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Event-based cameras are raising interest within the computer vision community.

These sensors operate with asynchronous pixels, emitting events, or “spikes”,

when the luminance change at a given pixel since the last event surpasses a

certain threshold. Thanks to their inherent qualities, such as their low power

consumption, low latency, and high dynamic range, they seem particularly tailored

to applications with challenging temporal constraints and safety requirements.

Event-based sensors are an excellent fit for Spiking Neural Networks (SNNs), since

the coupling of an asynchronous sensor with neuromorphic hardware can yield

real-time systems with minimal power requirements. In this work, we seek to

develop one such system, using both event sensor data from the DSEC dataset

and spiking neural networks to estimate optical flow for driving scenarios. We

propose a U-Net-like SNN which, after supervised training, is able to make dense

optical flow estimations. To do so, we encourage both minimal norm for the

error vector andminimal angle between ground-truth and predicted flow, training

our model with back-propagation using a surrogate gradient. In addition, the

use of 3d convolutions allows us to capture the dynamic nature of the data by

increasing the temporal receptive fields. Upsampling after each decoding stage

ensures that each decoder’s output contributes to the final estimation. Thanks

to separable convolutions, we have been able to develop a light model (when

compared to competitors) that can nonetheless yield reasonably accurate optical

flow estimates.
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1. Introduction

Computer vision has become a domain of major interest, both in research and in

industry. Indeed, thanks to the development of new technologies, such as autonomous

vehicles or self-operating machines, algorithms able to perceive the environment have

proven to be key to achieving the desired level of performance. Among the numerous visual

features these algorithms can estimate, optical flow (the pattern of apparent motion on

the image plane due to relative displacements between an observer and his environment)

remains one of paramount importance. Indeed, this magnitude is directly linked with

depth and egomotion, and its rich, highly temporal information is precious for advanced

computer vision applications, e.g., for obstacle detection and avoidance in autonomous

driving systems. Given the severe safety constraints associated with this kind of critical

systems, accuracy, and reliability are key to achieving successful models. However, achieving

high levels of performance is not enough: the increasing concern about energy consumption

motivates us to seek the most efficient model possible, all while retaining high-performance

standards.
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In the search of an energy-efficient way to estimate optical flow,

we decided to focus our interest on event cameras. Unlike their

regular, frame-based counterpart, this kind of sensor is composed

of independent pixel processors, each firing asynchronous events

when the variation of the detected luminance since the previous

event reaches a given threshold, being this event of positive

polarity if the brightness has increased, and of negative polarity

otherwise. This behavior translates into enormous energy savings:

whereas conventional frame-based cameras are forced by design

to output a frame at a fixed frequency, event cameras do not

trigger any events for static visual scenes. Furthermore, they show

a higher dynamic range, which allows them to avoid problems

such as image artifacts (e.g., saturation after leaving a tunnel while

driving), and a lower latency than regular cameras, which makes

them particularly suitable for challenging, highly dynamic tasks

(event sensors do not suffer from motion blur, unlike their frame-

based counterparts). Nevertheless, they can also be less expressive:

event cameras only provide information regarding changes in

luminance, and not about the luminance itself. Furthermore, most

event cameras discard color information, although some devices

exist with independent firing for RGB formation at each pixel,

like the Color-DAVIS346 event camera used by Scheerlinck et al.

(2019) to generate their CED Dataset. Finally, event cameras

usually have lower spatial resolution than regular cameras, although

recent technological developments are bridging this gap (e.g.,

PROPHESEE, 2021).

In search of energy efficiency, the choice of the sensor is

not enough: the optical flow prediction algorithm itself also has

to be as efficient as possible to achieve our goal. That is why

we have resorted to Spiking Neural Networks (SNNs) to develop

our model. These bio-inspired algorithms, heavily inspired by the

brain, consist of independent units (neurons), each of them with

an inner membrane potential, which can be excited or inhibited

by pre-synaptic connections. When their inner potential reaches

a certain, predefined firing threshold, one spike is sent to the

post-synaptic neurons, and the membrane potential is reset. Since

energy consumption on dedicated hardware is linked to spike

activity, which is usually much sparser than standard analog neural

networks activations, SNNs represent a more energy-efficient

alternative. Moreover, in the absence of movement, no input events

would be produced and fed to the network, which in turn would

not trigger any spikes, and a zero-optical flow prediction would

be achieved (which is indeed the desired behavior, since no input

events can only be achieved by a lack of relative motion).

Finally, optical flow being a highly temporal task, incorporating

temporal context into our vision model is key to achieving

acceptable levels of performance. Two alternatives exist: using

stateful units within the network (e.g., LSTMs, GRUs or taking

advantage of the intrinsic memory capabilities in the case of SNNs),

or explicitly handling the temporal dependencies with convolutions

over consecutive frames along a temporal axis. Exploiting spiking

neuron inherent temporal dynamics has proven to be an extremely

challenging task to achieve, and we have therefore opted for the

second alternative.

To sum up, the main contributions of this article are:

• A novel angular loss, which can be used with standard

MSE-like functions and which helps the network to learn an

intrinsic spatial structure. To the best of our knowledge, we are

the first to ever use such a function for optical flow estimation.

• 3d-encoding of input events over a temporal dimension,

leading to increased optical flow estimation accuracy.

• A hardware-friendly downsampling technique in the form

of maximum pooling, that further improves the model’s

accuracy.

• A spiking neural network which can be implemented on

neuromorphic chips, therefore taking advantage of their

energy efficiency.

2. Related work

Ever since their introduction, event cameras have been gaining

ground within the computer vision community, and increasing

efforts have been made to develop computer algorithms based on

event data. As such, different datasets have emerged in order to

solve different kinds of computer vision problems, like the DVS128

Gesture Dataset by Amir et al. (2017) for gesture classification,

or the EVIMO Dataset by Burner et al. (2022) for motion

segmentation and egomotion estimation. Despite this interest

in event vision, the significant investment that event cameras

represent for most research centers and companies has led to

the development of event data simulators such as CARLA by

Dosovitskiy et al. (2017), as well as algorithms to perform video-to-

events conversion, like the model proposed in Gehrig et al. (2021b).

While lacking the intrinsic noise event data usually presents,

these artificial data can nonetheless be used to efficiently pre-train

computer vision neural networks, e.g., Hidalgo-Carrió et al. (2020)

pretraining their model for depth estimation on a synthetic set of

event data.

Nonetheless, for real-world applications (e.g., gesture

recognition, object detection, clustering, etc.), true event

recordings are preferred because simulators are still lacking

realistic event noise models. Concerning depth and/or optical flow

regression, two datasets have currently established themselves as

the go-to choices: theMVSECDataset by Zhu et al. (2018a), and the

DSEC Dataset by Gehrig et al. (2021a). While all of these datasets

have proven invaluable to develop event-based computer vision

algorithms, there is still an enormous gap between event-based and

image-based publicly available datasets, and many authors are still

forced to develop their own. For example, Cordone et al. (2022)

generated their own classification data from de Tournemire et al.

(2020) to account for the additional “pedestrian” class.

Most models so far have either been standard Analog Neural

Networks (ANNs) like Gehrig et al. (2021b), exploiting gated-

recurrent units to achieve state-of the art accuracy on DSEC,

or hybrid analog-spiking neural networks like Lee et al. (2022),

combining a spiking encoder with an additional analog encoder

for grayscale images, followed by a standard ANN. Other models

have tried to leverage the temporal context by feeding the network

with not only the events themselves, but also information on

event timestamps, like the EVFlowNet model presented in Zhu

et al. (2018b). More recently, Zhang et al. (2022) showed temporal

information to be a key in accurately estimating both optical

flow and depth, achieving top results in the MVSEC and the

DSEC datasets thanks to their implementation of non-spiking leaky
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integrators with learnable per-channel time constants. While all

of these models do indeed achieve good levels of performance

on their test sets, none of them manage to take advantage of the

neuromorphic-friendly nature of event data, since analog blocks

or additional non-spiking information prevent a deployment on

neuromorphic chips.

More interesting to this work are spiking neural networks

applied to event vision, be it for depth or for optical flow estimation.

As far as optical flow is concerned, it is worth citing the works

of Hagenaars et al. (2021), which achieves state-of-the-art levels

of performance on the MVSEC Dataset with a fully spiking

architecture. More recently, Kosta and Roy (2022) showed that

spiking neural networks can indeed compete with their analog

counterparts in terms of accuracy, showing top results both in the

MVSEC and in the DSEC Dataset. Finally, Zhang et al. (2023)

achieves a remarkable accuracy on the MVSEC Dataset with a U-

Net-like architecture and a self-supervised learning rule. However,

all of these models are not implementable on neuromorphic

hardware, since they either use upsampling techniques which

are incompatible with the spiking nature of these devices (e.g.,

bilinear upsampling), or re-inject intermediate, lower-scale analog

optical flow predictions, thereby violating the spiking constraint by

introducing floating point values in an otherwise binary model. In

addition, the choice of a self-supervised learning rule, usually linked

to a photometric loss function presented in Yu et al. (2016), means

that optical flow estimations are only provided for pixels where

events occurred, therefore creating non-dense flow maps. Looking

at depth prediction though, we do find some interesting strategies

for fully deployable neuromorphic models. Finally, authors in

Rançon et al. (2022) presented in their StereoSpike model a fully-

spiking, hardware-friendly network achieving remarkable accuracy

on the MVSEC Dataset, thanks to stateless spiking neurons that

have greatly inspired our work.

While we have focused on optical flow and depth predictions

with event cameras, there have also been preceding works achieving

top results on other computer vision tasks using event datasets

and spiking neural networks. Such is the case of the works of Kim

et al. (2022), who performed semantic segmentation via supervised

training of a SNN, or the method described in Kirkland et al.

(2022) that addressed instance segmentation on event data using

a biologically-plausible learning strategy.

3. Materials and methods

3.1. Training dataset

Our study focuses on driving scenes, and we chose the DSEC

Dataset by Gehrig et al. (2021a) to train our model. Unlike

previous state-of-the-art datasets, such as the Muti-Vehicle Stereo

Event Camera (MVSEC) Dataset by Zhu et al. (2018a), which

provided different working scenarios (indoors/outdoors, day/night,

and four possible vehicle configurations: pedestrian, motorbike, car

and drone), the DSEC dataset only consists of driving scenario

sequences. However, it provides higher-quality ground-truth labels,

thanks to the finer processing of the LIDAR measurements.

In addition, this dataset also includes masks for invalid pixels,

i.e., pixels where the optical flow ground-truth is unknown. As

such, our metrics have only been evaluated on the valid pixels.

Furthermore, this dataset provides an open benchmark to submit

the results, which we used to determine our test metrics and

compare ourselves to other works.

3.2. Input event representation

Event cameras produce an asynchronous event ei when the

luminance variation at a given pixel reaches a given threshold:

ei = (xi, yi, ti, pi) (1)

where (xi, yi) are the coordinates of the pixel emitting the event, ti
the event’s timestamp, and pi its polarity (+1 if luminance increases,

and −1 otherwise). However, in order to perform our training, we

are forced to work with a discrete time model, so a pre-processing

of this event stream has to be made. We therefore transform the

input event stream into a sequence of frames of a given length in

miliseconds, that we call “input histograms”. These frames consist

of a two-channel (C = 2) tensor of size (C,H,W), where H

and W represent the camera’s resolution, i.e., the number of input

pixels and their position in the camera. At each pixel, the first

channel represents the number of positive input events that have

been triggered in that particular pixel during the frame’s duration,

and the second channel represents the number of negative events.

A representation of a one-channel input frame can be found in

Figure 1. While not a binary representation, like the representation

paradigm presented in Cordone et al. (2021), our choice is more

expressive, since event counts account for pixel relative importance

and therefore provide richer spatio-temporal information.

We acknowledge that this frame-based approach increases

the model’s latency, since event sensors can virtually function in

continuous time. However, it is imposed by the nature or our

training, and is a widespread technique for event-based learning

(see Gallego et al., 2022 on event representations). Moreover, we

can leverage the latency reduction by our frame duration choice:

the input stream being a continuous sequence of events, we are free

to cumulate them in windows of the desired duration.

3.3. Spiking neuron model

For our network, we chose a simple neuron model that can be

easily implemented with open-source Python libraries, in addition

to beingmuch less computationally expensive than closer-to-nature

neuron mathematical models. This model is the McCulloch and

Pitts (1943). It was implemented using the Spikingjelly library,

developed and maintained by Fang et al. (2020), due to their full

integration with the Pytorch library.

Our model is based on a stateless approach: the neuron’s

potential is reset after each forward pass. Indeed, the mathematical

neuron model presented by McCulloch and Pitts consists of

stateless neurons with Heaviside activation functions. This is

equivalent to stateless integrate-and-fire neurons, i.e., stateless

artificial neurons working as perfect integrators, but which are

reset at every time step. We therefore do not exploit the intrinsic

memory capabilities of spiking neurons, but rather perform a

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cuadrado et al. 10.3389/fnins.2023.1160034

FIGURE 1

Example of an input frame for 1 polarity. (A) Event cumulation at

each pixel for a given time interval. (B) Top view of the event frame.

We can see that events are heavily linked to contours (e.g., a zebra

crossing on the bottom part, or the windows on a building on the

right side), while regions with constant luminance (e.g., the road or

the sky) do not trigger events.

binary encoding of the information. While this approach may seem

counter-intuitive, it actually further reduces energy consumption,

since the reset operation is usually less energy demanding than the

neuronal leak, and no resources have to be allocated to long-term

memory handling. Consequently, we do not need to model such

phenomenon, and as a result our neuron model is more hardware

friendly than its leaky counterpart. Temporal context is handled by

3d convolutions in the encoder stages of the model, as we explain

in the following section.

3.4. Network architecture

Our network is based on a U-Net-like architecture

(Ronneberger et al., 2015). Indeed, U-Net has established

itself as a reference model when full-scale image predictions are

required, i.e., predictions at roughly the same resolution as the

input data. Our architecture is shown in Figure 2. After a first

convolution stage which increases the number of channels to

32 without modifying the input tensor size, each encoder stage

halves the tensor width and height while doubling the number of

channels. Conversely, each decoder stage doubles the tensor width

and height, and halves the number of channels.

In order to increase the network expressivity, each decoder

stage plays a role in the final prediction. Each decoder output

is upsampled into a full-scale, two-channel tensor (x- and y-

components of the optical flow estimation). All of the outputs

equally contribute to the network’s final estimation, which consists

of the combination of successive coarse predictions. The loss

function is evaluated after each update of the final neuron pool, thus

forcing the network’s prediction to be close to the ground-truth as

early as the first coarse update. This approach has been introduced

in Rançon et al. (2022) and proved to be beneficial to increasing the

overall accuracy.

The main features of our network are the following:

• Inspired by Temporal-Convolutional Networks, presented

in Lea et al. (2016) and Lea et al. (2017), we use three-

dimensional convolutions for our data encoding. Consecutive

input frames are combined by the temporal kernel via

unpadded convolutions, decreasing the temporal dimension

in size so it collapses to 1 when reaching the bottleneck.

Acting as delay lines, they allow to explicitly handle the

temporal dimension. The small temporal kernel size is

able to capture short-term temporal relationships, while

the increasing temporal receptive field due to consecutive

convolutions along the temporal dimension accounts for long-

term dependencies. Afterwards, the network architecture is

fully two-dimensional. By default, the temporal kernel size

we use is 5, which leads to a temporal receptive field of 21 ·

9ms = 189ms from the bottleneck and beyond.

• Skip connections between the encoder and the decoder consist

of the last component of the temporal dimension at the

corresponding encoding stage, since we believe the most

recent event information to be the most relevant for optical

flow estimation. We tested both sum and concatenate skip

connections and found that concatenations led to the best

estimations (these results are presented in Section 4.2).

• Given the relative importance of the residual blocks in the total

number of parameters, and in search of the lightest possible

model, we also analyzed the effect of reducing the number

of residuals on the network’s performance. We found that

the best model only necessitated one residual, unlike other

conventional U-Net-like architectures (e.g., Hagenaars et al.,

2021).

• Downsampling in the encoding stages is performed via

maximum pooling, instead of traditional strided convolutions,

to account for spikes within the kernel’s region, and not

so much about individual spikes. This approach has proved

to increase our model’s performance. To the best of our

knowledge, it is the first time this technique is used in a U-Net-

like spiking neural network for dense regression. In addition,

Gaurav et al. (2022) showed that this kind of downsampling

strategy is supported by neuromorphic hardware.
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FIGURE 2

Our proposed network architecture. 3D Encoders ensure the incorporation of a temporal context within the model. Downsampling is performed via

max. pooling to account for spatial spike activity. Each decoding stage is upsampled to contribute to the final network prediction.

• Since our final aim is to develop a model that could be

implemented on a neuromorphic chip, the whole upsampling

operation is performed via Nearest Neighbor upsampling,

which preserves hardware friendliness. Indeed, while other

widespread techniques, such as Bilinear Upsampling,

interpolate each “pixel”, Nearest Neighbor Upsampling

simply copies each value into a tensor of an increased size,

without modifying it. For further illustration, a graphic

representation of both upsampling techniques can be found

in the Supplementary material (Supplementary Figure 1).

• To further decrease the model’s weight, we used depth- and

point-wise separable convolutions (see e.g., Chollet, 2017)

everywhere in the model. These convolutions do not only

decrease the model’s number of parameters, but also reduce

the model’s overfitting, therefore increasing its performance

on unseen data.

It is important to specify that our approach is integer rather

than binary-based, since some of our skip connections are additions

instead of concatenations, and our bottleneck’s architecture is based

on tensor sums. Nevertheless, our approach remains hardware-

friendly, because:

• If the processing were asynchronous and event-driven, then

the spikes arriving through the residual connection would

typically arrive before the others. Thus, if there were two

spikes, one from the residual and one from the normal

connection, instead of doing an explicit ADD, both spikes

could be fed through the same synapse, and each spike would

cause an increment of w (instead of adding the two spikes

to get 2 and then multiplying by w to get the increment).

Moreover, even if the spikes arrived synchronously, they

would be processed sequentially using FIFO.

• Concatenation is equivalent to addition as a skip connection

if the weights are duplicated and kept tight. Indeed, if there

were two spikes, one from the residual and one from the

“normal” connection, instead of doing 2 · w, the algorithm

would perform w + w. Since the duplicated weights would be

tight, the number of trainable parameters would be the same,

and both operations would be equivalent.

3.5. Supervised learning method

Our model was trained with supervised learning using the

surrogate gradient descent, using a sigmoid function as our

surrogate gradient model. The ground-truth optical flow values

were those provided in the DSEC database. While traditional self-

supervised methods restrict their optical flow processing to pixels

where events occurred (e.g., Zhu et al., 2018b, Hagenaars et al.,

2021, or Kosta and Roy, 2022, to cite a few examples), our approach

permits dense estimations (thanks to surrogate gradient learning).

We trained ourmodel on the valid pixels given by the dataset masks

at each timestep.

Our loss function included two terms:

• A standard MSE-like loss between the value of the predicted

flow and its corresponding ground truth, with the following

formula:

Lmod =

∑Npixels

√

(predx − gtx)2 + (predy − gty)2

Npixels
(2)
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The term Npixels represents the number of valid pixels to be

trained at each timestep.

• In addition to a penalization in modulus discrepancy between

the vectors, we explicitly encourage the optical flow direction

to be the same between the ground-truth and the prediction.

This term has proven to be key to reduce noise in optical

flow predictions, since pixels with low optical flow values

consistently yield small modulus loss values regardless of their

direction. We used the following formula:

Lang =

∑Npixels acos(cθ)

Npixels
/ cθ =

Egt · Epred + ǫ

| Egt| · | Epred| + ǫ
(3)

where cθ is the cosine of the error angle between the predicted

and the ground-truth flow, and epsilon is a small parameter

(ǫ = 10−7) to ensure that no errors are found within the code

during execution. Furthermore, the values of cθ are clamped

between (−1+ ǫ, 1− ǫ) for the same reason.

The final loss function used to train the model is:

L = λmod · Lmod + λang · Lang (4)

From preliminary tests, we found that λmod = λang = 1 yields good

results, and we therefore decided to use these values.

As explained in Section 3.4 (Network Architecture), each

decoder’s output plays a role in the final optical flow estimation. As

such, and in order to encourage accuracy since the first decoder’s

upsampling, the loss function is evaluated for each consecutive

contribution to the final pool. After each upsampling of the

decoder’s output, the inner potentials of an IF layer are updated,

and the loss is evaluated on those potentials equivalent to summing

the spikes out of each decoder stage weighted by the corresponding

intermediary prediction layer.

Finally, in order to perform the back-propagation in

our supervised training method, we resorted to surrogate

gradient learning, introduced in Neftci et al. (2019), and already

implemented in the SpikingJelly library (Fang et al., 2020).

3.6. Training details

All of our calculations were performed on either NVIDIA A40

GPUs, or in Tesla V100-SXM2-16GBGPUs belonging to the French

regional public supercomputer CALMIP, owned by the Occitanie

region.

Trainings were realized with a batch size of 1, since it

is the optimal value we have found for our task. Although

unconventional, this result is in line with the one found in

Rançon et al. (2022), where a batch size of one was found

optimal for depth regression from event data using stateless spiking

neurons. We used an exponential learning rate scheduler, and

have implemented random horizontal flip as a data augmentation

technique to improve performance. Furthermore, thanks to our

stateless approach, we were able to train our network with

shuffled samples, instead of being forced to use the input frames

sequentially.

4. Results

We divided our dataset into a train and a validation split, and

our performance levels are reported with regard to the validation

set. The exact sequences used in each split can be found in

the Supplementary material. Nevertheless, we resort to the official

DSEC benchmark to compare ourselves to the state-of-the-art,

since it represents an objective, third-party test set. We now

proceed to present the results we obtained in our studies. Due to

the number of tests that we have run, all of the corresponding plots

are provided in the Supplementary material.

4.1. Finding the optimal kernel size

Convolutional neural networks have regained the interest of the

deep learning community during the past few years, thanks to their

ability to capture spatial relations within their kernel. Recently,

increased kernel sizes have been replacing the traditional 3 × 3

formula, with examples as relevant as Liu et al. (2022), which uses

7 × 7 kernels. Ding et al. (2022) presents a method to scale up the

kernel size to 31 × 31, and Liu et al. (2023) goes even further and

proposes to go up to 51 × 51 for the spatial kernel size, although

both of these methods rely on sparsity and re-parametrization to

achieve their goal. Starting from a naive U-Net like model, we

started our research by trying to optimize our spatial kernel size. In

the end, our results do match those presented in Ding et al. (2022),

showing that 7 × 7 kernels are optimal. Indeed, further increasing

the kernel size makes computational time explode, while accuracy

plateaus. We therefore decided to adopt a 7× 7 kernel in the spatial

dimension for our model.

Next, we optimized the temporal kernel size, directly linked

with the number of frames that we input to our model. Since we

want the temporal dimension to collapse to one in the bottleneck

thanks to unstrided convolutions in the temporal dimension, a

larger kernel size naturally requires a greater number of frames, and

therefore a heavier model. Nonetheless, it also takes into account a

longer temporal context, which may be beneficial for the network’s

accuracy. As such, we tested our simple model for temporal kernel

sizes of 3 (11 input frames), 5 (21 input frames), and 7 (31 input

frames). Our results show that increasing the kernel size up to 5

does indeed boost the model’s accuracy, but going beyond this size

does not translate into an accuracy improvement. Thus, a temporal

kernel size of 5 was chosen for the 3d convolutions in our model.

4.2. Finding the best network architecture

In order to find the best network architecture, we evaluated two

possible options:

• We compared sum vs. concatenate skip connections, since

concatenate skip connections are easier to implement in

neuromorphic hardware, but slightly increase the number of

parameters in the network.
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TABLE 1 Performance comparison for the di�erent proposed

architectures. All of the models have been trained for 35 epochs, using 21

input frames of 9 ms each.

Model Mod loss Angular
loss

Num.
params
(M)

1 residual + sum skip

connections

1.18 0.101 1.1

1 residual + cat skip

connections

1.10 0.094 1.2

2 residual + sum skip

connections

1.15 0.097 1.7

2 residual + cat skip

connections

1.16 0.109 1.8

The bold values indicate the best architecture, its performances obtained for each of the

metrics, and its number of parameters (in millions).

• Seeking to develop a model as light as possible, we also

characterized the effect of the number of residuals in the

network’s bottleneck on the model’s performance.

After training each of the models for 35 epochs, we found the

best model to be the 1-residual network with concatenate skip

connections, which amounts to a total of 1.22 million of parameters

and leads to an accuracy of 1.1 pixels/second of average end-point

error on our validation dataset, using 9 ms frames as an input in

all cases. The results regarding the architecture optimization have

been summarized in Table 1.

4.3. Optimizing the frame duration

Next, we focused our attention on the optimal frame duration

to accurately estimate optical flow, i.e., the total temporal context

the network processes when making a prediction. This parameter

is directly linked with the latency the model can achieve, since

optical flow estimations are only produced at the end of each frame

(provided that the input tensors are treated as a sliding window,

where only the last N=21 frames are considered).

We trained the network with frames of 4.5, 9, and 18 ms,

respectively. Our results show that the optimal frame duration was

9 ms, followed by 18 ms, and finally we get the worst performance

for frames of 4.5 ms. While it may seem counter-intuitive as a

results, since 4.5 ms frames contain a finer representation of the

event sequence, we believe this phenomenon is caused by the

lack of overall temporal context. Indeed, by using short frames,

the network is unable to extract longer-term dependencies, and

therefore to accurately predict optical flow. That is also why we

believe that 18m s frames, while coarser, do manage to better

capture these long term dependencies, and therefor provide a more

accurate estimation. These results, as well as all of the successive

optimization studies we have performed, can be found on Table 2.

4.4. Comparison with the state-of-the-art

We trained our best architecture on the whole DSEC dataset

for a total of 100 epochs. We evaluated our model on the official

TABLE 2 Performance comparison. The two best models have been

tested for di�erent slight modifications of the architecture, keeping the

number of parameters mostly unchanged.

Model Modifications Mod loss Angular loss

1 res + cat - 1.10 0.094

2 res + sum - 1.15 0.097

1 res + cat 4.5 ms frames 1.41 0.129

2 res + sum 4.5 ms frames 1.42 0.130

1 res + cat 18 ms frames 1.19 0.087

2 res + sum 18 ms frames 1.32 0.102

1 res + cat Combined polarities 1.14 0.092

2 res + sum Combined polarities 1.31 0.112

The bold values indicate the best architecture and its performances for each of themetrics. The

underline value is the best performance on the AAEmetric, obtained with an architecture that

nonetheless did not manage to beat the top-performing model.

TABLE 3 Comparison with the state-of-the art, obtained from https://

dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark/.

Model AEE (px/s) AAE (deg) Num. params (M)

E-RAF

(Gehrig et al.,

2021b)

0.79 2.9 5.3

Ours 1.71 6.3 1.2

MultiCM

(Shiba et al.,

2022)

3.47 14.0 -

The bold values indicate the best performance for each of the metrics, as well as the model

with the lowest number of parameters.

test set provided by DSEC. Results are shown on Table 3. In order

to provide a fair comparison, we only included results on the

official benchmark, and not those reported on custom validation

sets. While still far from the best models, we demonstrate the

power of spiking neural networks when applied to dense regression

in computer vision, achieving good levels of performance with a

fraction of parameters when compared to other models.

We also provide some of our model’s results on the validation

set, which can be found in Figure 3. These pictures show that,

even if the network was not explicitly trained to distinguish

image contours (since it was only trained on a selection of valid

pixels at each timestep), it is nonetheless capable of extracting

structural information within the scene and generalizing it, as

illustrated in the rightmost images (unmasked predictions) for

the given examples. These results demonstrate the model’s general

comprehension of the visual scene, and we believe represent a solid

understanding of the pattern of motion.

4.5. Ablation studies

Several ablation studies have been performed on our best model

to further demonstrate our claims, and we have gathered our

conclusions in the following paragraphs. Plots containing all of

these results can be found in the Supplementary material.
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FIGURE 3

Example predictions of our best architecture on our validation set.

For every picture, the leftmost image is the ground-truth, the middle

image shows our masked estimation (only on valid pixels), and the

rightmost image represents the unmasked estimation. (A) Optical

flow discontinuities due to vertical artifacts within the visual scene.

(B) The silhouette of the leftmost tree can be perceived on the

unmasked optical flow map. (C) Tra�c signs clearly distinguishable

on the right side. (D) Depicts the chosen colormap for optical flow

representation: Optical flow is encoded as an Lab image, where the

luminance channel represents the absolute magnitude of the flow,

and the a and b channels the di�erent directions.

4.5.1. Pooling vs. convolutional downsampling
Our results show that using maximum pooling instead of

strided convolutions is an efficient technique to downsample

spiking data. We believe that the reason behind this behavior is that

pooling is a way of densifying the tensors without changing their

spiking nature.

4.5.2. 3d vs. 2d encoding
We also compared our baseline 3d model with an equivalent

2d model, where the 21 input frames have been fed to the network

concatenated along the channel dimension, so that both models

have the same temporal context. We found out that fully 2-

dimensional models lead to decreased performance. We believe

this is due to the fact that, by using 2d convolutions, all the

temporal information is directly mixed during the first convolution

stage, therefore hindering the network from finding long-term

dependencies.

4.5.3. Loss function
We also analyzed the influence of the loss function on the final

results obtained. We compared our proposed loss model to two

single-term losses:

• Onemodel with only the norm of the error vector, but without

the angular loss term.

• One loss function with only a relative loss term:

Lrelative =
1

Npixels

∑Npixels

√

(predx − gtx)2 + (predy − gty)2

√

gt2x + gt2y + ǫ

(5)

This model penalizes deviations in the prediction relative to

the ground truth’s norm, and should therefore be able to

implicitly impose a restriction on angular accuracy.

Our results show that naively limiting the error’s norm is not

enough to achieve competitive results, and neither is limiting the

relative error. Indeed, by introducing a more aggressive term in

the loss function, we managed to force the network into implicitly

learning the optical flow’s structure, and therefore achieve better

accuracy.

It is surprising that the network with the two losses reaches a

lower Lmod than the network with Lmod only. This shows that the

second network gets trapped in a local minima and that adding the

Lang loss helps to get out of it.

4.5.4. E�ect of combining polarities on
performance

Our next study on input representation has consisted in

combining polarities into a single channel before feeding them to

the model. Polarities being closely linked to phenomena like color

or texture, we wish to study their influence on the final performance

levels. Indeed, if we imagine a gray background with a black shape

and a white shape following the same track, we would obtain

opposite polarity fronts, while the optical flow pattern would be

the same. We have therefore analyzed if polarities can be simply

combined into a total per-pixel event count.

However, our results show that keeping separate channels for

each polarities is beneficial for the network’s performance. We

believe this result is linked to the different dynamics linked to each

of the polarities, since different thresholds lead to different behavior

for luminance increments or decrements.

4.5.5. Skip connections in the bottleneck
Our final ablation study targeted the very first skip connection,

i.e., connecting the last encoder with the first decoder. Having

always kept it as a sum (slightly redundant, given the residual block

architecture) because of the high number of channels, we have

also tested transforming it into a cat skip connection. However, we

found out that it decreases the network’s performance while also
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TABLE 4 Performance comparison on the MVSEC dataset (indoor sequences), showing per-sequence and total average end-point error in pixels per

second.

Model indoor_flying1 indoor_flying2 indoor_flying3 AEE sum

EV-FlowNet (Zhu et al., 2018b) 1.03 1.72 1.53 4.28

Zhu et al. (2019) 0.58 1.02 0.87 2.47

Spike-FlowNet (Lee et al., 2020) 0.84 1.28 1.11 3.23

Back to Event BasicsEvf (Paredes-Vallés and

de Croon, 2021)

0.79 1.40 1.18 3.37

Back to Event BasicsFire (Paredes-Vallés and

de Croon, 2021)

0.97 1.67 1.43 4.07

XLIF-EV-FlowNet (Hagenaars et al., 2021) 0.73 1.45 1.17 3.35

XLIF-FireNet (Hagenaars et al., 2021) 0.98 1.82 1.54 4.34

Orchard et al. (2021) 0.83 1.22 0.97 3.02

Fusion-FlowNet (Lee et al., 2022) 0.56 0.95 0.76 2.27

Adaptive-SpikeNet (best ANN) (Kosta and

Roy, 2022)

0.84 1.59 1.36 3.79

Adaptive-SpikeNet (best SNN) (Kosta and

Roy, 2022)

0.79 1.37 1.11 3.27

FSFNFP (Apolinario et al., 2022) 0.82 1.21 1.07 3.10

FSFNHP−ADC (Apolinario et al., 2022) 0.85 1.29 1.13 3.27

Shiba et al. (2022) 0.42 0.60 0.50 1.52

Ours 0.58 0.72 0.67 1.97

Best result in bold, runner-up underlined. Starting from a model pre-trained on DSEC, we show state-of-the-art performance without modifying our pipeline.

increasing the number of parameters. We therefore decided to keep

it as a sum for all of the architectures.

4.6. Model evaluation on the MVSEC
dataset

In order to analyze the generalization capabilities of our

method, we also tested our model on the Multi-Vehicle Stereo

Event Camera Dataset (MVSEC), introduced in Zhu et al. (2018a).

We started by analyzing our model performance on the indoor

flying sequences. To do so, we took a model pre-trained for

DSEC, and optimized its weights on the MVSEC Dataset over

35 epochs. We followed a training approach akin to the one

adopted for the DSEC dataset, i.e., we only considered pixels

with either zero-valued ground-truth (x- and y- components

of the optical flow vector below a small threshold thr =

1e − 5) or with unknown flow values as invalid, and only

trained on valid pixels. The results we obtained, as well as a

comparison with other state-of-the-art models, can be found in

Table 4. We can see that we achieve state-of-the-art performance

levels on these sequences when compared to other existing

spiking neural networks, and top accuracy overall, even if our

architecture has not been optimized for such a vehicle/scenario

configuration.

Next, we also tested our model on the outdoor sequences

on MVSEC: training on outdoor_day2, and evaluation on

outdoor_day1. We present these results in Table 5. Although

our model leads to competitive results on all of the MVSEC

indoor sequences, it struggles to achieve competitive results on

MVSEC outdoor sequences, both when starting from a pre-trained

checkpoint or from scratch. We believe that this phenomenon is

due to a combination of factors:

• Our network architecture, and most precisely the spatial

kernel size, has been optimized for an optical flow prediction

of 480 × 640 pixels. Nevertheless, the MVSEC dataset was

recorded with a different event camera, and therefore may

demand a different kernel size to achieve top performance

levels.

• Our frame duration and overall temporal context have been

designed for a specific camera configuration and resolution.

Again, the use of a lower resolution camera leads to different

optical flow dynamics, and therefore to potentially different

temporal representation.

• Our training procedure (learning rate, scheduler, etc.) has

not been designed for such a low-resolution estimation,

and therefore further optimizations are needed to increase

accuracy.

• Finally, the outdoor_day2 sequence of the MVSEC dataset,

used for training on driving scenarios, consists of only

9 min of recording where high frequency vibrations are

constantly affecting the event camera (see Zhu et al., 2018b).

In addition, the event histograms are greatly impacted by

events caused by reflections on the car dashboard. These

noisy events may prevent from achieving competitive results

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1160034
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cuadrado et al. 10.3389/fnins.2023.1160034

TABLE 5 Performance comparison on the MVSEC dataset (outdoor

sequences), showing average end-point error in pixels per second.

Model outdoor_day1 (px/s)

EV-FlowNet (Zhu et al., 2018b) 0.49

Zhu et al. (2019) 0.32

ECNmasked (Ye et al., 2020) 0.30

Spike-FlowNet (Lee et al., 2020) 0.49

Back to Event BasicsEvf (Paredes-Vallés and

de Croon, 2021)

0.92

Back to Event BasicsFire (Paredes-Vallés and

de Croon, 2021)

1.06

XLIF-EV-FlowNet (Hagenaars et al., 2021) 0.45

XLIF-FireNet (Hagenaars et al., 2021) 0.54

Fusion-FlowNet (Lee et al., 2022) 0.59

Adaptive-SpikeNet (best ANN) (Kosta and

Roy, 2022)

0.48

Adaptive-SpikeNet (best SNN) (Kosta and

Roy, 2022)

0.44

FSFNFP (Apolinario et al., 2022) 0.51

FSFNHP−ADC (Apolinario et al., 2022) 0.48

Shiba et al. (2022) 0.30

Ours 0.85

Best result in bold, runner-up underlined. While far from the top performing contributions,

our base pipeline is able to learn to estimate optical flow from scratch, without any

optimization to make it tailored to the dataset and camera.

in these sequences, since they are nonetheless responsible

of inputting information to the network. In fact, only by

masking that section in both the input event histogram

and the associated ground-truth have we achieved training

on this scenario: otherwise, the network oscillates without

consistently increasing accuracy.

Nevertheless, our model achieves a certain level of learning on

this condition, and we are convinced that better results could

be obtained by optimizing the training pipeline for this scenario

(specially the frame duration and the kernel sizes). Taking into

account this learning, in conjunction with our competitive results

on indoor flying scenarios, we believe that these results demonstrate

the generalization capabilities of our approach, as well as its

applicability in a variety of conditions.

5. Discussion

Briefly, we have presented a hardware-friendly, lightweight

spiking model able to accurately estimate optical flow from event-

based data collected by neuromorphic vision sensors. We propose

an efficient temporal coding in the form of 3d convolutions

in the encoder that increases the temporal receptive field of

the deepest stages of the network. We also introduce a novel

angular loss function that, in conjunction with a standard

MSE-like loss, manages to boost performance by forcing the

algorithm to learn the implicit spatial structure. We use maximum

pooling as our downsampling strategy, thus densifying the tensors

in a neuromorphic-friendly fashion. Moreover, the successive

contributions of decoder outputs to the final prediction increase

the network’s expressivity, and allow us to achieve competitive

results without resorting to intermediate prediction re-injections.

Consequently, our model can be implemented in neuromorphic

hardware, thus resulting in an extremely energy efficient model that

can still achieve accurate predictions.

We believe our results contribute to promote spiking neural

networks as energy-efficient, real-world alternatives to traditional

computer vision systems, based on frame-based video treatment

and/or complex sensor data. However, we acknowledge that work

has yet to be done, since a lot of the intrinsic potential of

SNNs, namely their inherent memory handling capabilities, has

not been fully exploited in this study. Moreover, the convergence

of our experiments to an optimal batch size of 1, while having

indeed improved our model’s performance, greatly hinders the

training speed, since strategies such as data parallelization cannot

be employed. We therefore believe that these results can be further

improved, e.g., using techniques such as weight averaging or

network pre-training.

Future research lines should focus on further combining

different techniques in order to boost performance even further.

For instance, exploiting the intrinsic memory of spiking neurons

is indeed a potentially useful approach, but the increased

computational power linked to unrolling a stateful computational

graph makes the task challenging. Moreover, sensor fusion can also

be explored as an alternative to boost performance, especially since

most event cameras often also provide black and white images.

This approach could increase the network’s latency, as well as

making neuromorphic implementation challenging. Furthermore,

while temporal dependencies have been imposed a priori in our

model, they could also be natively learnt by the network. The

works of Khalfaoui-Hassani et al. (2021) present a way of increasing

kernel sizes without an increment in network parameters, capable

of achieving state-of-the-art performances. While only applied so

far for 1- and 2-dimensional convolutions, their method could

easily be adapted to our 3d approach.

Moreover, publicly available datasets usually lack challenging

conditions, such as crossing pedestrians or vehicles, which can limit

the network’s generalization capabilities. While we believe that our

proposed model is capable of understanding such situations (see

Figure 3C, where traffic signals are easily recognizable), it would be

desirable to train on more challenging scenarios.

Finally, we would like to address hardware efficiency and

implementation. We acknowledge that our approach does not

provide energy savings during training, since it is performed on

GPUs using standard ANN learning techniques, and therefore

suffers from the same energy consumption constraints as these

networks (plus the added memory usage due to the stockage of

the neuron’s membrane potential. However, energy savings can

be achieved when deployed on dedicated hardware, since they

are more energy efficient than GPUs thanks to their spiking

nature. Nonetheless, even if our model is hardware-friendly, and

therefore theoretically implementable on dedicated hardware, more

efforts can be dedicated toward making it easier to implement.

Indeed, hardware mapping would benefit fromweight quantization

(which would require less bits to store each synaptic weight)

or sparsity encouragement to fully exploit the neuromorphic
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hardware advantages over GPUs. These techniques, presented by

Orchard et al. (2021) and Apolinario et al. (2022), would not

only reduce energy consumption, but also facilitate potential future

implementations, and should be taken into account for actual

on-chip deployment.
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