in 
compliance with the Declaration of Helsinki.

Apparatus

The stimuli were displayed on a luminance-calibrated cathode-ray 
tube (CRT) monitor (brand Dell; resolution 1,280 × 1,024; fresh rate 
85 Hz). The Psychophysics Toolbox in MATLAB was used to operate 
the monitor (Pelli, 1997). The subjects rested their heads on a chin rest 
and sat comfortably at a distance of 171 cm from the screen. The 
background brightness of the stimuli was set to 41.6 cd/m2. Except for 
the test phase, the subjects wore an apparatus made by modifying 
goggles. To produce the MPD effect, a translucent plastic material was 
attached to the side of the goggles. It allowed light to reach the retina 
(attenuation 15%), but no pattern information (Lunghi et al., 2011). 
The middle of the goggles was sealed with clay to isolate any residual 
pattern information.

Stimuli

In the qCSF test, vertical gratings were exhibited in the central 
visual field as targets. The spatial frequencies of gratings varied at ten 
levels (0.5, 0.67, 1, 1.33, 2, 2.67, 4, 5.33, 8, and 16 cpd). Noise images 
were used for interference target detection and generated from a 
uniform normal distribution [μ = 0 and σ∈ = 0.24]. The cycle number 
of gratings was constant (n = 3); thus, there was a high spatial 
frequency along with a small size. The noise image is a type of 
“external noise” in the context of visual perception or psychophysics 
(Dosher and Lu, 1998; Lu and Dosher, 1998; Dosher and Lu, 2000; Xu 
et al., 2006; Bower and Andersen, 2012; Zhang et al., 2018). The sizes 

of the gratings and noise images were identical, varying between ten 
sizes (576, 432, 288, 216, 144, 108, 72, 54, 36, and 18 pixels). In each 
trial, the size of noise image was identical to the grating and contained 
15 × 15 noise elements (Zhang et al., 2018, 2021). To blur the edge of 
gratings, the gratings were covered by truncated Gaussian envelopes.

Procedure

CSF was assessed by a contrast detection task. There were two 
noise levels (0 and 0.24) and ten spatial frequency conditions. The 
‘noise level × spatial frequency’ condition was randomly mixed 
between trials. Each noise level contained 75 trials. Each trial was 
divided into two intervals by a 500 ms blank screen. With a ‘ding’ 
sound, each interval began with a 100 ms cross, followed by five 
frames of images, each lasting 35.5 ms. In the zero-noise condition, a 
grating was present in the middle frame of one interval. Using a 
gaming controller, subjects were instructed to point out which interval 
contained the grating. Each response was followed by a brief beep. In 
the high-noise condition, the first and last two blanks in each interval 
were replaced by noise images that were randomly generated from the 
same noise distribution. Figure 1 shows an illustration of a typical trial.

Experimental design

It was found that MPD could be a potential method to enhance 
the vision of the lazy eye (non-dominant eye) among patients with 
myopia (Zhou et al., 2019). From an application perspective, although 
depriving the dominant eye may result in a stronger effect (Lunghi 
et  al., 2011), we  intervened on the nondominant eye for a more 
balanced binocular function. The experiment contained three stages 
(Figure 2). In the first stage, subjects needed to complete the qCSF 
test with their nondominant eyes. This stage took approximately 
8 min. In the second stage, subjects’ nondominant eyes were covered 
with translucent plastic material for 150 min. During MPD, subjects 
were allowed to engage in daily activities around the laboratory. In 
the third stage, subjects needed to complete the qCSF test again. 
Before the formal experiment, subjects practiced hundreds of trials 
on the qCSF test to ensure that they could complete the task quickly 
and well.

Data analysis

All variables were computed in log units. The area under the log 
contrast sensitivity function (AULCSF) is a summary measure that 
quantifies the overall sensitivity across a range of spatial frequencies 
and higher values indicate greater overall sensitivity. We used the 
trapezoidal rule, which involves breaking the log CSF curve into 
trapezoids and calculating their areas (Koop et al., 1996; Zhang et al., 
2022; Guo et al., 2023). It is worth noting that spatial frequency was 
computed in log2 units.

The PTM model regards the observer as a system and describes 
the link between the perceptual input and output and the decision-
making process. The model defines subjects’ performance as four 
parts: nonlinear transfer, perceptual template gain, internal additive 
noise and internal multiplicative noise (Dosher and Lu, 1998, 1999; Lu 
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and Dosher, 1998). Subjects’ performance was evaluated by Eq. 1 in 
the PTM:
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where d′ is defined as subject performance; Next expresses the 
external noise contrast; Nmul and Nadd represent internal multiplicative 
and additive noise, respectively; γ presents the system’s nonlinearity; 
β denotes the gain of the perceptual template; and c signifies the 
contrast threshold. We placed Af, Am, and Aa before Next, Nmul, and Nadd, 
respectively, to simulate the impact of MPD on CS (see Eq. 2). Af 
(0 < Af≤ 1 in linear or Af≤0 in log units) signifies the enhancement of 
external noise exclusion capability, Am (0 < Am≤ 1 in linear or Am≤0 in 
log units) signifies the attenuation of multiplicative noise, and Aa 
(0 < Aa≤ 1 in linear or Aa≤0 in log units) signifies the amplification of 
both signal and noise.
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We can solve Eq. 2 with a given performance level d′ to represent 
contrast threshold cτ as a function of Next in log form:
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where cτ indicates the predicted contrast threshold.
Based on the literature, if the slope of psychometric functions was 

unchanged after a treatment (e.g., perceptual learning, Xu et al., 2006; 
Zhang et al., 2018), the multiplicative noise was constant. In this case, 
Am is removed from Eq. 3. Thus, a slope check should be performed 
before fitting the PTM to the data. A previous study found that Nadd 

FIGURE 1

Illustration of a typical trial in the qCSF procedure under zero- (right) and high-(left) noise conditions.

FIGURE 2

Schematic diagram of the experimental procedure (for subjects with the right eye as the dominant eye).
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and β varied with spatial frequency, but Nmul and γ did not (Chen 
et al., 2014).

To choose the best model, we computed the goodness of fit (r2, see 
Eq. 4) for each nested model:
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where yi and yi


 present the original and predicted values (CS in 
log10 unit), respectively, and the average of yi is denoted by y .The 
best-fitting model refers to the model whose r2 was statistically 
superior to those of any reduced model but not significantly inferior 
to the full model (Huang et al., 2010; Zhang et al., 2018):
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where df1 = kfull − kreduced, df2  = N − kfull, N, kfull, kreduced are the 
number of data points, the numbers of parameters of the full and 
reduced models, respectively.

Results

We measured the CSF of deprived eyes before and after MPD for 
each participant (Figure 3A). A 2 × 2 × 10 repeated-measures ANOVA 
was conducted to evaluate log CS with the external noise level (zero 
vs. high), deprivation stage (before vs. after), and log spatial frequency 
(from 0.5 to 16 cpd) as independent variables. The results showed a 
significant main effect of noise level (F (1, 8) = 50.793, p < 0.001) and 
spatial frequency (F (9, 72) = 94.486, p < 0.001) but only a marginally 
significant main effect of deprivation stage (F (1, 8) = 4.858, p = 0.059). 
Furthermore, there were significant interactions between noise level 
and deprivation stage (F (1, 8) = 5.744, p = 0.043) and between noise 
level and spatial frequency (F (9, 72) = 122.368, p < 0.001) but not 
between deprivation stage and spatial frequency (F (9, 72) = 0.983, 
p = 0.461). The interaction among noise level, deprivation stage, and 
spatial frequency was not significant (F (9,72) = 1.315, p = 0.244). 
Further least significant difference (LSD) analysis showed that in zero 
noise, the CS after MPD was significantly higher than that before 
MPD (p = 0.048), but in high noise, the CS was comparable before and 
after MPD (p = 0.729). Above all, these results implied that MPD 
boosted CS in the deprived eye at all spatial frequencies.

We conducted a Pearson correlation analysis on log spatial 
frequency and log CS improvement at the zero-noise level. The results 
showed that the two factors were significantly correlated with each 
other (r = 0.810, p = 0.004), indicating that high spatial frequency 
produces larger CS improvement. It is worth to note that the estimated 
threshold at 16 cpd before MPD was close to 1, which may 
underestimate the CS improvement. However, even after we drop this 
point, the correlation was still strong (r = 0.925, p < 0.001). Thus, our 
conclusion is reliable.

We estimated the area under the log CSF (AULCSF) (Figure 3B) 
to index CS over all spatial frequencies (Ramamurthy and Blaser, 
2018, 2021; Yan et al., 2020; Zhang et al., 2021). A repeated-measures 
ANOVA on AULCSF with external noise level (zero vs. high) and 

deprivation stage (before vs. after) as within-subject factors showed a 
significant main effect of noise level (F (1, 8) = 43.008, p < 0.001) 
instead of deprivation stage (F (1, 8) = 4.852, p = 0.059). There was a 
significant interaction between noise level and deprivation stage (F (1, 
8) = 6.548, p = 0.034). At the zero-noise level, the AULCSF after MPD 
was higher than that before MPD (7.158 ± 0.933 vs. 5.480 ± 0.338, 
mean ± SE, p = 0.044) in the LSD test. However, at the high-noise level, 
AULCSF before and after MPD were comparable (2.401 ± 0.289 vs. 
2.349 ± 0.321, p = 0.711). These results further confirmed the positive 
effect of MPD on CS.

To investigate the mechanisms underlying the increase in CS, data 
from all subjects were averaged (geometric mean) prior to fitting them 
with the PTM. The paired-sample t-test showed no significant 
difference in the slopes of psychometric functions before and after 
MPD (t (8) = 0.154, p = 0.881, see details in Supplementary material). 
That is, the internal multiplicative noise remained constant after MPD, 
and we only set Aa and Af free. There were four possible models: both 
Aa and Af were changed by MPD (M0), and this model contains 42 
parameters, including 10 Nadd, 10 Aa, 10 β, 10Af, 1 Nmul, and 1 γ; only 
Aa was changed by MPD (M1), and this model contains 32 parameters, 
including 10 Nadd, 10 Aa, 10 β, 1 Nmul, and 1 γ; only Af was changed by 
MPD (M2), and this model contains 32 parameters, including 10 Nadd, 
10 β, 10 Af, 1 Nmul, and 1 γ; and both Aa and Af were constant (M3), 
and this model contains 22 parameters, including 10 Nadd, 10 β, 1 Nmul, 
and 1 γ. The r2 of these four models was 98.53, 98.53, 73.63 and 
72.88%, respectively. The r2 values of M0 and M1 were significantly 
higher than those of M2 and M3 (all p < 0.05), and there was no 
significant difference between M0 and M1 or between M2 and M3 (all 
p > 0.05). Owing to fewer parameters in M1 than in M0, we selected 
M1 as the best-fitting model for further analysis. Average across all 
spatial frequencies, the mean of log Aa in M1, was −0.639 ± 0.053 
(Figure 4). Because Aa is the coefficient of internal additive noise, our 
results indicated that decreased internal additive noise contributes to 
CS increases after MPD.

In addition, we conducted a Pearson correlation analysis on log 
spatial frequency and log Aa. The results showed that the two factors 
were significantly correlated with each other (r = −0.787, p = 0.007), 
indicating that internal additive noise was decreased more at high 
spatial frequencies after MPD. We also reexamined it after dropping 
the data at 16 cpd, and found that the correlation remained strong 
(r = −0.922, p < 0.001).

Discussion

Our study systematically investigated the effect of 150 min MPD 
on CSF and further determined the corresponding mechanisms with 
the PTM. Consistent with previous results, CS gain was observed 
(Zhou et  al., 2013a). However, we  found that the CS gain simply 
occurred when external noise was absent and was spatial frequency 
dependent. The PTM analysis revealed that the decrease in internal 
additive noise underlies the MPD-induced CS improvement with a 
larger decrease at high spatial frequencies.

To date, many studies have examined MPD-induced visual 
function gain, but the current experiment still offers important 
innovation. First, we  measured the CSF changes before and after 
deprivation using the qCSF method, which has high accuracy, 
efficiency and test–retest reliability (Hou et al., 2010; Kim et al., 2018). 
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Traditional CSF measurements over 5–10 spatial frequencies require 
approximately 500–1,000 trials to have reasonable precision (Harvey, 
1986), which is time-consuming. Notably, the peak effect of MPD may 
occur in the first 10 min after patch removal (Lunghi et al., 2011, 2013; 
Zhou et  al., 2013a,b). Thus, the qCSF procedure can capture the 
maximum power of MPD-induced CS improvement. In addition, the 
MPD effect can be evaluated at a wide range of spatial frequencies (as 

well as AULCSF) rather than a single spatial frequency in previous 
studies (Zhou et al., 2013a). A recent study involving 18 patients with 
amblyopia (Zhou et  al., 2019) suggested that a two-hour daily 
monocular deprivation for up to 2 months can help patients recover 
their binocular visual functions and visual acuity in the amblyopic eye. 
However, the indexes the authors used to assess visual recovery were 
only for suprathreshold stimuli. Therefore, future studies may apply 

FIGURE 3

Average CSF (A) and AULCSF (B) at zero and high noise levels. The black and red colors denote the data before and after MPD, respectively. The error 
bars represent the standard error.

FIGURE 4

Aa, Af, Nadd, Nmul, β, and γ as a function of spatial frequencies from the best-fitting model (M1).

https://doi.org/10.3389/fnins.2023.1155034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1155034

Frontiers in Neuroscience 07 frontiersin.org

the qCSF method to assess the cumulative improvement in near-
threshold patients caused by 2 h/day of MPD for 2 months. In our 
study, the CS improvement was more profound at high spatial 
frequencies, which is good news for clinical implementation. Since the 
defects of amblyopia on CSF mainly focus on high spatial frequencies, 
MPD treatment is helpful.

In our study, MPD failed to increase the CS when external noise 
was present, indicating that the MPD effect was not universal. With 
the help of the PTM, we explored the psychophysical mechanism of 
CS improvement from a modeling point of view. First, decreased 
internal additive noise accounted for MPD-induced CS improvement. 
Internal additive noise refers to the random fluctuations in neural 
activity within the visual system that can affect the processing of visual 
information. It is considered a source of noise that can degrade the 
quality of visual perception. MPD improves the signal-to-noise ratio 
of sensory responses, making it easier to detect which interval contain 
a grating. Neurons in the primary visual cortex are specifically tuned 
to respond to variations in contrast. Thus, MPD improved CS by 
reducing the random fluctuations in neural activity in primary visual 
cortex. In addition, our results may be explained by the changes in 
GABAergic inhibition in the visual cortex. It has been demonstrated 
that GABA and its agonists improve visual cortical function by 
increasing the signal-to-noise ratio (Leventhal et al., 2003). Lunghi 
et  al. (2015) found that GABA concentrations measured during 
monocular stimulation correlated with deprived eye dominance after 
MPD (Lunghi et al., 2015). Second, the decrease in internal additive 
noise was more profound at high spatial frequencies, which suggested 
that the MPD effect was modulated by spatial frequency. In the future, 
studies to integrate the psychophysical and physiological mechanisms 
of MPD are necessary.

The current study utilizes external noise paradigms to 
characterize changes in visual performance (Xu et al., 2006; Lu and 
Dosher, 2008; Bower and Andersen, 2012; Zhang et al., 2018, 2022; 
Guo et al., 2023). It operates under the assumption of noise-invariant 
processing, where the processing properties remain unchanged in the 
presence and absence of external noise. Previous studies have 
reported that this assumption does not hold when the noise is 
spatiotemporally localized to the target, but it remains valid when the 
noise is spatiotemporally extended (Allard and Cavanagh, 2011; 
Allard et al., 2013; Allard and Faubert, 2013, 2014a,b). However, these 
studies employed motion discrimination, relied on a peripheral 
phenomenon with limited understanding, or focused on specific 
noise types. A recent study utilizing a standard contrast detection 
task in white noise demonstrated that temporally extended external 
noise aligns the properties with internal noise, indicating the absence 
of processing changes (Silvestre et al., 2017). In the current study, two 
key methodological choices were made. First, we  presented the 
external noise 70 msec before the target and made it appear larger 
than the target, even though it did not follow the typical 
spatiotemporal extension. Second, we  explicitly instructed the 
subjects to adopt a detection processing strategy instead of a 
recognition strategy. Based on these choices, it can be assumed that 
the observer did not utilize the temporal window information of the 
noise, thereby supporting the validity of the assumption of noise-
invariant processing.

To ensure that CSF measurement was conducted during the peak 
period of the MPD effect, we exclusively considered the monocular 

task. Future studies should aim to investigate the systematic changes 
in binocular contrast sensitivity and assess the generalizability of these 
effects to other deprivation methods.
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