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Purpose: To develop and validate deep learning-based automatic brain

segmentation for East Asians with comparison to data for healthy controls from

Freesurfer based on a ground truth.

Methods: A total of 30 healthy participants were enrolled and underwent T1-

weighted magnetic resonance imaging (MRI) using a 3-tesla MRI system. Our

Neuro I software was developed based on a three-dimensional convolutional

neural networks (CNNs)-based, deep-learning algorithm, which was trained

using data for 776 healthy Koreans with normal cognition. Dice coefficient (D)

was calculated for each brain segment and compared with control data by

paired t-test. The inter-method reliability was assessed by intraclass correlation

coefficient (ICC) and effect size. Pearson correlation analysis was applied to assess

the relationship between D values for each method and participant ages.

Results: The D values obtained from Freesurfer (ver6.0) were significantly lower

than those from Neuro I. The histogram of the Freesurfer results showed

remarkable differences in the distribution of D values from Neuro I. Overall, D

values obtained by Freesurfer and Neuro I showed positive correlations, but the

slopes and intercepts were significantly different. It was showed the largest effect

sizes ranged 1.07–3.22, and ICC also showed significantly poor to moderate

correlations between the two methods (0.498 ≤ ICC ≤ 0.688). For Neuro I,

D values resulted in reduced residuals when fitting data to a line of best fit,

and indicated consistent values corresponding to each age, even in young

and older adults.

Conclusion: Freesurfer and Neuro I were not equivalent when compared to a

ground truth, where Neuro I exhibited higher performance. We suggest that

Neuro I is a useful alternative for the assessment of the brain volume.
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1. Introduction

Quantitative regional brain volumetry in humans is of great
importance in clinical practice for evaluating various neurologic
diseases (Heo et al., 2022), and developmental or behavioral
conditions arising from normal aging (Zhao et al., 2019). Previous
brain magnetic resonance imaging (MRI) studies (Zhao et al., 2019;
Heo et al., 2022) have been widely applied to quantify the volume,
thickness, and other morphometrics of specific brain structures.
In MRI-based volumetry methods, accurate brain segmentation
with a short data-processing period, such as 5-10 min, is necessary
to obtain precise quantitative values of brain volume and cortical
thickness, especially in large datasets (Tustison et al., 2014).

In volumetric neuroimaging studies, segmentation of brain
anatomy has been a key image- processing step (Srinivasan et al.,
2020). Traditionally, manual segmentation was considered the
gold standard approach for brain tissue measurement (Morey
et al., 2009; Schoemaker et al., 2016); however this method
is subjective, extremely time-consuming, laborious, and human-
resource intensive, and thus unfeasible for large MRI datasets
(Perlaki et al., 2017). Currently available algorithms have low
clinical feasibility because of the long processing time for brain
segmentation (Suh et al., 2020). Also, the major practical limitation
of prior studies is incomplete segmentation of the brain into
finer anatomic regions when using widely available tools such
as Freesurfer (Kaku et al., 2019). Indeed, there are substantial
challenges regarding how to obtain accurate segmentation of
finer brain regions in a small brain size (Kaku et al., 2019). As
such, automatic segmentation algorithms and software packages
developed to label parts of brain MR images could drastically
reduce processing time, enabling the analysis of large amounts of
data, and could remove potential sources of inconsistency between
sites (Velasco-Annis et al., 2018; Srinivasan et al., 2020). Recently,
deep learning techniques, including convolutional neural networks
(CNNs), have been employed predominantly for rapid and accurate
segmentation of coarse regions of interest (ROIs) in the analysis of
medical imaging data, and for reducing the long-term performance
of computation (Bae et al., 2020; Thyreau and Taki, 2020). Another
issue raised is that it may not be directly applicable to brain
segmentation in East Asian individuals regarding data processing
time and accuracy, because deep learning models were generally
based on Caucasian brains.

Our clinical volumetry software program, Neuro I (Neurozen
Inc., Seoul, Republic of Korea), was recently introduced to the
neuroscience community; this program uses a three-dimensional
(3D) CNN-based deep learning algorithm and is approved by
the Food and Drug Administration (FDA) of Republic of Korea.
Especially in this tool, 3D CNN-based deep learning algorithm
was trained using 776 healthy Korean individuals with normal
cognition to focus on the East Asian brain; which can generate 109
ROIs based on the Desikan-Killiany-Tourville (DKT) atlas. Unlike
other clinical volumetry software, Neuro I also uses a deep learning
segmentation module to increase accuracy of brain tissue extraction
from non-brain structures, and to improve classification of brain
tissues as white matter parcellation without manual correction. To
our knowledge, evidence for the effect of deep learning automatic
brain segmentation based on T1-weighted brain MR images using
data from East Asians is limited. Also, there have been several

methodological studies looking at the effects of different image
segmentation strategies by comparing differences between software
packages, but there were few studies with a manual gold standard
considered as a ground truth (Grimm et al., 2015).

Here, we provide an exemplary comparison of Neuro I with
Freesurfer (version 6.0), which is one of the most widely used
automated segmentation methods among existing freely available
tools (Pemberton et al., 2021). We hypothesized that the two
different software packages use different segmentation procedures
and are likely to produce different values.

Therefore, in this study, we aimed to compare subcortical
volume measurements from the two software packages with a
ground truth in healthy individuals, and to evaluate the inter-
method reliability and correlation with ages.

2. Materials and methods

2.1. Study population

This study received Institutional Review Board approval, and
the requirement for informed consent was waived due to the
retrospective nature of the study. We searched the imaging database
for 65 healthy individuals who underwent brain MRI at a university
hospital between June 1, 2020 and November 30, 2021. The
inclusion criterion for healthy controls was no clinical evidence of
neurological or psychiatric symptoms, as evaluated by a physician.
In total, 30 healthy individuals were included: 12 males and 18
females; age range, 30–77 years; mean age, 53.62 ± 13.52 years;
bodyweight 60.58± 10.08 kg; and height 162.45± 8.33 cm.

2.2. MRI

All participants were scanned with a 3-tesla MRI scanner
(Siemens, Erlangen, Germany) with a 12-channel head coil. High-
resolution T1-weighted images were acquired using the MPRAGE
sequence with the following parameters: repetition time/echo
time = 2,530/3.37 ms; field-of-view = 256 mm × 256 mm;
matrix = 256 × 256; and slice thickness = 1 mm. All MRI images
were visually inspected by an experienced neuroradiologist to
confirm appropriate image quality and to exclude individuals with
visible brain abnormalities.

2.3. Magnetic resonance volumetry

Each volumetric T1-weighted image was used separately for
analysis with two different software packages on a conventional
desktop computer. For concision, not all brain structures
were analyzed in this study. Both software packages provided
volumes for the left and right hippocampus, amygdala, entorhinal
cortex, inferior temporal gyrus, and middle temporal gyrus,
which is not only of interest because its volume change
reflects physiologic processes but it might also gain clinical
significance as a neuroimaging biomarker for the main cognitive
impairment and prognostic evaluation of Alzheimer’s disease (AD)
(Onitsuka et al., 2004; Grimm et al., 2015; Zhou et al., 2016). Each
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of the regional volume measures was averaged across left and right
hemispheres.

2.3.1. Manual segmentation
To generate the ground truth for evaluating segmentation

using ITK-SNAP version 3.8.0, a neuroradiologist with 20 years
of dedicated experience in human brain MRI data processing and
segmentation manually traced the all ROIs for the 30 participants;
the scans had sufficient quality to allow manual tracing on gapless

coronal slices following a detailed anatomic tracing protocol such
as the DKT labeling protocol introduced in the Mindboggle
publication (Klein and Tourville, 2012).

2.3.2. Volumetric procedures
FreeSurfer 6.0 (Harvard University, Boston, MA, USA) was

used to analyze structural MRI data according to procedures
described in prior publications (Dale et al., 1999). Data were post-
processed using the “recon-all” script to produce fully segmented

FIGURE 1

Neuro I process and network architecture. Three-dimensional T1-weighted MR images are subjected to MRI pre-processing, including registration
and normalization. Based on empiric results showing good performance in our dataset, the Neuro I pipeline is constructed with two separate
models. The first model, A, is a model for brain tissue segmentation. Using a mask from this model, sequentially after removing the intracranial
volume, brain tissue is extracted from the original T1-weighted MR image to focus on classifying ROI types in brain tissue by removing non-targeted
voxel classes. Model B extracts 109 brain ROIs by performing parcellation. Then, the volume and cortical thickness (mm) for each ROI are calculated.
The Neuro I network is the common network structure of the two deep learning models included in the Neuro I software. The two models differ
only in the shape of the input and output tensors. The above architecture is the same as that of nnU-Net (Isensee et al., 2021), but some
hyperparameters and the learning process are customized because nnU-Net pipeline should be adapted to our model environment such as patch
size, and GPU memory available when inputting brain MRI datasets.

TABLE 1 Average structure volumes of Freesurfer, Neuro I, and ground truth.

Freesurfer Neuro I Ground truth

Region mL (SD) mL (SD) mL (SD)

Hippocampus 3.906 (0.389) 4.124 (0.458) 3.642 (0.453)

Amygdala 1.497 (0.218) 1.568 (0.254) 1.486 (0.224)

Entorhinal cortex 1.738 (0.288) 1.184 (0.248) 1.138 (0.228)

Inferior temporal gyrus 11.767 (1.615) 11.985 (1.543) 11.121 (1.454)

Middle temporal gyrus 13.298 (1.741) 13.785 (1.883) 12.215 (1.552)

Mean volumes shown with mean intra-subject standard deviation in parentheses. mL, milliliter.
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regions. The processing requires approximately 8 h per 3D T1-
weighted image. The volume measures of the ROIs were derived
from the standard stats directory using the Desikan atlas.

Neuro I used a deep learning algorithm applied to multiple
steps, such as analysis-failure prediction, intensity normalization,
brain extraction, and segmentation. Values for the volumes of
regional brain structures and cortical thickness were obtained
(Figure 1). All processing was completed within 10 min.

2.4. Statistical analyses

Spatial overlap (Dice coefficient, D) for each ROI was calculated
between the different segmentations and a ground truth according

to the following equations:

D = 2 ×
A ∩ B
A+ B

where A is the segmented voxels by two different methods, B is the
voxels of a ground truth, and ∩ is the intersection operation. The
maximal value of D is 1, indicating perfect overlap between the two
segmentations, while decreasing D indicates less overlap.

Data were analyzed using SPSS 20.0 software (SPSS Inc.,
Chicago, IL, USA) as a statistical analysis tool to compare the D
values resulting from different segmentation approaches by paired
t-test. Moreover, histograms of the distribution of D values were
computed. Inter-method reliability was assessed by calculating the
intraclass correlation coefficient (ICC) and effect size obtained

FIGURE 2

Representative MR image in the axial plane showing the hippocampus, amygdala, and entorhinal cortex in Freesurfer (left), our proposed model
(Neuro I) (middle), and ground truth (right). It is evident that Freesurfer has errors in both over and underestimation along the boundaries of brain
regions, as well as non-natural looking with grainy segmentation, whereas Neuro I segmentation obeys well the segment boundaries with more
natural looking, rendering a smooth contoured. R, right; L, left.

FIGURE 3

Comparison of dice coefficients obtained from Freesurfer and Neuro I using paired t-test. IQR, interquartile range. ∗Statistically significant difference
at p < 0.05.
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from the standardized mean difference between the D values
from the two methods. The guidelines used to interpret effect
size (Cohen’s d) values were as follows: small, d = 0.2; medium,
d = 0.5; and large, d = 0.8 (Cohen, 1988). Pearson correlation
analysis was used to analyze the agreement of D values between
the two methods, and between D values and ages for each
method. The significance level was set at p < 0.05 for all the
analyses.

2.5. Methodological considerations

We used manual segmentation as a ground truth because this
is commonly used as the reference technique for assessing
the performance of automatic segmentation techniques,
and manual tracing represents the true boundaries of the
segmented structures (Perlaki et al., 2017). To calculate D
values, Freesurfer and ground truth segmentations had to
be transformed from the image space of Freesurfer and a

FIGURE 4

The histograms of dice coefficients obtained from Freesurfer and
Neuro I.

ground truth back to Neuro I space, which may result in slight
alterations due to resampling (Morey et al., 2009; Dewey et al.,
2010).

3. Results

3.1. Segmentation

Magnetic resonance imaging scans for the 30 participants
were segmented twice each, once by each algorithm. For each
scan, total computational time was approximately 8 h for
Freesurfer, and 10 min for Neuro I. Table 1 presents mean
volume measurements, as delineated by each method, including
the ground truth. Mean intra-subject standard deviations are also
reported.

Regarding errors of segmentation in the hippocampus,
amygdala, and entorhinal cortex, Freesurfer segmentation seemed
to necessitate manual corrections for quality control (Klapwijk
et al., 2019), showing major boundary errors, such as stair-step
artifacts along the boundary or non-natural looking, relative to
Neuro I and ground truth, as demonstrated in Figure 2.

3.2. Comparison of dice coefficients for
the different segmentation methods

Figure 3 shows the effects of the different segmentation
methods on D values. The mean D values of all ROIs obtained
after processing with Freesurfer were significantly lower than
those values obtained with Neuro I (paired t-test, p < 0.001).
Also, the D values processed by Freesurfer had a larger
spread [interquartile range (IQR)] than values processed by
Neuro I.

Figure 4 shows the histograms of D values using the
same data but with different segmentation approaches. The
histogram of the Freesurfer results shows remarkable differences
in the distribution of the D values from Neuro I, especially
regarding a significant discrepancy in the amygdala and entorhinal
cortex.

3.3. Inter-method reliability

Overall D values by Freesurfer and Neuro I showed
positive correlations in the hippocampus (R2 = 0.51), amygdala
(R2 = 0.30), entorhinal cortex (R2 = 0.52), inferior temporal
gyrus (R2 = 0.36), and middle temporal gyrus (R2 = 0.48)
(Figure 5). However, surprisingly, for all ROIs, the slopes
and intercepts were significantly different from 1, indicating
proportional bias, and different from 0, indicating constant
bias.

Regarding effect sizes, all ROIs showed that the largest effect
sizes ranged from 1.07 to 3.22, especially in the amygdala and
entorhinal cortex (Table 2). Also, ICCs showed significantly
poor to moderate correlations between the two methods
(0.498 ≤ ICC ≤ 0.688) (Table 2).
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FIGURE 5

Correlation analyses for the investigation of discrepancies between dice coefficients obtained from Freesurfer and Neuro I. ∗Indicates that slope and
intercept are significantly different from 1 and 0, respectively.

3.4. Correlation of dice coefficients with
age

Figure 6 shows the correlation analysis between D values and
ages for each method. Our results show that segmentation strategy
has a profound effect on the correlation with age. Interestingly,
Neuro I revealed that D values resulted in reduced residuals when
fitting data to a line of best fit, and indicated consistent values
corresponding to each age, even in young and older adults.

4. Discussion

In this study, we evaluated brain volume measurements using
Neuro I (3D CNN deep learning-based segmentation) comparing
to Freesurfer (Freesurfer segmentation) in five segmented ROIs:
the hippocampus, amygdala, entorhinal cortex, inferior temporal

TABLE 2 Inter-method reliability in dice coefficients between
Freesurfer and Neuro I.

Region Effect size ICC (95% CI)a

Hippocampus 1.07 0.618 (0.337–0.798)

Amygdala 2.44 0.498 (0.174–0.725)

Entorhinal cortex 3.22 0.688 (0.435–0.840)

Inferiorinferior temporal gyrus 1.95 0.599 (0.310–0.787)

Middle temporal gyrus 1.47 0.656 (0.393–0.820)

ICC, intraclass correlation coefficient; CI, confidence interval.
aThe inter-method reliability between the two methods was analyzed by the ICC test. The
p-values of ICC were statistically significant (all P < 0.001).

gyrus, and middle temporal gyrus. One of the disadvantages
of previous segmentation strategies (e.g., Freesurfer) was the
long post-processing times of 8 h (Ochs et al., 2015), while
Neuro I enables processing of a whole brain MR image within
10 min. Importantly, most deep learning-based brain segmentation
approaches have been oriented toward Caucasian populations;
however, brain volume and shape differ between Caucasian and
East Asian individuals (Kim et al., 2020). As the Neuro I deep
learning model was sufficiently trained by a large cohort of East
Asian individuals, we speculated that Neuro I could yield a better
performance than Freesurfer.

4.1. Effect of different segmentation
algorithms on the measurement of dice
coefficients

Although Freesurfer is one of the most widely used tools
in neuroimaging research for segmenting brain anatomy, several
studies (Cherbuin et al., 2009; Wenger et al., 2014; Srinivasan
et al., 2020) reported that the failure rate was high, resulting
in exclusion of many scans, and indicating inconsistencies in
segmentation. Another study revealed that the quality of volume
estimation with Freesurfer may be less accurate because of over-
or under-estimation in data processing. Indeed, a pediatric study
(Schoemaker et al., 2016) found that, especially for volume of the
hippocampus and amygdala, Freesurfer data may be inaccurate.
Although our data did not include a pediatric population,
when using Freesurfer, there is a slight chance that automatic
segmentation may induce small errors or biases because the
segmentation is not optimal. Thus, we suggest that more accurate
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FIGURE 6

Correlation of dice coefficients (obtained from Freesurfer and Neuro I) with age.

segmentation algorithms will improve the accuracy of volume
estimation and possibly increase the significance of the results.

Our hypothesis was that Neuro I would overcome some of the
limitations of Freesurfer, because Neuro I has processing steps,
such as analysis failure prediction, brain extraction, white matter

segmentation, and analysis quality management, by applying the
deep learning technique to reduce the error rates. Our results
demonstrated that the Neuro I algorithm was fast and could
provide high accuracy, based on brain volumes determined by T1-
weighted brain MR images. In our study, Neuro I was superior
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to Freesurfer regarding D values in selected ROIs, indicating
significant differences in mean values and IQRs compared to
Freesurfer. In particular, the selected regions have been associated
with biomarkers for AD diagnosis and cognitive decline (Wirth
et al., 2013), and the decrease in brain volume could be explained
by neuronal loss caused by amyloid deposition and neurofibrillary
tangles (Goedert et al., 1991). Therefore, accurate and precise
segmentation has importance in volumetry for curvature, shape,
and connectivity analyses. Conversely, the underlying cause of
changes in volume must be carefully considered, and the results
for smaller structures should be cautiously interpreted because
of potential differences due to the software used for volume
measurements (Lee et al., 2021).

Comparison of histograms revealed that the D values from
Freesurfer had an abnormal distribution or shape beyond the
normal population range. We assumed that, using the “recon-all”
command, Freesurfer might fail to process of brain images due to
mismatched coordinates corresponding to a standard template or
heterogeneous intensity ranges. In contrast, the model of Neuro I
trained geographic patterns and image properties of brain anatomy
from 776 data samples, provides a major difference from the
Freesurfer algorithm.

4.2. Inter-method reliability

In this validation study of inter-method reliability, we found
poor to moderate correlations and reliability between Freesurfer
and Neuro I for the ROIs. Two studies (Fischl, 2012; Reid et al.,
2017) reported that difficulty in segmenting the brain region
stems from variability within its boundaries with hypointense
T1 signal and a gradient of brighter intensities as one moves
laterally blending with the adjacent white matter. In fact, based on
visual inspection of segmentation maps, variability in the lateral
boundary between the two different segmentation approaches was
a contributing factor to lower inter-method reliability. Indeed,
the deep learning model of Neuro I improves the quality of
segmentation by producing smoother boundaries that follow the
anatomic border more closely. One potential benefit of a deep
learning-based brain segmentation tool is that by training over
multiple samples, the model learns that jagged or stair-step
boundaries are not consistent (Kaku et al., 2019). Moreover, our
ROIs showed large effect sizes, which implies that the results
between the two software programs were not identical.

4.3. Different segmentation approaches
with age

Further, Neuro I (comparing to Freesurfer) showed a high
success rate: segmentations in the finer anatomic regions were
more consistent with ground truth segmentations, without bias
with participant age. When evaluating age effects on brain volumes,
this is an important finding. Participants in our study had a wide
age range (30-77 years), and Neuro I showed a high level and
small dispersion of D values, corresponding to age in brain regions
closely associated with aging. It can be assumed that Freesurfer
induces spurious age effects, which can lead to false biologic

interpretations. One reason could be that Freesurfer does not use
a population-based specific template (Srinivasan et al., 2020).

With high-speed data processing, which is a major advantage
for Neuro I over Freesurfer, accurate deep learning-based
automatic brain segmentation can screen or predict patients with
cognitive impairment in clinical practice. Even though we did not
display all results in detail in this paper, Neuro I can interact
directly with a picture archival and communication system or
Web server remotely. In addition, our final report provides the
structural volumes of anatomical structures in cubic centimeters,
and intracranial volumes as percentages. A normative range,
relative to the East Asian standard template generated from 1,500
of healthy Koreans, is also provided for all the brain regions.
Consequently, our findings may broaden the clinical feasibility of
deep learning-based automatic brain segmentation, and the choice
of segmentation strategy can impact the efficiency and detection
capability of the volumetric analysis. Future studies are warranted
to evaluate specific measures as biological markers in patients with
cognitive impairment. Further, clinicians and researchers should
consider the type of software used when interpreting the results of
volume measurements.

4.4. Limitations

Our study has some limitations: first, because of the small
sample size of healthy participants, there was potential for selection
bias; and second, our outcomes may not be applicable to other
imaging modalities, such as diffusion or perfusion MRI, or
computed tomography.

5. Conclusion

Our Neuro I and Freesurfer were not equivalent when
compared to a ground truth, especially for the segmentation of five
ROIs, where Neuro I exhibited better performance. Therefore, we
suggest that Neuro I is a useful alternative to assess the volume of a
ROI; Neuro I can be used not only for voxel-wise analysis, but also
for large-scale analysis of subcortical regions.
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