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Objective: Methionine sulfoxide (MetO) has been identified as a risk factor for 
vascular diseases and was considered as an important indicator of oxidative stress. 
However, the effects of MetO and its association with moyamoya disease (MMD) 
remained unclear. Therefore, we performed this study to evaluate the association 
between serum MetO levels and the risk of MMD and its subtypes.

Methods: We eventually included consecutive 353 MMD patients and 88 healthy 
controls (HCs) with complete data from September 2020 to December 2021 in 
our analyzes. Serum levels of MetO were quantified using liquid chromatography-
mass spectrometry (LC–MS) analysis. We evaluated the role of MetO in MMD using 
logistic regression models and confirmed by receiver-operating characteristic 
(ROC) curves and area under curve (AUC) values.

Results: We found that the levels of MetO were significantly higher in MMD and 
its subtypes than in HCs (p < 0.001 for all). After adjusting for traditional risk factors, 
serum MetO levels were significantly associated with the risk of MMD and its 
subtypes (p < 0.001 for all). We further divided the MetO levels into low and high 
groups, and the high MetO level was significantly associated with the risk of MMD 
and its subtypes (p < 0.05 for all). When MetO levels were assessed as quartiles, 
we found that the third (Q3) and fourth (Q4) MetO quartiles had a significantly 
increased risk of MMD compared with the lowest quartile (Q3, OR: 2.323, 95%CI: 
1.088–4.959, p = 0.029; Q4, OR: 5.559, 95%CI: 2.088–14.805, p = 0.001).

Conclusion: In this study, we found that a high level of serum MetO was associated 
with an increased risk of MMD and its subtypes. Our study raised a novel perspective 
on the pathogenesis of MMD and suggested potential therapeutic targets.
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Introduction

Moyamoya disease (MMD), as a chronic intracranial vasculopathy, 
was unknown for its etiology. MMD was characterized by the stenosis 
or occlusion at the terminal portion and main branches of internal 
carotid artery (ICA) associated with the formation of anomalous 
collateral circulation on angiography (Kuroda and Houkin, 2008). 
MMD was more prevalent in East Asian countries than in Europe and 
North America (Kim, 2016). Moreover, familial aggregation and 
RNF213 variants suggested the genetic etiology in MMD (Miyatake 
et al., 2012; Kim et al., 2016; Zhang et al., 2017). Our previous study 
has revealed the correlation between several traditional modifiable 
risk factors and MMD (Ge et al., 2020). These findings indicated that 
genetic, inflammation, and environmental factors were involved in 
MMD. Currently, direct and indirect revascularizations have been the 
most routine treatment for MMD patients (Acker et al., 2018; Deng 
et al., 2018). However, the outcome after surgery varied widely, and 
the MMD process seemed irreversible. Therefore, it has been necessary 
to investigate novel risk factors in the pathogenesis and 
progression of MMD.

In recent years, with the further study of multi-omics technologies, 
researchers have found that the ultimate effect of gene or protein 
regulatory action was to cause changes in metabolites in body (Holmes 
et  al., 2018; Yang et  al., 2018; Zhang et  al., 2022). Metabolomics 
studied endogenous small molecule compounds at the end of 
metabolic pathways, which could skip the complex regulatory 
processes of body and directly reflect the final physiological and 
pathological changes (Ke et al., 2018; Guo et al., 2020; Chumachenko 
et  al., 2022). Through the analysis of differential metabolites, 
researchers could reveal pathogenic mechanisms, confirm diagnostic 
biomarkers, estimate disease risk, and monitor treatment processes 
(Wishart, 2019; Shin et al., 2020; Wang et al., 2020). Homocysteine 
(Hcy), one of the methionine (Met) related metabolites, has been 
identified associated with MMD and its prognosis (Ge et al., 2020; He 
et al., 2022). It indicated the important role of Met metabolism in 
MMD. Methionine sulfoxide (MetO), another Met-related metabolite, 
has been studied to be associated with neurodegenerative diseases, 
mental health diseases, obesity, cancers, and cardiovascular diseases 
(Lei et  al., 2007; De Luca et  al., 2010; Ma et  al., 2011; Rose and 
Hoffmann, 2015; Jiang and Moskovitz, 2018). Furthermore, MetO 
could reflect the level of oxidative stress. However, the metabolomics 
studies on MMD were still limited, and the role of MetO in MMD has 
hardly been studied.

Therefore, this study aimed to demonstrate the correlation 
between MetO and the risk of MMD, contributing to the exploration 
of novel risk factors and the identification of potential therapeutic 
targets in MMD.

Methods

Study participants

In this prospective study, we  consecutively included MMD 
patients from September 2020 to December 2021 and collected the 
clinical data. All patients were diagnosed as MMD with digital 
subtraction angiography (DSA) according to the 2012 Japanese 
diagnostic criteria (Guidelines for diagnosis and treatment of 

moyamoya disease, 2012). Minors and patients without complete 
liquid chromatography-mass spectrometry (LC–MS) data of 
Met-related metabolites were excluded. We recruited 89 age-matched 
healthy individuals as the control group. All healthy controls (HCs) 
underwent routine examinations and were excluded cerebrovascular 
diseases. One HC with inadequate Met-related metabolite data was 
excluded. A total of 353 adult MMD patients (253 ischemic-type, 100 
hemorrhagic-type) and 88 HCs were eventually included (Figure 1). 
All participants have provided written informed consent to participate 
in this research. This study has been approved by the Ethics Committee 
of Beijing Tiantan Hospital.

Data collection

All baseline characteristics, including demographic data (age and 
gender), medical history (hypertension, diabetes, hyperlipidemia, 
smoking, drinking), clinical features (heart rate, systolic blood 
pressure [SBP], diastolic blood pressure [DBP], body mass index 
[BMI]) were collected by independent chart reviews. Fasting 
peripheral blood samples from all participants were used for routine 
and biochemical blood tests, as shown in Table 1. We also calculated 
peripheral inflammation indicators based on the laboratory 
examination data, which were also presented in Table 1 (Zeng et al., 
2022). The peripheral blood samples were obtained on the day of 
admission, then centrifuged, separated, and aliquoted into separation 
tubes in 1 h. All blood samples were stored at −80°C until testing. 
LC–MS analysis has been used for MetO quantification, and the 
laboratory technicians were blinded to all patients’ data. We detected 
RNF213 p.R4810K variant with primer designation of RNF213-4810F 
5’-GCCCTCCATTTCTAGCACAC-3′ and RNF213-4810R 
5’-AGCTGTGGCGAAAGCTTCTA-3′. Neurological status was 
assessed by the modified Rankin Scale (mRS) at admission and 
divided into two groups (0–2, 3–5). The Suzuki stage of MMD patients 
was defined as the more severe side.

Statistical analysis

The SPSS software (version 26.0) and R project (version 3.6.3) 
were used for all statistical analyzes. Continuous data were compared 
using t-tests or Mann–Whitney U tests between two groups. Kruskal-
Wallis tests or one-way ANOVA were used for comparisons among 
multiple groups. Continuous data were presented as mean with 
standard deviation (SD) or median with interquartile range (IQR). 
Categorical variables were compared with Pearson chi-square tests, 
Fisher exact tests, and Kruskal-Wallis tests, and categorical variables 
were presented as frequencies. Spearman correlation tests were used 
to assess the association between clinical characteristics and MetO 
quartiles. We  have performed three logistic regression models to 
analyze the role of MetO in MMD and its subtypes, including Crude 
model, Model 1, and Model 2, which have been described in previous 
studies (Ge et  al., 2022; Zeng et  al., 2022). Crude model was the 
unadjusted regression model of MetO. Model 1 was adjusted for age, 
gender, heart rate, SBP, DBP, and BMI. Model 2 was further adjusted 
for WBC count, LY count, NEUT count, MONO count, PLT count, 
GLU, ALB, Cr, UA, TG, TC, HDL-C, LDL-C, ApoA, ApoB, Hcy, NLR, 
MLR, PLR, SII, and MHR. Receiver-operating characteristic (ROC) 
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curves and area under curve (AUC) values were used to evaluate the 
predictive ability of the models for the risk of MMD and its subtypes. 
The area under curve (AUC) has been calculated. For all analyzes, a 
two-sided p value<0.05 was considered statistically significant.

Results

Baseline characteristics of study 
participants

In this study, a total of 353 MMD patients (253 ischemic-type, 100 
hemorrhagic-type) and 88 age-matched HCs were eventually included 
for analysis. Baseline variables were compared between HCs and 
MMD patients (Table 1). There were no significant differences in age 
and gender (p > 0.05). However, rates of hypertension, diabetes, 
hyperlipidemia, smoking, and drinking were significantly higher in 
the MMD group than in the HC group (p < 0.05 for all). Regarding 
clinical features, the MMD group had significantly higher levels of 
SBP (p < 0.001), DBP (p = 0.001), and BMI (p = 0.005). Additionally, 
levels of inflammatory biomarkers were significantly higher in the 
MMD group, including WBC count, NEUT count, NLR, SII, and 
MHR (p < 0.05 for all). There were also more risk factors in the MMD 
group, including significantly higher levels of TG, Hcy, and lower 
levels of HDL-C (p < 0.05 for all). In addition, the MMD group had 
significantly higher levels of MetO compared to the HCs (p < 0.001; 
Figure 2A).

We also compared these variables between HCs and MMD 
subtypes (Table 2), and the results were similar. Moreover, the level of 
glucose in the ischemic-type MMD group was significantly higher 
than in the HC group (p = 0.015), indicating a higher risk for ischemia. 
Levels of MetO were significantly higher in both ischemic-type and 
hemorrhagic-type MMD groups than in the HC group (p < 0.001 for 
both; Figure 2B).

Characteristics of MMD patients with 
different MetO levels

The MMD patients were categorized into two groups based on the 
median level of MetO, including low-MetO group and high-MetO 
group. The clinical characteristics of MMD patients in both groups 
have been shown (Table  3). Although the difference was not 
statistically significant, patients in the high-MetO group tended to 
be elder. Furthermore, MMD patients in the high-MetO group had a 
higher proportion of males, higher levels of BMI, WBC count, NEUT 
count, MONO count, UA, and MHR. Conversely, these patients had 
lower levels of HDL-C and ApoA (p < 0.05 for all).

We also compared the clinical variables of MMD patients based 
on the quartile levels of MetO (Table  4). The results showed a 
correlation between higher levels of MetO and an increased 
proportion of females (p = 0.006). Moreover, patients with higher 
levels of MetO were associated with higher levels of BMI, UA, MHR, 
and lower levels of HDL-C and ApoA (p < 0.05 for all).

FIGURE 1

Flowchart of the study participant inclusion.
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Association between MetO and MMD

In this study, we observed a positive association between serum 
MetO and the risk of MMD in Crude model (OR: 28.695, 95%CI: 
8.033–102.500, p < 0.001; Table  5). In Model 1, the risk of MMD 

increased with each increment in MetO level (OR: 30.332, 95%CI: 
7.812–117.770, p < 0.001). In Model 2, MetO was also found to 
increase the risk of MMD (OR: 20.215, 95%CI: 4.842–84.397, 
p < 0.001). The ROC curves revealed that the predictive accuracy of 
Model 2 (AUC = 0.841; Figure 3A) significantly improved compared 

TABLE 1 Baseline characteristics between HC and MMD groups.

Variables Health Control (n = 88) MMD (n = 353) p value

Age, y, mean ± SD 39.75 ± 11.62 41.66 ± 10.27 0.160

Gender, female, n (%) 51 (58.0) 205 (58.1) 0.984

Medical history, n (%)

  Hypertension 0 (0) 129 (36.5) <0.001*

  Diabetes 0 (0) 56 (15.9) <0.001*

  Hyperlipidemia 0 (0) 52 (14.7) <0.001*

  Smoking 2 (2.3) 70 (19.8) <0.001*

  Drinking 0 (0) 42 (11.9) 0.001*

Clinical features, mean ± SD

  Heart rate, bpm 77.75 ± 9.78 78.48 ± 6.306 0.509

  SBP, mmHg 123.48 ± 11.74 132.39 ± 12.73 <0.001*

  DBP, mmHg 78.22 ± 8.07 81.79 ± 9.381 0.001*

  BMI, kg/m2 23.99 ± 3.39 25.46 ± 4.54 0.005*

Laboratory examinations, median (IQR)

  WBC count, 109/L 6.03 (1.90) 6.81 (2.48) <0.001*

  LY count, 109/L 1.91 (0.72) 1.92 (0.88) 0.208

  NEUT count, 109/L 3.43 (1.62) 4.19 (1.90) <0.001*

  MONO count, 109/L 0.35 (0.14) 0.35 (0.17) 0.339

  PLT count, 109/L 233.50 (90.50) 248.00 (76.00) 0.309

  GLU, mmol/L 5.04 (0.62) 5.10 (1.05) 0.211

  ALB, g/L 44.95 (3.18) 45.50 (3.95) 0.364

  Cr, μmol/L 57.80 (19.35) 54.80 (21.00) 0.169

  UA, μmol/L 310.50 (103.93) 305.60 (113.90) 0.677

  TG, mmol/L 0.86 (0.62) 1.20 (0.81) <0.001*

  TC, mmol/L 4.61 (0.95) 4.23 (1.27) <0.001*

  HDL-C, mmol/L 1.53 (0.40) 1.31 (0.36) <0.001*

  LDL-C, mmol/L 2.69 (0.85) 2.40 (1.12) 0.001*

  ApoA, g/L 1.39 (0.27) 1.30 (0.30) <0.001*

  ApoB, g/L 0.77 (0.26) 0.82 (0.27) 0.221

  Hcy, μmol/L 10.61 (3.98) 12.00 (5.80) 0.001*

  NLR 1.78 (0.92) 2.13 (1.17) 0.001*

  MLR 0.19 (0.10) 0.19 (0.10) 0.775

  PLR 127.13 (77.36) 127.18 (56.82) 0.862

  SII 421.84 (291.10) 535.49 (382.41) 0.001*

  MHR 0.24 (0.11) 0.27 (0.17) <0.001*

  MetO, μmol/L, median (IQR) 2.40 (0.22) 2.52 (0.35) <0.001*

HC, healthy control; MMD, moyamoya disease; SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; IQR, interquartile range; WBC, 
white blood cell; LY, lymphocyte; NEUT, neutrophil; MONO, monocyte; PLT, Platelet; GLU, glucose; ALB, albumin; Cr, creatinine; UA, uric acid; TG, triglyceride; TC, total cholesterol; 
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ApoA, apolipoprotein A; ApoB, apolipoprotein B; Hcy, homocysteine; NLR, neutrophil-to-
lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; MHR, monocyte-to-HDL cholesterol ratio; MetO, 
methionine sulfoxide. *p < 0.05, significant difference.
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to Crude model (AUC = 0.692) and Model 1 (AUC = 0.776). Similar 
results were found in ROC curves of three models for MMD subtypes 
(Table 5; Figures 3B,C).

We also compared the risk of MMD between low and high MetO 
levels. We found cases with high MetO level had a significantly higher 
risk of MMD in Crude model (OR: 3.832, 95%CI: 2.264–6.487, 
p < 0.001), Model 1 (OR: 3.699, 95%CI: 2.142–6.389, p < 0.001), and 
Model 2 (OR: 2.888, 95%CI: 1.613–5.170, p < 0.001; Table 5). The AUC 
values showed an improvement in Crude model (AUC = 0.655; 
Figure  4A), Model 1 (AUC = 0.760), and Model 2 (AUC = 0.829). 
Similar results were observed in Crude model, Model 1, and Model 2 
of ischemic and hemorrhagic MMD (Figures 4B,C).

Furthermore, we assessed MetO as quartiles and analyzed its risk 
in MMD. We found that the proportion of MMD events increased 
with the rise of MetO quartiles (Figures 5A–C). In contrast to Q1 of 
MetO, cases in Q3 and Q4 of MetO had a significantly higher risk of 
MMD in Crude model (Q3, OR: 2.742, 95%CI: 1.410–5.330, p = 0.003; 
Q4, OR: 8.167, 95%CI: 3.270–20.397, p < 0.001), Model 1 (Q3, OR: 
3.064, 95%CI: 1.528–6.146, p = 0.002; Q4, OR: 7.855, 95%CI: 3.062–
20.149, p < 0.001), and Model 2 (Q3, OR: 2.323, 95%CI: 1.088–4.959, 
p = 0.029; Q4, OR: 5.559, 95%CI: 2.088–14.805, p = 0.001). The AUC 
value of ROC curves increased with the development of the models 
(Crude model, AUC = 0.682; Model 1, AUC = 0.762; Model2, 
AUC = 0.834 Figure 6A). Consistent with MMD overall, the risk of 
ischemic and hemorrhagic MMD increased with increasing MetO 
quartiles. In comparison to the lowest quartile (Q1), cases in the third 
(Q3) and fourth (Q4) MetO quartiles showed a significantly 
correlation with ischemic MMD in Crude model (Q3, OR: 2.578, 
95%CI: 1.293–5.142, p = 0.042; Q4, OR: 7.396, 95%CI: 2.906–18.823, 
p < 0.001), Model 1 (Q3, OR: 2.518, 95%CI: 1.187–5.341, p = 0.016; Q4, 
OR: 5.927, 95%CI: 2.215–15.858, p < 0.001), and Model 2 (Q3, OR: 
2.806, 95%CI: 1.148–6.861, p = 0.024; Q4, OR: 5.620, 95%CI: 1.917–
16.478, p = 0.002). The AUC of ROC curves in Crude model, Model 1, 
and Model 2 were 0.671, 0.792, and 0.889, respectively (Figure 6B). 
Similarly, the third (Q3) and fourth (Q4) MetO quartiles were 
significantly correlated with the risk of hemorrhagic MMD in Crude 
model (Q3, OR: 3.224, 95%CI: 1.405–7.394, p = 0.006; Q4, OR: 10.439, 

95%CI: 3.719–29.300, p < 0.001), Model 1 (Q3, OR: 3.333, 95%CI: 
1.429–7.772, p = 0.005; Q4, OR: 9.178, 95%CI: 3.217–26.185, 
p < 0.001), and Model 2 (Q3, OR: 3.400, 95%CI: 1.255–9.208, p = 0.016; 
Q4, OR: 12.496, 95%CI: 3.740–41.745, p < 0.001). The AUC of ROC 
curves in Crude model, Model 1, and Model 2 were 0.711, 0.754, and 
0.831, respectively (Figure 6C).

Discussion

In this prospective study, we compared the difference in clinical 
characteristics between MMD patients and HCs. We also investigated 
the differences between MMD subtypes and HCs. Our findings 
revealed that serum MetO levels were significantly higher in the 
MMD group and its subtypes than those in the HC group. 
Subsequently, we analyzed the relationship between MetO and the risk 
of MMD and found that MetO was an independent risk factor. The 
risk of MMD increased with the elevation of MetO levels. This study 
indicated that MetO might play a crucial role in the pathogenesis and 
progression of MMD.

Met, as an essential amino acid, was highly susceptible to 
oxidation. Under physiological and pathological oxidative stress 
conditions, reactive oxygen species (ROS) result in the oxidation of 
Met to MetO, including two stereoisomers, S-MetO and R-MetO (Brot 
et al., 1981; Moskovitz et al., 1996; Makukhin et al., 2016). The increase 
in MetO levels result in the accumulation of toxic proteins and 
alterations in cellular functions (Moskovitz and Smith, 2021). MetO 
is an attractive biomarker for oxidative stress and an important 
indicator for its assessment (Gu et al., 2015). The MetO reductase 
system could specifically reverse MetO to Met (Moskovitz et al., 2000; 
Grimaud et al., 2001; Lourenço Dos Santos et al., 2018). The MetO 
reductase system played an important role in regulating protein 
functions, signaling pathways, and repairing oxidative damage 
proteins. Several studies have confirmed that the enhanced function 
of the MetO reductase system could increase cellular resistance to 
oxidative stress and related diseases (Moskovitz et al., 1998, 2001; Lee 
et  al., 2005). Elevated levels of MetO were associated with 

A B

FIGURE 2

Levels of MetO between HCs and MMD and its subtypes. ns, not significant; ***, p < 0.001. (A) Comparison of MetO levels between HCs and MMD 
patients. (B) Comparison of MetO levels between HCs and MMD subtypes.
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neurodegenerative diseases, cancers, cardiovascular disease, stroke, 
and other diseases (Gu et al., 2015; Reiterer et al., 2019). However, the 
metabolomics of patients with MMD has not been extensively studied. 
In this study, we found that serum MetO levels in MMD patients were 
significantly higher than those in HCs, and MetO was positively 
associated with the risk of MMD.

The link between MetO and cerebrovascular disease has been 
shown. A recent large prospective study on metabolomic 

characteristics of ischemic stroke found a significant association 
between MetO and incident stroke, with higher levels being 
associated with increased risk (Balasubramanian et  al., 2022). 
Another study demonstrated that betaine could decrease 
proinflammatory cytokine production and reduce oxidative stress 
after brain ischemia and reperfusion injury by upragulating MetO 
reductase (Li et al., 2022). Moreover, the formation of MetO in von 
Willebrand factor was found to inhibit the ADAMTS-13 cleavage, 

TABLE 2 Baseline characteristics between HCs and MMD subtypes.

Variables Health Control 
(n = 88)

Ischemic MMD 
(n = 253)

P value Hemorrhagic MMD 
(n = 100)

P value

Age, y, mean ± SD 39.75 ± 11.62 41.60 ± 10.14 0.186 41.82 ± 10.66 0.204

Gender, Female, n (%) 51 (58.0) 139 (54.9) 0.624 66 (66.0) 0.256

Medical History, n (%)

  Hypertension 0 (0) 100 (39.5) <0.001* 29 (29.0) <0.001*

  Diabetes 0 (0) 52 (20.6) <0.001* 4 (4.0) 0.124

  Hyperlipidemia 0 (0) 43 (17.0) <0.001* 9 (9.0) 0.004*

  Smoking 2 (2.3) 53 (20.9) <0.001* 17 (17.0) 0.001*

  Drinking 0 (0) 34 (13.4) <0.001* 8 (8.0) 0.008*

Clinical features, mean ± SD

  Heart rate, bpm 77.75 ± 9.78 78.23 ± 6.55 0.672 79.11 ± 5.64 0.253

  SBP, mmHg 123.48 ± 11.74 133.71 ± 12.69 <0.001* 129.06 ± 12.27 0.002*

  DBP, mmHg 78.22 ± 8.07 82.40 ± 9.49 <0.001* 80.23 ± 8.96 0.109

  BMI, kg/m2 23.99 ± 3.39 25.91 ± 4.62 <0.001* 24.31 ± 4.13 0.572

Laboratory examinations, median (IQR)

  WBC count, 109/L 6.03 (1.90) 6.96 (2.46) <0.001* 6.45 (2.49) 0.016*

  LY count, 109/L 1.91 (0.72) 2.04 (0.88) 0.017* 1.72 (0.84) 0.139

  NEUT count, 109/L 3.43 (1.62) 4.27 (1.84) <0.001* 3.88 (1.90) 0.003*

  MONO count, 109/L 0.35 (0.14) 0.35 (0.17) 0.186 0.35 (0.17) 0.934

  PLT count, 109/L 233.50 (90.50) 250.00 (74.50) 0.166 243.50 (74.25) 0.966

  GLU, mmol/L 5.04 (0.62) 5.16 (1.13) 0.015* 4.91 (0.67) 0.104

  ALB, g/L 44.95 (3.18) 45.50 (4.10) 0.308 45.30 (3.58) 0.671

  Cr, μmol/L 57.80 (19.35) 55.70 (21.05) 0.317 53.25 (21.88) 0.070

  UA, μmol/L 310.50 (103.93) 312.00 (118.85) 0.304 295.35 (111.83) 0.316

  TG, mmol/L 0.86 (0.62) 1.22 (0.79) <0.001* 1.14 (0.87) 0.008*

  TC, mmol/L 4.61 (0.95) 4.11 (1.32) <0.001* 4.37 (1.08) 0.271

  HDL-C, mmol/L 1.53 (0.40) 1.27 (0.39) <0.001* 1.34 (0.35) 0.001*

  LDL-C, mmol/L 2.69 (0.85) 2.25 (1.13) <0.001* 2.55 (1.08) 0.897

  ApoA, g/L 1.39 (0.27) 1.30 (0.32) <0.001* 1.30 (0.29) 0.008*

  ApoB, g/L 0.77 (0.26) 0.82 (0.27) 0.507 0.82 (0.31) 0.036*

  Hcy, μmol/L 10.61 (3.98) 12.00 (6.34) 0.001* 11.95 (5.01) 0.005*

  NLR 1.78 (0.92) 2.13 (1.17) 0.003* 2.29 (1.40) 0.003*

  MLR 0.19 (0.10) 0.19 (0.10) 0.789 0.20 (0.12) 0.163

  PLR 127.13 (77.36) 127.18 (56.82) 0.418 144.17 (73.90) 0.218

  SII 421.84 (291.10) 535.49 (382.41) 0.002* 541.80 (453.37) 0.004*

  MHR 0.24 (0.11) 0.27 (0.173) <0.001* 0.24 (0.16) 0.122

  MetO, μmol/L, median (IQR) 2.40 (0.22) 2.51 (0.33) <0.001* 2.55 (0.40) <0.001*

*p < 0.05, significant difference.
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TABLE 3 Baseline characteristics of MMD patients between low and high MetO groups.

Variables Low MetO (1.99–2.47, n = 176) High MetO (2.47–4.46, n = 177) P value

Age, y, mean ± SD 40.80 ± 9.97 42.53 ± 10.52 0.114

Gender, Female, n (%) 114 (64.8) 91 (51.4) 0.011*

Medical History, n (%)

Hypertension 59 (33.5) 70 (39.5) 0.240

Diabetes 23 (13.1) 33 (18.6) 0.152

Hyperlipidemia 20 (11.4) 32 (18.1) 0.075

Smoking 35 (19.9) 35 (19.8) 0.979

Drinking 20 (11.4) 22 (12.4) 0.757

Clinical features, mean ± SD

Heart rate, bpm 78.48 ± 6.23 78.47 ± 6.40 0.997

SBP, mmHg 132.14 ± 13.03 132.64 ± 12.45 0.708

DBP, mmHg 82.24 ± 8.92 81.33 ± 9.82 0.362

BMI, kg/m2 24.94 ± 4.09 25.98 ± 4.91 0.030*

RNF213 p.R4810K, n (%) 0.669

Wild-type 129 (82.2) 122 (80.3)

Mutant 28 (17.8) 30 (19.7)

Laboratory examinations, median (IQR)

WBC count, 109/L 6.64 (2.22) 6.92 (2.59) 0.015*

LY count, 109/L 1.88 (0.84) 1.99 (0.93) 0.162

NEUT count, 109/L 4.12 (1.87) 4.25 (1.91) 0.033*

MONO count, 109/L 0.34 (0.14) 0.37 (0.19) 0.014*

PLT count, 109/L 246.50 (77.75) 248.00 (74.00) 0.888

GLU, mmol/L 5.05 (1.00) 5.13 (1.08) 0.189

ALB, g/L 45.70 (4.10) 45.30 (3.80) 0.508

Cr, μmol/L 54.50 (19.13) 55.70 (21.70) 0.423

UA, μmol/L 296.20 (109.43) 325.30 (124.60) 0.003*

TG, mmol/L 1.15 (0.80) 1.27 (0.81) 0.118

TC, mmol/L 4.23 (1.33) 4.23 (1.20) 0.876

HDL-C, mmol/L 1.34 (0.42) 1.28 (0.30) 0.032*

LDL-C, mmol/L 2.35 (1.17) 2.40 (1.11) 0.744

ApoA, g/L 1.33 (0.31) 1.26 (0.30) 0.007*

ApoB, g/L 0.79 (0.30) 0.85 (0.27) 0.093

Hcy, μmol/L 11.47 (5.13) 12.20 (6.47) 0.216

NLR 2.06 (1.13) 2.27 (1.29) 0.225

MLR 0.18 (0.09) 0.20 (0.10) 0.073

PLR 130.90 (53.18) 125.22 (60.13) 0.306

SII 528.08 (331.89) 544.18 (435.89) 0.310

MHR 0.25 (0.16) 0.30 (0.18) 0.003*

MetO, μmol/L, median (IQR) 2.37 (0.15) 2.71 (0.31) <0.001*

Clinical type, n (%) 0.362

Ischemic-type 130 (73.9) 123 (69.5)

Hemorrhagic-type 46 (26.1) 54 (30.5)

Admission mRS, n (%) 0.986

0–2 159 (90.3) 160 (90.4)

3–5 17 (9.7) 17 (9.6)

Suzuki stage, n (%) 0.801

1–2 52 (29.5) 48 (27.1)

3–4 86 (48.9) 92 (52.0)

5–6 38 (21.6) 37 (20.9)

*p < 0.05, significant difference.
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TABLE 4 Baseline characteristics of MMD patients according to quartiles of MetO.

Variables MetO p value Spearman 
coefficient

p value

Q1 (1.99–
2.37, n = 88)

Q2 (2.37–
2.52, n = 88)

Q3 (2.52–
2.71, n = 88)

Q4 (2.71–
4.46, n = 89)

Age, y, mean ± SD 39.52 ± 9.65 42.07 ± 10.18 42.35 ± 10.47 42.70 ± 10.63 0.154 0.114 0.032*

Gender, Female, n (%) 58 (65.9) 56 (63.6) 49 (55.7) 42 (47.2) 0.049* 0.146 0.006*

Medical History, n (%)

Hypertension 30 (34.1) 29 (33.0) 35 (39.8) 35 (39.3) 0.704 0.052 0.327

Diabetes 8 (9.1) 15 (17.0) 18 (20.5) 15 (16.9) 0.207 0.081 0.127

Hyperlipidemia 11 (12.5) 9 (10.2) 14 (15.9) 18 (20.2) 0.262 0.091 0.087

Smoking 17 (19.3) 18 (20.5) 14 (15.9) 21 (23.6) 0.642 0.024 0.659

Drinking 9 (10.2) 11 (12.5) 9 (10.2) 13 (14.6) 0.773 0.038 0.480

Clinical features, mean ± SD

Heart rate, bpm 78.73 ± 5.59 78.23 ± 6.83 77.69 ± 5.53 79.25 ± 7.10 0.399 0.041 0.444

SBP, mmHg 134.15 ± 13.14 130.13 ± 12.69 130.28 ± 11.70 134.98 ± 12.79 0.014* 0.060 0.262

DBP, mmHg 82.72 ± 9.54 81.77 ± 8.28 80.68 ± 10.14 81.98 ± 9.51 0.549 −0.027 0.619

BMI, kg/m2 24.68 ± 4.40 25.19 ± 3.76 25.41 ± 4.29 26.54 ± 5.42 0.046* 0.121 0.023*

RNF213 p.R4810K, n 

(%)
0.951 0.026 0.652

Wild-type 65 (83.3) 64 (81.0) 59 (79.7) 63 (80.8)

Mutant 13 (16.7) 15 (19.0) 15 (20.3) 15 (19.2)

Laboratory examinations, median (IQR)

WBC count, 109/L 6.75 (2.20) 6.50 (2.32) 6.78 (2.32) 7.05 (2.32) 0.102 0.127 0.017*

LY count, 109/L 1.79 (0.89) 1.97 (0.83) 2.09 (0.83) 1.91 (0.83) 0.294 0.071 0.183

NEUT count, 109/L 4.14 (1.85) 4.06 (1.87) 4.11 (1.87) 4.36 (1.87) 0.143 0.107 0.045*

MONO count, 109/L 0.33 (0.14) 0.34 (0.16) 0.37 (0.16) 0.37 (0.16) 0.068 0.142 0.008*

PLT count, 109/L 245.50 (73.50) 247.50 (79.50) 249.00 (79.50) 248.00 (79.50) 0.895 <0.001 0.995

GLU, mmol/L 5.05 (0.96) 5.08 (1.06) 5.16 (1.06) 5.12 (1.06) 0.608 0.067 0.208

ALB, g/L 46.45 (3.40) 44.75 (3.60) 45.45 (3.60) 45.30 (3.60) 0.015* −0.082 0.126

Cr, μmol/L 54.60 (20.88) 54.40 (17.85) 53.65 (17.85) 59.60 (17.85) 0.281 0.070 0.192

UA, μmol/L 293.05 (115.93) 298.65 (98.45) 305.10 (98.45) 347.50 (98.45) 0.004* 0.180 0.001*

TG, mmol/L 1.15 (0.85) 1.17 (0.88) 1.32 (0.88) 1.25 (0.88) 0.239 0.072 0.180

TC, mmol/L 4.36 (1.40) 4.18 (1.37) 4.29 (1.37) 4.20 (1.37) 0.703 −0.033 0.532

HDL-C, mmol/L 1.44 (0.48) 1.28 (0.38) 1.29 (0.38) 1.28 (0.38) 0.011* −0.154 0.004*

LDL-C, mmol/L 2.36 (1.25) 2.32 (1.12) 2.48 (1.12) 2.37 (1.12) 0.741 −0.004 0.938

ApoA, g/L 1.37 (0.38) 1.30 (0.27) 1.28 (0.27) 1.24 (0.27) 0.001* −0.201 <0.001*

ApoB, g/L 0.78 (0.28) 0.82 (0.29) 0.87 (0.29) 0.82 (0.29) 0.231 0.085 0.112

Hcy, μmol/L 11.79 (5.53) 11.38 (4.77) 11.95 (4.77) 12.60 (4.77) 0.592 0.067 0.211

NLR 2.11 (1.14) 2.03 (0.77) 2.24 (0.77) 2.31 (0.77) 0.407 0.056 0.298

MLR 0.18 (0.09) 0.18 (0.10) 0.19 (0.10) 0.20 (0.10) 0.264 0.099 0.062

PLR 135.42 (53.20) 125.53 (52.08) 120.93 (52.08) 125.97 (52.08) 0.624 −0.048 0.365

SII 600.87 (338.74) 507.29 (286.33) 528.39 (286.33) 544.91 (286.33) 0.620 0.043 0.426

MHR 0.24 (0.15) 0.27 (0.16) 0.30 (0.16) 0.31 (0.16) 0.004* 0.188 <0.001*

MetO, μmol/L, 

median (IQR)

2.28 (0.12) 2.43 (0.07) 2.60 (0.07) 2.89 (0.07) <0.001* 0.968 <0.001*

Clinical type, n (%) 0.167 0.088 0.100

(Continued)
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promoting thrombosis in oxidative stress-related diseases 
(Lancellotti et al., 2010).

MMD was considered to result from a combination of 
inflammation, genetic, and other factors. Previous evidence showed 
that levels of oxidative stress in endothelial colony-forming cells 
were significantly increased in MMD patients (Choi et al., 2018). By 
eliminating ROS, the endothelial cells showed an improvement in 
angiogenesis capacity. It indicated that MMD was an oxidative 
stress-related disease with chronic inflammatory response. A 
previous study found that overexpression of MetO reductase A 

could reduce MetO in calcium/calmodulin-dependent protein 
kinase II, attenuating ROS-augmented NF-κB activation in 
endothelial cells (Gu et al., 2016). Another study showed that MetO 
reductase played an antioxidant role in vascular smooth muscle 
cells and prevented oxidative damage in cytoplasm and 
mitochondria (Haenold et al., 2008). In addition, consistent with 
the increase of MetO levels, vasodilatative activity decreased and 
vasoconstrictive mediators significantly increased (Pichler Hefti 
et  al., 2013). Although the precise mechanism by which MetO 
contributed to MMD remained unclear, it was hypothesized that 

TABLE 5 Association between different MetO levels and the risk of MMD and its subtypes.

MetO No. of 
events (%)

Crude model Model 1 Model 2

OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value

MMD overall

  Continuous 353 (80.0)
28.695 (8.033–

102.500)
<0.001*

30.332 (7.812–

117.770)
<0.001*

20.215 (4.842–

84.397)
<0.001*

MetO level

  Low (1.96–2.47) 155 (70.1) Ref Ref Ref

  High (2.47–4.46) 198 (90.0) 3.832 (2.264–6.487) <0.001* 3.699 (2.142–6.389) <0.001* 2.888 (1.613–5.170) <0.001*

Ischemic MMD

Continuous 253 (74.2)
27.741 (7.093–

108.485)
<0.001*

27.900 (6.231–

124.915)
<0.001*

19.993 (3.560–

112.281)
0.001*

MetO level

  Low (1.96–2.47) 117 (63.9) Ref Ref Ref

  High (2.47–4.46) 136 (86.1) 3.487 (2.028–5.997) <0.001* 3.153 (1.766–5.631) <0.001* 2.474 (1.290–4.745) 0.006*

Hemorrhagic MMD

  Continuous 100 (53.2)
38.917 (8.462–

178.970)
<0.001*

33.564 (7.208–

156.300)
<0.001*

49.665 (8.380–

294.345)
<0.001*

MetO level

  Low (1.96–2.47) 38 (36.5) Ref Ref Ref

  High (2.47–4.46) 62 (73.8) 4.895 (2.609–9.183) <0.001* 4.746 (2.494–9.033) <0.001* 4.340 (2.147–8.772) <0.001*

*p < 0.05, significant difference.

Variables MetO p value Spearman 
coefficient

p value

Q1 (1.99–
2.37, n = 88)

Q2 (2.37–
2.52, n = 88)

Q3 (2.52–
2.71, n = 88)

Q4 (2.71–
4.46, n = 89)

Ischemic-type 67 (76.1) 63 (71.6) 67 (76.1) 56 (62.9)

Hemorrhagic-type 21 (23.9) 25 (28.4) 21 (23.9) 33 (37.1)

Admission mRS, n (%) 0.356 0.033 0.536

0–2 83 (94.3) 76 (86.4) 80 (90.9) 80 (89.9)

3–5 5 (5.7) 12 (13.6) 8 (9.1) 9 (10.1)

Suzuki stage, n (%) 0.335 −0.017 0.754

1–2 22 (25.0) 30 (34.1) 19 (21.6) 29 (32.6)

3–4 52 (59.1) 34 (38.6) 47 (53.4) 45 (50.6)

5–6 14 (15.9) 24 (27.3) 22 (25.0) 15 (16.9)

*p < 0.05, significant difference.

TABLE 4 (Continued)
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high levels of MetO induced the dysfunction in vessel-associated 
cells and the dysregulation in vasoactive substances, which might 
be involved in MMD pathogenesis.

Oxidative stress was generally accompanied by inflammation 
responses characterized by the production of ROS and the release 
of inflammatory cytokines. MetO has been shown to induce the 
activation of M1/classical macrophage activation, alter the 
extracellular nucleotide metabolism, and promote the increase of 
macrophage ATPase/ADPase activity (Dos Santos et al., 2017). The 
MetO reductase system might play a positive role in antioxidant 
defense and inflammation-related damage signal transduction 
pathways. Overexpression of MetO reductase A in microglia cells 
led to the reduction in lipopolysaccharide (LPS)-induced 
activation of ROS/MAPKs/NF-κB signaling pathways (Fan et al., 
2015). Silencing MetO reductase A led to the activation of 
microglia activation and the production of Iba1, TNF-α, IL-1β, 
ROS, and NOX2 (Fan et al., 2020). Additionally, MetO reductase 
B1 activated the transcription-6 (STAT6) pathway after 
immunization and promoted the differentiation of T-helper cells 

type 1 and follicular helper T cells (Lee et al., 2017). Furthermore, 
MetO reductase deficiency could cause vascular smooth muscle 
cell proliferation and neointimal hyperplasia after vascular injury 
(Klutho et al., 2015). Therefore, we speculated that the combination 
of immune response disorder and abnormal intimal hyperplasia 
caused by MetO reductase deficiency might be  the underlying 
cause of MMD.

Our previous study has shown that several factors, such as ALB, 
BMI and HDL-C, were associated with the risk of MMD (Ge et al., 
2020). In this study, we found that some of these factors had the same 
trend with MetO levels, including BMI, uric acid, HDL-C, and 
ApoA. These results indicated that MetO was associated with the 
dysregulation of lipid metabolism in MMD. Moreover, our study 
revealed that inflammatory factors were mostly elevated in high 
MetO groups, which was consistent with the increasing levels of 
inflammatory biomarkers in MMD and its subtypes compared to 
HCs. In conclusion, MetO might have an impact on vascular damage 
through dyslipidemia and chronic inflammatory responses. After 
adjusting for potential confounders in multivariate regression 

A B C

FIGURE 4

ROC curves of low and high levels of MetO in different models for the risk of MMD and its subtypes. (A) MMD overall; (B) Ischemic-type; 
(C) Hemorrhagic-type.

A B C

FIGURE 3

ROC curves of MetO in different models for the risk of MMD and its subtypes. (A) MMD overall; (B) Ischemic-type; (C) Hemorrhagic-type.
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FIGURE 5

Association between different quartiles of MetO and the risk of MMD and its subtypes. (A) MMD overall; (B) Ischemic-type; (C) Hemorrhagic-type.
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models, we found that MetO was still significantly associated with the 
risk of MMD overall, ischemic-types, and hemorrhagic-types. These 
results highlighted the importance of MetO downregulation, and 
suggested that MetO reductases might serve as potential therapeutic 
targets for MMD. However, there were still several limitations in our 
study. Firstly, Due to the nature of single-center, the number of 
participants included in our study was relatively limited. Large multi-
center prospective studies were needed for further validation. 
Secondly, the participants in our study were all adults. It was still 
unclear whether the findings were consistent in pediatric patients. 
Thirdly, the dietary intake information of participants was not 
collected in the study, which might affect the outcome. Fourthly, the 
regulatory mechanism and signaling pathways of MetO in MMD 
needed further studies in vitro and in vivo.

Conclusion

In summary, our study revealed that the levels of MetO was 
increased in MMD patients, and we  identified MetO as an 
independent risk factor for MMD and its subtypes. These findings 
suggested that MetO reductases might serve as potential 
therapeutic targets. Our study provided a novel perspective on the 
risk of MMD.
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FIGURE 6

ROC curves of MetO quartiles in different models for the risk of MMD and its subtypes. (A) MMD overall; (B) Ischemic-type; (C) Hemorrhagic-type.
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