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Mutual information measure of 
visual perception based on noisy 
spiking neural networks
Ziheng Xu , Yajie Zhai  and Yanmei Kang *

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China

Note that images of low-illumination are weak aperiodic signals, while mutual 
information can be  used as an effective measure for the shared information 
between the input stimulus and the output response of nonlinear systems, thus it 
is possible to develop novel visual perception algorithm based on the principle of 
aperiodic stochastic resonance within the frame of information theory. To confirm 
this, we  reveal this phenomenon using the integrate-and-fire neural networks 
of neurons with noisy binary random signal as input first. And then, we propose 
an improved visual perception algorithm with the image mutual information as 
assessment index. The numerical experiences show that the target image can 
be picked up with more easiness by the maximal mutual information than by the 
minimum of natural image quality evaluation (NIQE), which is one of the most 
frequently used indexes. Moreover, the advantage of choosing quantile as spike 
threshold has also been confirmed. The improvement of this research should 
provide large convenience for potential applications including video tracking in 
environments of low illumination.
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1. Introduction

Stochastic resonance, initially proposed by European physicists in explaining the climatic 
switches (Benzi et al., 1981), is an essentially cooperative effect through which an external weak 
signal can be maximally amplified at a suitable amount of noise. This phenomenon is hard to 
be  reproduced in climatic research but can be  confirmed by various artificially designed 
experiments including crayfish (Douglass et al., 1993), shark (Braun et al., 1994), rat (Collins 
et al., 1996), cricket (Levin and Miller, 1996), optical material (Dylov and Fleischer, 2010) and 
human (Winterer et al., 1999; Zeng et al., 2000). The experiments successfully revealed that noise 
can play a potential but positive role in neural information processing, and further encouraged 
extensive theoretical progress, such as noise enhanced weak signal detection (Kang et al., 2005; 
Sun et  al., 2019; Kang et  al., 2022), noise facilitated information coding (Du et  al., 2010; 
Nakamura and Tateno, 2019; Guan et al., 2021) and noise enhanced chaos control (Lei et al., 
2017). Nowadays how to utilize noise for developing novel brain-like algorithms, such as visual 
perception (Simonotto et al., 1997; Fu et al., 2020; Xu et al., 2022) and epileptic diagnosis 
preprocessing (Shi et al., 2023), has attracted more and more interest in the current age of 
artificial intelligence.

Exploring the neural mechanism and algorithm design of visual perception is a long-standing 
topic in the field of neuroscience (Shapley and Hawken, 2002; Chen and Gong, 2019; Dijkstra et al., 
2019). The visual perception in a general sense refers to the process of organizing, identifying, and 
interpreting visual information in environmental awareness and understanding (Yang et al., 2021), 
while in a narrow sense it means the enhancement of image contrast (Rafael and Woods, 2002). 
There are scenarios where pictures of high contrast are hard to be  captured in a dark or 
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low-illumination environment, such as in the cosmic exploration, in the 
battle front and in the deep-sea exploration. The traditional techniques 
(Land, 1997) for image enhancement are based on Retinex theory, 
where actual color sensations are assumed related to the intrinsic 
reflectance of objects. It is generally regarded that there are mainly two 
disadvantages of Single-Scale Retinex algorithm: one is that halo would 
be  prone to occur in the transition field between strong light and 
shadow, and the other is that the image would be relatively dark after 
enhancement, so the Multi-scale Retinex algorithms (Rahman et al., 
2004; Wang et al., 2021) have been proposed. Here, let us skip to assess 
the advantage or disadvantage of the improved variants, but choose to 
develop a different method based on different physical principles, 
namely stochastic resonance and spiking neuron models. In fact, the 
method proposed in this paper is an important development of our 
previous stochastic resonance-based spiking neural network methods 
in measure index, which is critical for identifying a target image.

How to effectively evaluate the perceptual quality of visual contents, 
such as image, is actually a long-standing issue. There are generally two 
categories of assessment indexes: the full-reference evaluation metric via 
the no-reference evaluation metric. The former category claims that the 
quality of the distorted image could be measured through comparing with 
a naturalistic reference image, including peak signal to noise ratio (Hore 
and Ziou, 2010) and structural similarity (Wang et al., 2004). The latter 
category covers perceptual quality metric (PQM) (Wang et al., 2002) and 
natural image quality evaluation (NIQE) (Mittal et al., 2013). As is known, 
PQM mainly concerns the blurring and blocking effect of a JPEG format 
image, while NIQE evaluates an image by calculating its distance from a 
fitted high-quality image. Nevertheless, when the both indices are applied 
to stochastic-resonance based visual perception algorithm design, it was 
found that the dependence of PQM on noise intensity tends to be too flat 
to pick out the best enhanced image (Fu et al., 2020), while the evolution 
of NIQE via noise intensity tends to have strong fluctuations due to the 
unpredictability in Gaussian distribution fitting and perturbation of 
external noise. It is these insufficiencies that motivate us to try a different 
measure from the viewpoint of information theory.

Our inspiration comes from the mutual information measure of 
aperiodic stochastic resonance (Collins et al., 1996; Levin and Miller, 
1996; Patel and Kosko, 2008; Kang et al., 2021). Note that the external 
coherent input to stochastic resonant systems can be  periodic or 
aperiodic, when it is aperiodic, the resonant phenomenon is specifically 
named as aperiodic stochastic resonance. In case of the aperiodic 
stochastic resonance, the quantifying indexes based on the mechanism 
of frequency matching, such as the signal-to-noise ratio and the spectral 
amplification factor, are no longer appropriate, and instead the input–
output mutual information is a suitable choice for describing this 
matching mechanism of shape similarity. Following the investigation of 
aperiodic stochastic resonance (Kang et al., 2021), no matter how weak 
an external aperiodic signal is, it can always be maximally amplified by 
suitable amount of noise. Note that an image stimulus is such a typical 
aperiodic signal, thus the images of low contrast or illumination should 
always be optimally enhanced by an optimal dose of noise. This means 
there exists an optimal noise level at which the mutual information 
between the dark image and the target image can attain its maximum. As 
for whether the measure of mutual information is really a better choice 
for visual perception design, the comparison with NIQE should 
tell everything.

The paper is organized as follows. In Section 2 the phenomenon of 
aperiodic stochastic resonance in spiking neural networks consisting of 
integrate-and-fire neurons are exhibited within the information frame as 

preliminary. In Section 3 an improved visual perception algorithm is 
proposed based on the principle of aperiodic stochastic resonance. When 
applying the algorithm to both grayscale image and color image of low 
contrast, the reliability of the algorithm is verified. Different threshold 
strategies are also compared and the robustness of the mutual information 
measure is disclosed. Conclusions are finally drawn in Section 4.

2. Aperiodic stochastic resonance in 
an integrate-and-fire neural network

To enhance the plausibility of the subsequent visual perception 
algorithm, let us demonstrate here the principle of aperiodic stochastic 
resonance. Without loss of generality, let us continue to consider the 
spiking network consisting of the conductance-based fully connected 
integrate-and-fire neurons (Xu et al., 2022), as shown in Figure 1, with each 
neuron standing for one photoreceptor cell in the low illumination 
environment. The network is governed by the following Langevin equations
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where V ti ( ) is the membrane potential of the ith neuron at time t, Cm 
is the membrane capacitance, gl  is a leaky conductance, VL is a leaky 

FIGURE 1

The network topology of the present study with each blue circle 
standing for one node neuron.
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voltage, I tsyn i, ( ) is the synaptic current at time t from other neurons 
in the network, and I t S t D t i Next i i, ,( ) = ( ) + ( ) ≤ ≤2 1ξ  denotes an 
external injected current. In the external current, S t A B( )∈{ },  is a 
binary signal representing an external visual stimuli, with 
P S t A p( ) =( ) =  and P S t B p( ) =( ) = −1  with p∈( )01, , ξi t( )  is 
Gaussian white noise of noise intensity D  
and describing the external fluctuations satisfying 
ξ ξ δ δi j ijt s t s+( ) ( ) = ( )  for 1 ,i j N≤ ≤ . Here, δ ⋅( )  is Dirac 

function δ ⋅( ) while δij  is Dirac notation such that δij =1 if i j=  and 
δij = 0 otherwise. In Eq. (1b), gs is the synaptic conductance, Esyn the 
synaptic reversal potential, wij the synaptic weight between neuron i 
and neuron j, τ  is the synaptic constant, τ s the synaptic delay, t j k,  the 
kth spiking time of the neuron j, and s tj ( )  is the fractions of open 
synaptic channels of the jth neuron at time t. Once the membrane 
potential V ti ( ) reaches the threshold potential Vth from below, a spike 
is emitted and the membrane potential is immediately reset to the 
resting potential Vr  and restarts a time-dependent evolution following 
Eq. (1a) after a short refractory period τ ref . For the sake of simplicity, 
we set τ ref = 0 by ignoring the influence of refractory period.

Note that the train of spikes is the main carrier for neural 
information, thus the output response of the ith neuron and the 
neural network can be, respectively, denoted as
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We remark that the spike train y ti ( ) can be  acquired by Euler-
Maruyama scheme, namely
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Here the superscript n denotes the nth iteration. V V ti
n

i n= ( ) , 
I t S tsig n n( ) = ( ), ∆t t tn n n= −+1  is time step, ∆V V t V ti

n
i n i n= ( ) − ( )+1  

and r Ni
n ∼ ( )01,  is a normal distributed pseudo random number. Note 

that Gaussian white noise is the formal derivative of Wiener process. Since 
the Wiener process is of independent increments, these mutually 
independent pseudo random numbers at each iteration are also 
statistically independent for different iterations.

Note that noise can play a beneficial role in improving neural 
information encoding through the mechanism of stochastic resonance 
(Rizzo, 1997). Particularly, the input–output mutual information is 
suitable for acting as a quantifying metric for aperiodic stochastic 
resonance (Kang et al., 2021). For the sake of completeness, let us explain 
how to calculate the input–output mutual information for the system (1). 
Let I X Y,( ) be the mutual information of discrete random variables X  
and Y  with values in finite sets χ  and γ , then
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are the entropy and the conditional entropy (Cover and Thomas, 
2006; Yarrow et  al., 2012), respectively. We  follow the existing 
procedure (Kang et al., 2021) to calculate the mutual information 
I S t y t( ) ( )( ),  between the binary input S t( ) and the population firing 
output y t( ) . As seen from Eq. (4), I S t y t( ) ( )( ),  is a mathematical 
expectation of the form
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Thus, we can repeat 1,000 trials to get an arithmetic average for an 
improved accuracy based on the law of large number.

Note that the entropy H y t( )( ) quantifies the average uncertainty 
of a random variable y t( ), while the conditional entropy H y t S t( ) ( )( ) 
measures the average uncertainty associated with y t( ) under the 
condition that the outcome of S t( ) are known, thus I S t y t( ) ( )( ), , as a 
measure of the shared information between the binary input and the 
population firing output, can be adopted as metric for the phenomenon 
of aperiodic stochastic resonance. When the input–output mutual 
information of the model (1) has a nonmonotonic dependence on 
noise intensity, it is usually said that the phenomenon of aperiodic 
stochastic resonance occurs (Collins et al., 1996). Particularly, when the 
input–output mutual information is maximized, the output signal 
should have a maximal resemblance in shape with the input signal.

We consider a realistic inhibitory synaptic weight wij = −0.2  
(Rolls et  al., 2008) for 1 ,i j N≤ ≤  to observe aperiodic stochastic 
resonance for both a single neuron and the spiking network. Since the 
binary input is subthreshold (Figure 2A), there is no spike emission 
from the single neuron in the absence of noise (Figure 2B). When small 
amount of noise is injected, the single neuron is activated with the help 
of noise but the resultant output response is obviously different from 
the binary input signal in shape (Figure 2C). When the noise intensity 
is increased to a proper level where the input–output mutual 
information attains a peak value (Figure 2G), the resemblance between 
the output response and the input binary signal is greatly improved, as 
shown in Figure 2D. Note that the perception function of the brain is 
generally implemented at population level, while the effect of stochastic 
resonance can be enhanced by uncoupled array or coupled ensemble 
(Nakamura and Tateno, 2019; Sun et  al., 2019). Thus, in order to 
simulate this synergetic effect of system size on the aperiodic stochastic 
resonance, we also show the shape similarity by raster plots for N = 5 
(Figure 2E) and N =10 (Figure 2F). From these pictures it is clear that 
the shape similarity significantly increases as the network size grows, 
thus a larger network should be necessary for the subsequent visual 
perception design. We emphasize that all the shape similarities are 
selected when the mutual information of Figures  2D–F reaches 
maximum. This demonstrates that the input–output mutual 
information as function of noise cannot unlimitedly increase, and 
therefore there exists an optimal noise intensity at which the weak 
input signal can be best detected. Additionally, from Figures 2G–I, it is 
clear that the aperiodic stochastic resonance has a strong dependence 
on the spike threshold: the lower the threshold, the prominent the 
resonant effect. This point has an important inspiration: a suitable 
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threshold should be chosen so that an optimally enhanced image can 
be acquired. In fact, the spike threshold in real neurons has certain 
circadian rhythm and self-adaptability, so it can be lower in a dimmer 
environment (Destexhe, 1998; Taillefumier and Magnasco, 2013).

As the last paragraph, let us emphasize that the shape similarity 
measured by the mutual information can be further improved by increasing 
the network size, as shown by Figures 2D–F, but the improvement should 
have limitation following the law of large number. In fact, According to the 
previous investigations, whether the quantifying index is the spectral 
amplification factor (Fu et al., 2020) or the signal to noise ratio (Xu et al., 
2022), it cannot be improved infinitely; on the contrary, the limit level can 
be  achieved with a network size 50N ≤ for the aperiodic binary  
S t( ). Noting the image signal is more complex than the binary input, 
we choose N = 300 in the subsequent algorithm implementation so that 
the benefit of network size can be maximally utilized. This should imply 
the following fact. Although there are over 100 million photoreception 
neurons for one normal person (Rieke and Baylor, 1998), not all of them 
participate in the perception task: the more complex the stimuli are, the 
more neurons are involved.

3. Visual perception algorithm and 
mutual information measure

Noise is not only ubiquitous in nervous systems but can play a 
positive role in neural information processing (Rizzo, 1997). As 
illustrated by the last section, noise can potentially assist human 
being in detecting weak aperiodic stimuli. Note that an image of low 

contrast is such a typical stimulus, thus some biologically plausible 
visual perception algorithms (Fu et al., 2020; Xu et al., 2022) have 
been proposed by combining the basic biophysical process behind 
visual perception, which includes three stages of encoding, decoding 
and integrating, with the principle of aperiodic stochastic resonance. 
Nevertheless, as mentioned in the introduction section, one of the 
most commonly used assessment indices, namely NIQE (Mittal et al., 
2013; Xu et al., 2022), always gives rise to strong fluctuations as noise 
intensity increases. To overcome this insufficiency in the existing 
algorithms, we aim to present an improved algorithm within the 
frame of information theory.

3.1. Grayscale image enhancement

When light enters the eye, the photoreceptors in the retina 
transform the optical signal into an electrical signal through an 
inherent encoding process participated by rod cells. Note that there are 
two kinds of photoreceptors in the retina: rods and cones. The cones in 
charge of color are active to bright light while the rods in charge of 
profile are more sensitive to dim light. In the low-illumination 
environment, the rhodopsin in rod cells can decompose itself under 
the light stimulation so that the light signals can be transferred into 
electrical signals (Hartong et al., 2006). As a result, human can discern 
to certain extent the profile of hidden objects in dim surroundings. 
Thus, we use the spiking neural network (1) to simulate the rod cells 
and their feedback interaction (Xu et al., 2022), while the aperiodic 
binary input can be replaced by the weak image stimulus.

FIGURE 2

The quantized output and the input–output mutual information are displayed. The random binary signal is displayed in panel (A) with A =0.1, B =0 and 
p = 0.7. For given Vth = 0.2, as the panel (B) shows there is no 1 in the quantized output for the single neuron when the noise intensity is vanishing since 
the input signal is subthreshold. As the noise intensity is increased, the quantized output becomes more visible and clearly, there is more input–output 
similarly for a single neuron with panel (D) D = 0.006 than the other level (C) D = 0.001. The resemblance becomes evident when (E) N = 5 and (F) N = 
10 for the optimal noise intensity, which is the same for different network size under the identical spike threshold. The mono-peak curves of mutual 
information I (S(t),y(t)) via noise intensity with thresholds: (G) Vth = 0.2, (H) Vth = 0.3 and (I) Vth = 0.4 signify the occurrence of aperiodic stochastic 
resonance for different size’ network. The other parameters are fixed as Vre = 0, gl = gs = 1, Cm = 1, Esyn = 0, τs = 1, τd = 0.5 and T = 500.
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In the encoding state, let Gray be an M-dimensional grayscale 
matrix of a white-black image, with each pixel representing an 
illuminance value. Note that all the rods in the network are assumed 
to focus on the same image stimuli, thus the illuminance matrix can 
be received by every rod. Let V ti

m n, ( ) represents the time-dependent 
potential response of the ith rod cell when it receives the pixel 
Gray m n,( )  with 1 , ,m n M≤ ≤  then the spiking neural network (1) 
can be rewritten into

  

C d
dt
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where ξi
m n t, ( )  is Gaussian white noise satisfying 

ξ ξ δ δi
m n

j
m n

ijt s t s, ,+( ) ( ) = ( )  for i j N, , , ,= …1 2 . Once V ti
m n, ( )  

reaches the spike threshold Vth from below, an action potential is 
generated by neuron i emits and then the membrane potential is 
immediately reset to the resting potential Vr , from where a new cycle 
of evolution restarts. In the encoding phase, Index m ni , ,( )∈{ }01 , the 
(m, n) element of the spike matrix Indexi is adopted to mark whether 
the ith neuron has generated spikes during given time span or not. 
That is, Index m ni ,( ) =1 if there is spike generation and 
Index m ni ,( ) = 0  otherwise. Here, the time span T  is taken as one 
millisecond to approximate the time cost by a gaze from a normal 
person and specifically, we emphasize that the grayscale image is taken 
as a continuous input during the whole time span. That is, every rod 
cell receives the same constant grayscale matrix. We emphasize that 
the encoding scheme follows from the previous algorithms (Fu et al., 
2020; Xu et al., 2022), which also have certain association with image 
reconstruction algorithms (Roy et al., 2019; Li et al., 2022). Noting that 
there are N  neurons in the network, there should be  N  such 0–1 
counting matrices altogether. With these spike matrices available, 
ganglion cells in the last segment of the retina can then transmit the 
involving information to visual cortex for the next stage (Masland, 
1996). For the sake of simplicity, we fix the neural network parameters 
Cm =1, g gl s= =1, τ s =1, τd = 0 5. , Esyn = 0 , wij = −0 2. , Vre = 0 , 
T =1 and N = 300 but leave Vth and D tunable.

Note both the stage of decoding and the stage of integrating are 
implemented at the visual cortex. Since the binary spike trains are the 
main carrier of neural information (Strong et al., 1996), it is reasonable 
to assume that each encoded spike matrix should be decoded into a 
binary image. Then, the spike matrix Indexi encoded by the ith neuron 
can be decoded as a gray image Pi ic  of element
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With all the decoded binary images available, an integrated grayscale 
image Pic can be obtained by an ensemble average, namely

  
Pi m n

N
Pi m n

i

N
ic , c ,( ) = ( )

=
∑1
1  

(8)

Considering the visual perception process is carried on in noisy 
environment, every binary image Pi ic  is actually a matrix-valued 
random variable. Thus, the treatment in Eq. (8) is somehow similar to 
the effect of large number law, which cancels out the influence of 
occasional factors by taking arithmetic average. In fact, this integration 
treatment has biophysical implication as well. As is known, a single 
visual cortex cell usually does not receive all the signals from 
photoreceptors but only a specifically dominated area (Lecun and 
Bengio, 1995). Thus, integrating over all the decoded binary images 
helps to assure that all the information of the visual content 
is processed.

The purpose of visual perception is to pick out the best enhanced 
image under the help of suitable amount of noise, but the noise 
intensity fixed in the above procedure is generally not optimal. 
Nevertheless, it is possible to capture an optimal value following the 
principle of aperiodic stochastic resonance. Let us measure the 
quality of the enhanced image by the input–output image mutual 
information, namely the mutual information between Gray and Pic
. To this end, the pixels of Gray and Pic are divided into 255 bins of 
unit size: 0 1,[ ], …, 254 255,[ ]; the frequency number of the pixels is 
counted in each bin and then the histograms for Gray and Pic are 
obtained; the joint histogram of Gray and Pic can be acquired in the 
same way. With these histograms to approximate the corresponding 
marginal distribution laws and the corresponding joint distribution 
law, the input–output image mutual information could 
be calculated by
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Then, by examining the nonmonotonic dependence of the image 
mutual information via the noise intensity, one can attain the 
optimal noise intensity, at which the enhanced image is exactly the 
target image of our visual perception algorithm. Note that the 
external noise level of a neural network can be  self-adjusted by 
synaptic weights (Feng et  al., 2006), thus it is also biologically 
plausible to optimize the enhanced image by an optimal 
noise intensity.

Algorithm 1 summarizes the above procedure for visual 
perception, while Figures 3, 4 show the test results. For the test in 
Figure 3, we take 0.5 quantile as the spike threshold (Xu et al., 
2022). The marginal histograms for the original picture 
(Figure  3A) and the target image (Figure  3B) are shown in 
Figures 3D,E, respectively. By comparing Figures 3D,E, it is clear 
that more pixels with relatively low grayscale value have been 
shifted to the area of relatively high grayscale value, which 
explains why the hidden objects such as flowers and visual charts 
can be revealed in the target image. Here, we emphasize that the 
nonmonotonic curve of the image mutual information via noise 
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intensity in Figure  3C signifies the occurrence of aperiodic 
stochastic resonance) and the target image in Figure 3B is picked 
out from the peak value of the mutual information curve. In fact, 
our numerical experience has confirmed that a bit derivation from 
the optimal noise intensity can cause degradation in the quality of 
the enhanced image. The performance of algorithm 1 can be 
further confirmed by a darker original image. As shown in 
Figure  4, the 0.6 quantile is taken as the spike threshold. 
Analogously, by comparing the marginal histograms of the dark 
image (Figure 4A) and the target image (Figure 4B), as shown in 
Figures 4D,E, it is clear to see that the low-value pixels have been 
increased. Therefore, the tower, trees, the building and the 
reflection of the tower become discernable in the target image, 
which corresponds to the peak value of the mutual information 
curve. Note that the distribution of the natural image features is 
close to the generalized Gaussian distribution (Moorthy and 
Bovik, 2010), thus the parameters of the generalized Gaussian 
distribution fitted with the image to be enhanced should have 
certain distance of the parameters fitted with natural images. The 
distance is the so called NIQE, defined by Mittal et al. (2013)

  
NIQE = −( )

+











−( )∑ ∑
−

v v v vT
1 2

1 2

1

1 2
2

 
(10)

where  ν1 and Σ1 are the mean vector and the covariance matrix fitted 
with the natural images, respectively, and ν2, Σ2 are the mean vector and 
the covariance matrix fitted with the images to be enhanced, respectively. 
It is clear that the smaller NIQE, the better the image quality. Therefore 
the minimum of NIQE corresponds to the best enhanced image. As seen 
from noise intensity denoted by the dash line in Figures 3C and 4C, 
although the optimal noise intensities obtained from the two metrics are 
almost the same, the mutual information curves are smoother than the 
NIQE curves. This suggests that the image mutual information is a more 
appropriate metric for assessing the grayscale image quality.

Algorithm 1 Image enhancement for grayscale images

Step1: Input the grayscale image Gray to the integrate and fire 

neuronal network under noise intensity D to get the matrix 

Index i Ni , , ,= …1  which stores the spiking information.

Step2: Transfer Index i Ni , , ,= …1  to grayscale image Pi i Nic , , ,= …1

Step3:

Calculate Pi
N

Pi
i

N
ic c=

=
∑1
1

, mutual information I Pi Grayc,( ) 
and NIQE

Step4: Change D and repeat Step1 to Step 3 until the best enhanced 

image is selected

FIGURE 3

The low illuminance grayscale image in (A) is taken from the internet and the 0.5 quantile is adopted as the spike threshold. The marginal probability 
law of (A) is shown in (D) while the marginal probability law of the best enhanced image (B) selected by mutual information is shown in (E). The joint 
probability law of (A) and (B) are shown in the two-dimensional histogram (F). The quantifying indexes mutual information (blue solid line) and NIQE 
(red solid line) are plotted in (C) where the black dotted line denotes the optimal noise intensity.
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3.2. Color image enhancement

The color image of low-illumination (contrast) has much difference 
from the grayscale images, since several color channels are usually involved 
in given color space. As is known, there are distinct color spaces, such as 
Red-Green-Blue (RGB) space, Hue-Saturation-Value (HSV) space and 
Y-cbcr color space (Smith, 1978; Rafael and Woods, 2002; Benjamin et al., 

2016; Wu et al., 2021), among which the RGB space is suitable for computer 
Graphics, the Y-cbcr space is good at discrimination of luminance and 
chrominance, while the HSV space is in line with the human visual 
perception system. Based on this consideration, we can transfer the signal 
from the RGB space into the HSV space. Since the illumination of a color 
image is overwhelmingly dominated by its value matrix, it is enough to 
enhance the value information for color image perception.

Color image of 

low illumination

Transform to 

HSV space Value L
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Hue

Noisy neuron 1
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FIGURE 5

Schematic diagram of color image enhancement algorithm.

FIGURE 4

The darker grayscale picture in (A) is taken by us and the 0.6 quantile is taken as the spike threshold. The marginal probability law of (A) is shown in 
(D) while the marginal probability law of the best enhanced image (B) picked out by mutual information is shown in (E). The joint probability law of 
(A) and (B) is shown in the two-dimensional histogram (F). The perception assessments mutual information (blue solid line) and NIQE (red solid line) 
are plotted in (C) where the black dotted line denotes the optimal noise intensity.
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Let L be the value matrix. Following the general process of vision 
formation in low illuminance environment, we can adapt Algorithm 
1 with the grayscale matrix Gray replaced by L so that the 
illumination information can be encoded by the rod cells on the 
retina. And then, the encoded spike matrices Indexi  for i N= …1, ,  
can be transmitted to visual cortex and finally integrated into a binary 
image Img . As the value information L is the input image and Img  is 
the output image, we can measure the input–output similarity by the 
image mutual information defined by

  
I Img L P Img L

P Img L
P Img P LImg L

, ,
,( ) = ( ) ( )

( ) ( )








∑

,

log

 
(11)

Here P L( ) and P Img( )  are the marginal distribution laws for the 
original value matrix and the enhanced image which is noise intensity 
dependent, respectively, and P Img L,( ) denotes the joint distribution 
law. Again, these distribution laws can be  approximated by their 
histograms, thus the input–output image mutual information is still easy 
to be obtained. Once the best enhanced value matrix is attained, an 
inverse transform from the HSV space into the RGB space can generate 
a best enhanced color image, which is the target image for color vision 
perception. The main procedure has been summarized in Algorithm 2. 
To enhance the intuitiveness, the flowchart of the algorithm is also 
displayed in Figure 5.

We exhibit two test results with low-contrast color images acquired 
from the internet and the real world in Figures 6 and 7, respectively. For 

the test in Figure 6, the 0.6 quantile is taken as the spike threshold. As 
shown from Figure 6C the nonmonotonic curve of the image mutual 
information via noise intensity again verifies the occurrence of aperiodic 
stochastic resonance) and the target image in Figure 6B is picked out 
from the peak value of the mutual information curve. By comparing the 
marginal histograms Figures 6D,E for the original picture Figure 6A and 
the target image Figure 6B, it is clear that more pixels with relatively low 
illumination value have been shifted to the area of relatively high 
illumination value, which again explains why the hidden objects such as 
a bus and an excavator become exposed in the target image. It is clear 
from Figure 7 that some details of the target image selected by the peak 
value of the mutual information curve become visible, such as the 
characters on the monument. Here, we emphasize that the image is 
indeed enhanced, although most of the pixels of the marginal histogram 
in Figure 7E are still relatively low. The reason behind this observation is 
that most of the pixel values are zero since no color and illuminance 
information can be available from this totally dark environment. Here 
we also would like to emphasize that the principle of stochastic resonance 
is powerful in enhancing weak signal, no matter how weak it is, but the 
weak signal must exist at first. Therefore, we claim that Figure 7B is 
already the best enhanced image and the corresponding noise intensity 
is optimal, as revealed by the perception indexes shown in 
Figure 7C. Finally, from Figures 6,7C we see again that the optimal noise 
intensities obtained from the two metrics are coincident and the mutual 
information curves are smoother than the NIQE curves. This again 
illustrates that the image mutual information is a more appropriate 
metric for assessing the quality of an enhanced color image.

FIGURE 6

The dark color image in (A) is taken from the internet and the 0.6 quantile is used as the spike threshold. The marginal probability law of (A) is shown in 
(D) while the marginal probability law of best enhanced color image (B) selected by mutual information is shown in (E). The joint probability law of 
(A) and (B) are shown in the two-dimensional histogram (F). The quantifying indexes mutual information (blue solid line) and NIQE (red solid line) are 
plotted in (C) where the black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information.
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Algorithm 2 Image enhancement for color images

Step1: Transform the image from RGB space to HSV space.

Step2: Input the value matrix L to the integrate and fire neural 

network under noise intensity D to get the matrix 

Index i Ni , , ,= …1  which stores the spiking information.

Step3: Transfer Index i Ni , , ,= …1  to grayscale image Img i Ni , , ,= …1 .

Step4:

Calculate Img
N

Img
i

N
i=

=
∑1

1
, mutual information I Img L,( ) and 

NIQE.

Step5: Change D and repeat Step2 to Step 4 until the best enhanced 

value matrix is selected.

Step6: Combine the best enhanced value matrix with hue matrix and 

saturation matrix and transform it from HSV space into the 

RGB space.

3.3. Effect of threshold strategy

As shown in Figure 2, the spike threshold has obvious influence 
on the aperiodic stochastic resonant effect. In fact, since the spike 
threshold always has important impact on neural activity and coding 
performance (Yu et al., 2005; Fu et al., 2020; Xu et al., 2022), it is also 
a critical parameter for the spiking neural network based visual 
perception. In the previous subsections, we choose some quantile of 

the relevant histogram of the original images as the spike threshold, 
and the results have showed that the metric of mutual information is 
more capable of picking out the best enhanced image. To strengthen 
this point, let us take a comparative perspective. To this end, let us 
attempt another threshold strategy (Reinhard et al., 2002), which takes 
a log-average luminance as threshold, namely
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for grayscale images and
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for color images. We remark that in Eqs. (12) and (13), a small positive 
number δ  is introduced to avoid vanishing antilogarithm. In 
Figures 8, 9 we show the test results with the best quantile threshold 
and the log-average luminance threshold with different delta value.

For the grayscale image case, Figure 8 shows the variation of the 
target image and the assessment index under different spike 
thresholds. As seen from Figures 8A–C, the threshold change does not 
have much impact on the enhanced image, but it tends to be difficult 
for us to select the optimal noise intensity from the fluctuating curve 

FIGURE 7

The low illuminance color image in (A) is taken by us and the 0.9 quintile is the spike threshold. The marginal probability law of (A) is shown in (D) while 
the marginal probability law of best enhanced color image (B) selected by mutual information is shown in (E). The joint probability law of (A) and (B) are 
shown in the two-dimensional histogram (F). The quantifying indexes mutual information (blue solid line) and NIQE (red solid line) are plotted in 
(C) where the black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information.
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FIGURE 8

The best enhanced grayscale images selected by mutual information with spike thresholds (A) 0.5 quantile, (B) 𝛿 = 0.001 and (C) 𝛿 = 0.01 for Eq. (12). 
Their quantifying indexes which black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information are plotted in 
panels (D–F).

FIGURE 9

The best enhanced color images selected by mutual information with spike thresholds (A) 0.6 quantile, (B) 𝛿 = 0.001 and (C) 𝛿 = 0.01 for Eq. (13). Their 
quantifying indexes which black dotted line denotes the optimal noise intensity corresponding to the maximal mutual information are plotted in panels (D–F).
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of NIQE. By contrast, the curve of the image mutual information is 
smooth and sharp, as shown in Figures  8D–F, thus the mutual 
information metric is better for us to pick out the optimal noise 
intensity and then find the target image. Here, it is worthy to 
emphasize that the curve of the image mutual information is single-
peaked, but the curve of NIQE has multiple local minimums. By 
checking the quality of the enhanced images at all the local optimal 
noise intensity, it is found that the enhanced image at the local optimal 
noise intensity, which is also the maximum point of the image mutual 
information, is the best enhanced image. This clearly demonstrates 
that the mutual information measure has advantage over the NIQE 
index in picking out the target image in the present visual perception 
research. That exactly manifests why we do this research. Additionally, 
it is observed that among the three strategies for the spike threshold, 
the mutual information curve corresponding to the one-half quantile 
has the most prominent peak, thus choosing a suitable quantile as the 
spike threshold (Xu et al., 2022) also has advantage over log-average 
luminance strategy (Reinhard et al., 2002).

For the color image case, Figure 9 shows the variation of the target 
image and the assessment index under different spike thresholds. It is 
clear that the optimal noise intensity with the image mutual formation is 
coincident with the optimal counterpart with the NIQE metric. This 
coincidence once again demonstrates both the metrics are effective for 
picking out the target image. Nevertheless, due to its smoothness, the 
image mutual information is more convenient than the NIQE metric, as 
suggested by the Figures. Additionally, it is evident that the target image 
(Figure 9C) is sensibly darker than the counterpart in Figures 9A,B, 
illustrating that the enhancement performance with the log-average 
threshold is sensitive to the choice of the small parameter. An 
inappropriate choice of the parameter delta in Eq. (13) can cause a bad 
enhancement. This of course is of inconvenience, and thus suggests that 
the quantile threshold strategy has merit from a viewpoint of antithesis.

4. Conclusion and discussion

We have revealed the phenomenon of aperiodic stochastic 
resonance in the conductance-based integrate-and-fire neuronal 
networks within the frame of information theory, and then 
we  presented an improved spiking neural network based visual 
perception algorithm based on the principle of aperiodic stochastic 
resonance. In the improved algorithm, the image mutual information 
is adopted as a quantifying metric, since it can well measure the 
shared information between the input image stimulus and the 
enhanced target image. With the same trials in calculation, it was 
shown that the optimal noise intensity corresponding to the 
maximum of the mutual information coincides with one of the 
counterparts of the minimums of the NIQE index. More importantly, 
it was shown that the curve of the image mutual information via 
noise intensity is usually mono-peaked, sharper and smoother than 
that of the NIQE index via noise intensity. This illustrates that the 
applicability and advantage of the image mutual information over the 

frequently used index in visual perception. Additionally, with the 
numerical tests with the quantile of the image histogram as spike 
threshold scheme compared with those with the log-average 
luminance as spike threshold, it was further confirmed the mutual 
information index has more reliability than the NIQE index, since the 
results from the latter scheme are more sensitive to the increasing 
noise level. Nevertheless, note that the spike threshold is fixed during 
the entire implementation of the algorithm, so the quality of the best 
enhanced image might be further improved by an adaptive strategy, 
such as updating the threshold at each noise intensity by the quantile 
of the newly enhanced image. This is worthy to be explored in the 
near future. We  also wish that the algorithm of this paper has 
application or inspiration in the relevant fields such as brain-machine 
interface, cosmic detection and target tracking in 
low-illumination environment.
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