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Background: Steady state visually evoked potentials (SSVEPs) based early

glaucoma diagnosis requires effective data processing (e.g., deep learning)

to provide accurate stimulation frequency recognition. Thus, we propose

a group depth-wise convolutional neural network (GDNet-EEG), a novel

electroencephalography (EEG)-oriented deep learning model tailored to learn

regional characteristics and network characteristics of EEG-based brain activity

to perform SSVEPs-based stimulation frequency recognition.

Method: Group depth-wise convolution is proposed to extract temporal and

spectral features from the EEG signal of each brain region and represent regional

characteristics as diverse as possible. Furthermore, EEG attention consisting of

EEG channel-wise attention and specialized network-wise attention is designed

to identify essential brain regions and form significant feature maps as specialized

brain functional networks. Two publicly SSVEPs datasets (large-scale benchmark

and BETA dataset) and their combined dataset are utilized to validate the

classification performance of our model.

Results: Based on the input sample with a signal length of 1 s, the GDNet-EEG

model achieves the average classification accuracies of 84.11, 85.93, and 93.35%

on the benchmark, BETA, and combination datasets, respectively. Compared

with the average classification accuracies achieved by comparison baselines, the

average classification accuracies of the GDNet-EEG trained on a combination

dataset increased from 1.96 to 18.2%.
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Conclusion: Our approach can be potentially suitable for providing

accurate SSVEP stimulation frequency recognition and being used in early

glaucoma diagnosis.

KEYWORDS

group depth-wise convolution, EEG attention, SSVEPs, stimulation frequency
recognition, EEG signal

1. Introduction

Glaucoma is one of the leading causes of blindness in the
world. The damage to visual function caused by glaucoma is
irreversible, and it can be difficult for the patients to realize this
disease until their vision is damaged. According to the World
Health Organization (WHO), the number of people living with
glaucoma worldwide reached 76 million in 2020 and will rise to
95.4 million by 2030 (Guedes, 2021). China is one of the countries
with the largest number of glaucoma patients. In 2020, the number
of glaucoma patients in China reached 21 million, of which 5.67
million were blind (Soh et al., 2021). Glaucoma is generally not
preventable, but most patients can maintain adequate vision in
later life if detected early and appropriately treated. Therefore,
early detection and diagnosis are significant for glaucoma blindness
prevention. Traditional methods for assessing functional loss in
glaucoma always adopt standard automated perimetry (SAP),
which requires considerable subjective response from patients. The
subjective assessment is limited by large test-retest variability, and
may result in late diagnosis or delayed detection of progressive
degeneration of retinal ganglion cells (RGCs).

Steady-state visual evoked potentials (SSVEPs) are typically
recorded by electroencephalography (EEG) and reliably applied
to brain-computer interface systems (BCIs). When exposed to a
fixed frequency of visual stimuli, the brain’s visual cortex produces
a continuous frequency-dependent response (Nuzzi et al., 2018).
This response known as SSVEPs can be used to assess functional
abnormalities in visual pathways (Geethalakshmi et al., 2022).
For glaucoma patients, due to the loss of peripheral vision,
some constant frequency of repeated stimuli can no longer be
received, so the corresponding stimulation frequency cannot be
detected from the EEG brain signal (Lin et al., 2015; Chen
et al., 2021, 2022a,b). Therefore, SSVEP can be considered as an
objective assessment of visual field damage caused by glaucoma.
For example, Lin et al., 2015 hypothesized that a brain region
corresponding to a visual field deficit would be less perceivable
and thereby would result in weaker SSVEP amplitude. Their study
demonstrated that the SSVEP dynamics in terms of amplitude is
capable of serving as objective biomarkers to assess visual field
loss in glaucoma. Medeiros et al., 2016 produced nGoggle, a
portable brain-based device, to assess the visual function deficits
in glaucoma. Moreover, Nakanishi et al., 2017 investigated the
ability of nGoggle equipment to discriminate glaucomatous from
healthy subjects in a clinic-based setting. The aforementioned
studies demonstrate the feasibility of using SSVEP signal to provide
objective assessment of visual field damage.

The SSVEPs-based early detection for glaucoma requires
effective analysis methods for recognizing stimulation frequencies.
Traditional analysis methods for SSVEP signal can be mainly
divided into two categories: spatial-spectral-temporal (SST) based
method (Mora-Cortes et al., 2018; Salelkar and Ray, 2020; Zhang
et al., 2020) and canonical correlation analysis (CCA) based
method (Liu Q. et al., 2020; Cherloo et al., 2022; Ma et al.,
2022). The former tries to extract SST features from the EEG
signal and use them to execute classification tasks. Based on
statistical analysis, the latter attempts to identify and measure
the associations between the SSVEP signal and reference signal
(e.g., sinusoidal signal). For example, Chen et al. (2015) construct
the filter bank CCA (FBCCA) which decompose SSVEPs into
multiple sub-band components under multiple pre-processing
filters, then fuse the classifications from all sub-band. Although
both achieve satisfactory results in SSVEPs-based applications,
they require manually predefined algorithms based on expert
knowledge to extract handcrafted features. This procedure is not
flexible and may limit the usage of the method in SSVEPs-based
applications. In recent years, convolution neural network (CNN)
based deep learning (DL) methods have been widely used in
processing SSVEPs-based frequency recognition tasks and achieved
excellent performance (Khok et al., 2020). Combined with existing
methods (e.g., SST analysis, CCA), CNN models use multiple layers
to progressively extract higher-level features from model input
and perform automatic feature extraction. Many advanced CNN-
based technologies have been proposed in the recent years. For
example, Li et al., 2022 proposed DSCNN, a dilated shuff CNN
model for actualizing EEG-based SSVEP signal classification. Yao
et al., 2022 constructed FB-EEGNet by fusing features of multiple
neural networks for SSVEP target detection. To achieve reasonable
model architecture with superior model performance, many studies
designed the deep learning models specifically suited to the domain
of EEG-based SSVEP signal classification. For example, Waytowich
et al., 2018 proposed a Compact-CNN for classifying asynchronous
SSVEPs. The Compact-CNN’s architecture is similar to EEGNet
(Lawhern et al., 2018), which performs two convolutional steps
(temporal convolution and depth-wise convolution) sequentially to
learn frequency and frequency-specific spatial filters, respectively.
Guney et al., 2021 designed a novel deep neural network (DNN)
to process the multi-channel SSVEP with convolutions across sub-
bands of harmonics, channels, and time and classify them at a fully
connected layer. Li et al., 2020 implemented a CNN-based non-
linear model, i.e., convolutional correlation analysis (Conv-CA),
which first uses CNNs at the top of a self-defined correlation layer.
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Further, it utilizes the correlation layer to calculate the correlation
coefficients between EEG and reference signals.

Previous studies of CNN-based SSVEP stimulation frequency
recognition (Waytowich et al., 2018; Li et al., 2020; Guney
et al., 2021) have usually adopted one-dimensional (1D) temporal
convolution to mimic a bandpass frequency filter for filtering
the signal of each EEG channel, followed by depth-wise spatial
convolutions to combine the channels to obtain a better frequency
pattern. Because the same 1D convolutional filter filters the data of
each EEG channel, different rows in the same feature map contain
the same EEG frequency components. The following depth-wise
spatial convolution is used to learn spatial filters for each temporal
filter, enabling the efficient extraction of frequency-specific spatial
filters. However, the brain signal generated from different regions
presents different harmonics in the same period (Atasoy et al., 2016;
Retter et al., 2021), the frequency-specific spatial characteristics
might be insufficient to reflect the diversity of brain signals in
different brain regions. In addition, regional neural complexity
and network functional connectivity may relate to the brain’s
information processing (McDonough and Nashiro, 2014). The
regional neural complexity reflects the richness or diversity of brain
signals in different brain regions, the more complex the regional
neural activity, the higher functional connectivity this region has
with other brain regions. Thus, it is reasonable to believe that
diverse frequency combinations across different EEG channels may
play an essential role in EEG-based brain activity classification. To
simulate the regional characteristics of the EEG signal and reflect
the diversity, we are interested in creating the different rows in
the single feature map containing different frequency components.
This motivates us to use different convolutional filters to process
the EEG signal of different EEG channels.

Our brain is a coherent information processing system
integrated by distributed and specialized networks (Ferraro et al.,
2018). The current theory of brain functional networks suggests
that the integration of specialized networks in the brain is facilitated
by a set of essential nodes (Shine et al., 2016; Ferraro et al., 2018).
The theory highlighted the significance of specialized networks and
the relation between different specialized networks in evaluating
brain function. Instead of using the connectivity of all brain
regions, the connectivity features of partial brain regions might be
more effective in representing different brain activities accurately.
However, most existing combination studies of the DL and brain
functional connectivity (BFC) focus on automatically learning the
global connectivity feature of all brain regions (Babaeeghazvini
et al., 2021; Avberšek and Repovš, 2022; Lin et al., 2022).
Few concentrate on automatically learning the local connectivity
features of specialized networks and the relations between different
specialized networks. Considering different brain states involve
different functional connectivity networks, we have reasons to
believe the EEG characteristics over the local BFC network
may contain useful classification information for discriminating
different brain activities. The critical step of learning specialized
network characteristics by the CNN model is identifying essential
nodes. The attention mechanism (Vaswani et al., 2017; Lv et al.,
2021) provides an automatic solution to identify essential nodes
from whole brain regions since it can assign high attention weights
for important regions. According to the definition in the field of
computer vision (Chen et al., 2020), temporal-wise attention can
assign weights to different EEG temporal segments collected in one

experiment trail. Channel-wise attention can assign a higher weight
to a more important feature map and refine feature maps. Spatial-
wise attention can identify important feature regions in a single
feature map. For example, Woo et al., 2018 propose convolutional
block attention module (CBAM), sequentially infers attention maps
using channel-wise attention and spatial-wise attention, then the
attention maps are multiplied to the input feature map for adaptive
feature refinement. To differentiate the three attention methods
mentioned above, we use the terminology of EEG channel-wise
to describe the attention operation for identifying important EEG
channels (i.e., essential nodes) from a single feature map. The
weight vector learned by the EEG channel-wise attention helps
us to identify the EEG channels which are not important for
the specialized network and emphasize the EEG channels which
are essential to the specialized network. In addition, we re-term
channel-wise attention as specialized network-wise attention to
make our study easier to comprehend.

This study addresses the SSVEPs-based frequency recognition
task as a multi-category classification problem. It proposes a
novel CNN model named group depth-wise convolutional neural
network (GDNet-EEG) to execute the task. To overcome the
problem of the frequency-specific spatial characteristics might be
insufficient to reflect the diversity of brain signals in different
brain regions, we construct group depth-wise convolutional filter,
which comprises C 1D depth-wise convolutional filter, to extract
as diverse regional characteristics as possible from raw EEG
data. Furthermore, to automatically learn the local connectivity
features of specialized networks and the relations between different
specialized networks, we propose EEG attention to sequentially
infer attention maps along two dimensions (EEG channel and
feature map): the former identifies essential brain regions to form
a specialized network in a single feature map, and the latter infers
important specialized networks across multiple feature maps. More
specifically, the GDNet-EEG model is comprised of several group
depth-wise convolutional layer. Each layer consists of multiple
group depth-wise convolutional filter that employs C different 1D
depth-wise convolutional filters to process the data outputted by the
previous layer. Each depth-wise convolutional filter is separately
utilized to process the signal of a single EEG channel and learn
regional characteristics originating from different brain regions.
C denotes the number of EEG channels, i.e., the row number of
the feature map in every convolution layer is the same as the
EEG channel number. We set K group depth-wise convolutional
filters to generate K feature maps and adopt the same operation
in the following convolution layers. Further, the EEG attention is
embedded into the GDNet-EEG for learning essential nodes (i.e.,
significant EEG channel) and meaningful specialized networks (i.e.,
important feature map). For a feature map generated by a group
depth-wise convolution layer, EEG attention first infers attention
maps along the EEG channel dimension. Then the attention maps
are multiplied by the feature maps for adaptive feature refinement.
The refined feature map concerns important brain regions essential
to a specialized network. After that, specialized network-wise
attention is utilized to give further feature refinement to the
different feature maps, highlighting the significance of different
specialized networks. The main contributions of this study are
depicted as follows:
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(1) Unlike the previous studies adopted 1D temporal convolution
followed by depth-wise spatial convolutions to extract
frequency-specific spatial characteristics, we propose
a deep neural network named GDNet-EEG, utilizing
group depth-wise convolutional filter to extract regional
characteristics from raw EEG data, for SSVEP stimulation
frequency recognition. The advantage of using group
depth-wise convolutional filter is that it can learn the
regional characteristics of the EEG signal and reflect the
diversity. The diverse frequency combinations across
different EEG channels may be beneficial for EEG-based
brain activity classification.

(2) Instead of using DL models to automatically learning
the global connectivity feature of all brain regions from
BFC matrix, we introduce attention mechanism to identify
essential nodes and form specialized connectivity feature
of the nodes to improve the performance of SSVEP
stimulation frequency recognition. The EEG attention,
containing EEG channel-wise attention and specialized
network-wise attention, is proposed to identify important
EEG channels from a single feature map and recognize
important feature map as meaningful specialized networks.

(3) We have used two publicly available SSVEP datasets and
their combination dataset consisting of the EEG data of
105 subjects with 40 target characters to validate the model
performance of the GDNet-EEG. The related results have
been presented to support the correctness of our study.

2. Materials and methods

2.1. Data description

Two SSVEP datasets (a benchmark dataset for SSVEPs-based
BCI (Wang et al., 2016) (benchmark for short) and a large-scale
benchmark database toward SSVEP-BCI application (BETA for
short) (Liu B. et al., 2020)) and their combination dataset are
used to validate the classification performance of the GDNet-EEG
model. Each experiment of the benchmark dataset contains six
sessions, and each session is comprised of 40 trials. The time length
of each trial is 6 s which consists of three parts: gaze shifting
of 0.5 s guided by a visual cue, visual stimulation of 5 s, and
an offset of 0.5 s followed by the visual stimulation. A target
character flickers at a specific frequency on screen in each trial,
and the subject is asked to gaze at the flickering character for
visual stimulation. The 40 stimulation frequencies are 8–15 Hz with
0.2 Hz strides, and there is a 0.5πphase difference between adjacent
frequencies. The EEG data collected in each trial is down-sampled
to 250 Hz.

The BETA dataset is similar to the benchmark dataset, and
the main difference between them is illustrated as follows. The
character matrix layout resembling the traditional QWERTY
keyboard is used for the stimulus presentation in the experiment
of BETA collection. In contrast, the corresponding layout in the
experiment of the benchmark dataset is arranged in a square. The
BETA dataset is collected from 70 healthy subjects. Each subject
is asked to participate in 4 sessions of the experiment, and each
session also consists of 40 trials. The time length of each trial is also

comprised of three parts: gaze shifting of 0.5 s guided by a visual
cue, visual stimulation of 2 or 3 s, and a rest time of 0.5 s followed by
the visual stimulation. Visual stimulation of 2 s and 3 s are given to
the first 15 subjects and the remaining 55 subjects, respectively. The
EEG data collected in each trial is also down-sampled to 250 Hz.

2.2. Data preprocessing

A Chebyshev TypeIfilter filters the EEG signal collected in
each trial with cutoff frequencies from 6 to 90 Hz and stopband
corner frequencies from 4 to 100 Hz. The multi-channel EEG data
collected in one trial is a 2D time series which can be represented by
a data matrix X of size C∗Len, where C denotes the number of EEG
channels, and Len means the signal length of visual stimulation in
one-trial EEG record. The record is split into t segments {X1, X2,...,
Xt}. The size of each segment Xi is C∗l, where l is the ratio of Len
and t. Each segment Xt has a corresponding classification label Lt ,
and segments collected from the same trial have the same label. The
Lt means the target frequency of the visual stimulus given to the
subject in the corresponding trial.

2.3. GDNet-EEG construction

Figure 1 shows the architecture of the GDNet-EEG model,
which contains a regular convolution layer, four group depth-
wise convolution layers, a depth-wise separable convolution layer,
and a dense layer. Note that the regular convolution layer and
the depth-wise separable convolution layer are inherited from the
EEGNet model to support the feature learning. Considering the
pooling operation in the convolution results may cause the loss of
meaningful features, we did not add a pooling layer to the GDNet-
EEG model. Table 1 shows the specific parameters setting of the
GDNet-EEG model. The specific operations of the GDNet-EEG are
illustrated as follows:

2.3.1. Regular convolution layer
This layer aims at generating multiple frequency-specific

feature maps which will be fed into the group depth-wise
convolution layer for further feature learning. The input of the
regular convolution layer is represented by Xi∈RC∗Ns (i.e., a volume
of 64 × 50 in the case of C = 64, Ns = 50 = T × = fs
with T = 0.2 s and fs = 250 Hz). As shown in Table 1,
64 convolutional filters are utilized to process the input data,
and the size of each filter is set to 1 × 17. Every filter
sweeps the temporal and EEG channel dimensions in one
stride. This layer is followed by batch normalization and
linear activation layer. It utilizes the “SAME” padding mode
to pad the input of the convolutional layer if the filter does
not fit the input. The output of the layer is represented by
z1∈RC∗Ns∗64.

2.3.2. Group depth-wise convolution layer
The motivation for using this layer is to learn diverse regional

EEG characteristics and deepen the neural network for achieving
more abstract EEG features. This layer contains three subparts:
group depth-wise convolutional layer, a batch normalization layer,
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FIGURE 1

The architecture of the GDNet-EEG model for SSVEP stimulation frequency recognition.

TABLE 1 Specific parameters setting in the GDNet-EEG model, where C means the number of EEG channels, T denotes the number of time points, and
N indicates the number of SSVEP stimulation frequencies.

Layer Layer type Output size Hyperparameters

1 Input (C, Ns)

2 Conv2D (C, Ns, 64)


1 × 17, 64, stride 1

BatchNorm

Linear Activation

 × 1, mode = same

3 Group depth-wise Conv2D (C, Ns /16, 64)


1 × 17, 64, stride 2

BatchNorm

Linear Activation

 × 4, mode = same

4 Dropout (C, Ns /16, 64) rate = 0.5

5 Depth-wise Conv2D (1, Ns /16, 64)

 C × 1, 64, stride 1

ELU Activation

 × 1, mode = valid

6 Point-wise Conv2D (1, Ns /16, 16)


1 × 1, 16, stride 1

BatchNorm

ELU Activation

 × 1, mode = same

7 Dropout (1, Ns /16, 16) rate = 0.5

8 Dense Nclass

and a linear activation layer. Unlike the traditional depth-wise
separable convolutional operation, which utilizes a single depth-
wise convolution to convolve the data of each feature map,
the group depth-wise convolution employs C 1D depth-wise
convolutional filters to convolve the EEG data of C channels
simultaneously. More specifically, we can consider the C 1D depth-
wise convolutional filters as a filter set that can produce a 2D
feature map, and K (i.e., K = 64) filter sets produce K 2D feature
maps. The Figure 1 has K dashed line frames in black, and each
contains a filter set. The long frames with different colors (e.g., red,
yellow, blue, or green) represent different depth-wise convolutional
filters. The output of the group depth-wise convolution layer is
represented by a three-dimensional (3D) feature cube comprised
of a feature map, temporal, and EEG channel dimensions. If
l = 0, layer l is the input layer, with the input being EEG

fragment Xm∈RC∗Ns∗64. Let l (1 ≤ l ≤ N) be a group depth-
wise convolution block. Then, the input of block l comprises
ml−1 feature maps from the previous block. The output of block
l consists of ml feature maps. Yc,l

i denotes the row of the ith feature
map in block l where c∈[1, C]. The Yc,l

I is computed as follows:

Yc,l
I = f

Bc,l
i +

ml−1∑
j = 1

Kc,l
i,j ∗ Yc,l−1

j

 (l > = 1), (1)

where Bc,l
i is bias matric, and Kc,l

i,j is the convolution filter
connecting the jth feature map in block l-1 with the ith feature
map in block l. After the convolution operation, the leaky rectified
linear unit (LeakyReLU) is used as the activation function f(·).
The ith feature map is obtained by stacking Yc,l

i s together. Every
convolution filter shifts along the temporal dimension by stride
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s1 (i.e., s1 = 2). The block l is followed by the dropout layer
with a dropout rate of 0.5 and adopts the “SAME” padding mode
considering the original elements in the layer input. From Table 1,
we can see that the filter size (i.e., 1× 17) equals the size used in the
2D convolutional filter. There are 4 group depth-wise convolution
block in the layer, and the final output of the layer is represented by
z2∈RC∗(Ns/16)∗64. Compared with the depth-wise convolution layer
in the Compact-CNN to classify 12 categories of SSVEP stimulus
frequency, the group depth-wise convolution layer in our model
covers the receptive field of the same size. It has a deeper model
architecture with fewer parameters which is beneficial for avoiding
over-fitting.

2.3.3. Depth-wise separable convolution layer
The motivation for using this layer is to (1) reduce the

number of parameters to fit and (2) explicitly decouple the
relationship within and across feature maps by first learning a
kernel summarizing each feature map individually, then optimally
merging the outputs afterward. More specifically, it firstly uses
depth-wise spatial convolution in which the kernel shape is C∗1
to convolve each 2D feature map into a 1D vector along the
temporal dimension of each feature map. Then it utilizes point-
wise convolution to combine information across feature map
dimensions. The depth-wise spatial convolution layer employs
exponential linear unit (ELU)’s nonlinearity and “VALID” padding
mode. The filter number of the depth-wise spatial convolution
layer is set to 64, and the output of the layer is represented
by z3∈R(Ns/16)∗64. It is noteworthy that the depth-wise spatial
convolution filter sweeps the data along temporal and EEG channel
dimension in one stride and C stride, respectively. The point-wise
layer is followed by batch normalization and dropout layer. The
ELU activation and “SAME” padding mode are adopted in the
point-wise convolutional layer. The point-wise convolutional layer
employs the convolution filter with size of 1 × 1 to process the
data, and the filter number of the point-wise convolution is set to
16 to reduce the number of parameters to fit. The output of the
point-wise convolutional layer is denoted by z4∈R(Ns/16)∗16.

2.3.4. Dense layer and the corresponding loss
function

The feature maps outputted by the depth-wise separable
convolution layer are flattened and concatenated into one vector,
fed into the dense layer. It is noteworthy that the GDNet-EEG
model only contains one dense layer for avoiding high computation
complexity. Let l be a dense layer, the identity activation function is
utilized as activation function g(·), and the output of the ith unit in
layer l is computed as follows:

Zl
i = g

 Ns∑
j = 1

wl
i,jZ

l−1
j

 , (2)

where wl
i,j, and Zl−1

j denote the weights of the ith unit in layer l and
the outputs of layer (l-1), respectively. The outputs of the dense
layer are passed into a softmax function for yielding stimulation
frequency recognition results. Thus, the very first input Xi is
predicted as ŷ argmax s(Zl

i), where s∈[0,1]Nclass (i.e., Nclass = 40)
is the softmax output of the dense layer.

2.4. EEG attention module

Figure 2 shows the overall process of the EEG attention
module. In the GDNet-EEG, the group depth-wise convolution
block output is defined as feature map F ∈ RC × M × Len, in which
C represents the number of EEG channels, M means the number of
feature maps, and Len indicates the length of convolution feature.
F is fed into the EEG attention module as input. The EEG attention
module sequentially infers a 2D EEG channel-wise attention map
MEC ∈ RC × M × 1 and a 1D specialized network-wise attention
vector MSN ∈ RM × 1 × 1. The process of the EEG attention
module could be illustrated as:

F
′

= MEC (F) × F, (3)

F
′′

= MSN

(
F
′
)
× F

′

, (4)

where F’ is the EEG channel-wise refined feature, calculated by
multiplying EEG channel-wise attention map MEC and the input
feature F. The final output F,” the feature for refining the specialized
network, is calculated by multiplying specialized network attention
MSN and the EEG channel refined feature F’. The final output F” is
fed into the next group depth-wise convolution block.

Figure 3 shows the overall process of the EEG attention
module. The module includes two sequential parts: EEG channel-
wise attention sub-module and specialized network-wise attention
sub-module. The EEG channel-wise attention sub-module chooses
essential brain regions from each feature map, regarded as a
specialized network. The specialized network-wise attention sub-
module acts on the feature map refined by the EEG channel-
wise attention and generates an attention vector to represent the
importance of different specialized networks. As the top part of
Figure 3 shows, we have generated the EEG channel-wise attention
map along the feature map dimension. Every feature map generated
by the previous convolution layer is downsampled along the
convolution feature dimension using both average and maximum
pooling. Every feature map is down-sampled into a 1D vector
whose length is the same as the EEG channel number. The data
representation of the average-pooled feature FEC

avg∈ RC × M × 1 and
max-pooled feature FEC

max∈ RC × M × 1 are 2D matrix, in which the
row represents the EEG channel, and the column means feature
map. We stack the FEC

avg and FEC
max together as the input of a

separable convolution layer, which uses M 1∗1 convolution filters
to separately convolve the pooled feature stack along the EEG
channel axis and generate M vectors. Every vector is passed into
a sigmoid function to assign attention weight for EEG channels
in every feature map. M attention weight vectors constitute the
2D EEG channel-wise attention map MEC. The EEG channel-wise
attention map is computed as follows:

MEC (F) = σ
(

f M;1∗1 ([AvgPool (F) ;MaxPool (F)
]))
=

σ
(

f M;1∗1
(
[FEC

avg; F
EC
max]

))
, (5)

where σ means the sigmoid function andf M;1∗1 denotes a separable
convolution network.

As the bottom part of Figure 2 illustrates, the input of
the specialized network-wise attention is the feature maps
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FIGURE 2

EEG attention integrated with a convolution block in GDNet-EEG.

FIGURE 3

The overall process of the EEG attention module. The module includes two sequential parts: EEG channel-wise attention sub-module and
specialized network-wise attention sub-module.

refined by the EEG channel-wise attention sub-module. These
are the dot multiplication results of the 2D EEG channel-
wise attention map MEC and the original feature map F.
The feature maps refined by the EEG channel-wise attention
sub-module are pooled by using two pooling operations:
average-pooled feature FSN

avg ∈ RM × 1 × 1 and max-pooled
feature FSN

max ∈ RM × 1 × 1. The two vectors are forwarded
separately to a shared network composed of a multi-layer
perceptron (MLP) with one hidden layer to produce two refined
pooled vectors. After the shared network is applied to each
descriptor, we merge the output feature vectors using element-wise
summation. The specialized network-wise attention is computed
as follows:

MSN (F) = σ

(
MLP

(
AvgPool

(
F
′′

))
+MLP

(
MaxPool

(
F
′′

)))
= σ

(
W1

(
W0

(
FSN

avg

))
+W1

(
W0

(
FSN

max

)))
, (6)

where σ denotes the sigmoid function, W0 and W1 are the MLP
weights shared for average-pooled vector FSN

avg and max-pooled
vector FSN

max.

3. Results

3.1. Experimental setup

The EEG data collected during the visual stimulation period
is kept. To split the raw EEG data collected in each session into
EEG segments, we remove the EEG data collected during the gaze
shifting of 0.5 s guided by a visual cue and an offset of 0.5 s
followed by the visual stimulation. The benchmark dataset contains
8,400 trials and 40 categories, and the time length of the flickering
visual stimulation in each trial is 5 s. The BETA dataset consists
of 11,200 trials and 40 categories. For the first 15 participants
and the remaining 55 participants in the BETA dataset, the time
length of the flickering visual stimulation in each trial is 2 and
3 s, respectively. For generating the input of the GDNet-EEG and
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other comparison models, we first extract the raw EEG data of
each trial of the two datasets to form data samples and assign the
corresponding flickering character as the label to each data sample.
Further, we apply a sliding window with the step of ratio × 250 on
each data sample and generate the final input samples in a non-
overlapping manner. For example, assuming the ratio equals 0.4,
the data shape of each input sample is 100uNc, and the Nc denotes
the number of EEG channels (i.e., 64).

Because longer EEG segments contain more information
about brain activity, the model performance for target frequency
identification can be improved by increasing the segment length
T. Considering this fact, we investigated the impact of segment
length T ranges [0.2, 0.4, 0.6, 0.8, and 1.0] on model performance.
More specifically, when the number of data points of each input
sample is 50, meaning the ratio is set to 0.2, and segment length T
representing the time length of each input sample is 0.2 s, the total
number of input samples of the combination dataset for training
and testing models is 366,000. The models are trained with a batch
size of 64, and mini-batch gradient descent and Adam optimizer
with a learning rate of 0.001 are used to optimize the model
parameters. An early-stop training strategy is adopted to train the
models. Ten-fold cross-validation is applied to divide the dataset
into training data and testing data, and the average classification
accuracy (ACC) rate, sensitivity (SEN), and specificity (SPE) and
the corresponding standard deviation (STD) of them are employed
as model performance metrics. The above metrics are calculated
using the following formulas:

ACC = (TP+TN)/(TP+FP+FN+TN), (7)

SEN = TP/(TP+ FN), (8)

SPE = TN/(TN+ FP), (9)

where TP denotes true positives, TN denotes true negatives, FP
denotes false positives, and FN denotes false negatives.

3.2. Model training and further details

The GDNet-EEG and other comparable models are
implemented by Pytorch and trained with a Tesla A100 GPU.
The GDNet-EEG model is initialized by sampling the network
weights from Gaussian distribution with 0 mean and 0.01 variance.
Categorical cross-entropy is used as the loss function to train
the model by comparing the probability distribution with true
distribution. More specifically, the EEG data collected in one
trial is represented by (X, Y), where X∈RC∗Len and Y∈RNclass. As
mentioned above, X is split into t segments {X1, X2,..., Xt} and
segments collected from the same trial have the same label Y. To
train the GDNet-EEG, we select the EEG signal of Db trials as a
batch of data to train the model in each iteration. The loss function
of the categorical cross-entropy is computed as follows:

−1
t ∗ Db

t∗Db∑
i = 1

Nclass∑
j = 1

yij log
(
sij
)
+ λ|w|2, (10)

where λ (i.e., λ = 0.001) denotes the constant of the L2
regularization. sij∈[0,1]Nclass and yi represent softmax output for

the input segment Xi and the corresponding frequency label of
the input segment Xi, respectively. w means the weights of the
GDNet-EEG model. The GDNet-EEG model is trained by two
stages: the first stage is trained by the benchmark dataset and the
second stage is trained by the BETA dataset. Note that the second
stage re-initializes the network with the weights trained by the
first stage and fine-tunes the weights to fit the data distribution of
the BETA dataset. The model training strategy originates from the
consideration of inter-dataset statistical variations.

3.3. Comparison baselines

Five kinds of CNN models are reproduced as baseline
approaches for result comparison. To perform the SSVEPs-
based stimulation frequency recognition task, we reconstruct the
output layer of these models to distinguish 40 target stimulation
frequencies. The simplified description of the baseline approaches
is depicted as follows:

EEGNet (Lawhern et al., 2018): The network starts with a
temporal convolution to learn frequency filters and then uses
depth-wise convolution to learn frequency-specific spatial filters.
The depth-wise convolution combines all EEG channels to obtain a
better frequency pattern.

Compact-CNN (Waytowich et al., 2018): The network is a
variant of the EEGNet for classifying the SSVEP signals. Unlike the
EEGNet, the dense layer of the Compact-CNN does not adopt the
max-norm constraint function to the kernel weights matrix.

DeepConvNet (Schirrmeister et al., 2017): The model is a deep
convolution network for end-to-end EEG analysis. It is comprised
of four convolution-max-pooling blocks and a dense softmax
classification layer. The first convolutional block is split into a first
convolution across time and a second convolution across space
(electrodes). The following blocks utilize standard convolution
operation with a large filter whose width is equivalent to the
number of feature maps.

Shallow ConvNet (Schirrmeister et al., 2017): The network
is a shallow version of the DeepConvNet and contains one
convolution-max-pooling block and a dense softmax classification
layer. Compared with the deep ConvNet, the temporal convolution
of the shallow ConvNet adopts a larger kernel size. After the two
convolutions of the shallow ConvNet, a squaring nonlinearity, a
mean pooling layer, and a logarithmic activation function followed.

Convolutional correlation analysis (Li et al., 2020): The network
consists of a signal-CNN branch and a reference-CNN branch. The
former is comprised of three convolutional layers, and the latter
contains two convolutional layers. The output of the two branches
is fed into the dropout layer for regularization. A correlation layer
is followed by the dropout layer for calculating the correlation
coefficients of the output of the two branches. A dense layer and
softmax activation function is applied as the final classification
layer.

FB-SSVEPformer (Chen et al., 2022c). This is the first
Transformer-based deep learning model for SSVEP classification.
The frequency spectrum of the SSVEP signals is extracted by filter
bank technology and fed into SSVEPformer, which further learns
spectral and spatial characteristics by self-attention mechanism for
final frequency classification.
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Filter bank CCA (Chen et al., 2015). This method tries to
make use of harmonic SSVEP components to enhance the CCA-
based frequency detection. By incorporating the fundamental and
harmonic SSVEP components in target identification, the method
significantly improves the performance of the SSVEP-based BCI.

3.4. Ablation studies

On the one hand, we design a comparison experiment to
compare the classification performance of the GDNet-EEG model
and its variations. The motivation of designing this comparison
experiment is to validate the main innovations of our model, such
as group depth-wise convolution and EEG attention module. On
the other hand, the effect of EEG channel number on the model
performance is also validated for demonstrating whether our model
can recognize more informative SSVEP features from the signal of
multiple EEG channels or not.

3.4.1. Comparison results between the
GDNet-EEG model and its variations

The main innovation of our model mainly includes two
aspects: (1) GDNet-EEG is a deep convolution architecture using a
group depth-wise convolutional filter to extract as diverse regional
characteristics as possible from raw EEG data. (2) EEG attention
consisting of EEG channel and specialized network-wise attention
is proposed to refine EEG feature of single EEG channel and
recognize specialized networks to improve the model performance
of SSVEPs-based target stimulation frequency recognition. To
validate the model performance of the GDNet-EEG affected by the
above two aspects, we design the following models: (1) we adopt
a regular convolutional filter to substitute the group depth-wise
convolutional filter in the GDNet-EEG; (2) we implement a shallow
version of the GDNet-EEG, comprised of two group depth-wise
convolutional layers; (3) we remove the EEG attention module of
the GDNet-EEG; (4) the EEG channel-wise attention is removed
from the GDNet-EEG; (5) the specialized network-wise attention is
removed from the GDNet-EEG; (6) Instead of using EEG attention
module, we embedded CBAM block into the GDNet-EEG model
for refining the feature maps learned by the group depth-wise
convolution layer We use model 1 model 6 to denote the five
models for simplification.

The model performance affected by the signal length of the
input sample is investigated. Figure 4 gives average classification
accuracies obtained by the GDNet-EEG and model 1 model 6
over 10-fold cross-validation, and error bars indicate standard
errors. The figure shows that the GDNet-EEG outperforms other
models in classification accuracy across the three datasets in various
signal lengths. As the signal length increases, the classification
accuracy of different models shows an upward trend. This result
shows that the EEG signal with a longer time length contains a
more apparent characteristic pattern, which facilitates the deep
learning models to generate more accurate decisions. Especially
in the signal length of 1 s, the GDNet-EEG model achieves the
highest classification accuracy of 84.11, 85.93, and 93.35% on
the benchmark, BETA, and combination datasets, respectively.
The models trained on the combination dataset obtained better
model performance than the models trained on the benchmark

dataset and BETA dataset, which may be attributed to the impact
of dataset size on the deep learning model. Compared with the
model 1 which is implemented by a regular convolutional filter,
the GDNet-EEG obtains better classification accuracy, indicating
the superiority and rationality of the group depth-wise convolution
layer. The shallow GDNet-EEG (model 2) achieves the lowest
accuracy, indicating the deep layer structure might provide an
accuracy increment for the GDNet-EEG. The superiority of the
EEG attention is also validated by comparing model 3 model 5 with
the classification accuracy of the GDNet-EEG. More specifically,
the classification rate of the model 3 is lower than the classification
rate of our model, as well as the classification performance of model
4 or model 5 is also worse than the classification performance of
the GDNet-EEG, demonstrating the EEG attention module can
improve the classification performance of the GDNet-EEG. The
comparison results between classification rate of model 4 and
model 5 indicate the specialized network-wise attention seems to
be capable of better boosting the classification performance of our
model. By comparing the classification performance of model 6
with the classification performance of the GDNet-EEG, we can
know the EEG attention module might be more suitable for refining
representational EEG feature and improve the model performance
for target frequency identification.

3.4.2. Effect of EEG channel number on the
model performance

Note that the EEG channel location is arranged by international
10-10 EEG system. Although previous studies demonstrated the
EEG channels that are placed over the occipital and parietal regions
provide perhaps the most informative SSVEP signals, we want to
validate the effectiveness of our approach on using the data of
varying number of EEG channel. Table 2 gives the classification
results (ACC, SPE, SEN, and their corresponding STDs) of our
model is reported versus varying number of channels and 1.0 s of
stimulation. We conducted five experiments to validate the effect
of varying number of EEG channel on the model performance, the
channel number and the corresponding channel name are given as
follows:

• three EEG channels (labeled by O1, Oz, and O2) that are placed
over the occipital (O) regions;
• six EEG channels (labeled by O1, Oz, O2, POz, PO3, and PO4)

that are placed over the occipital and parietal- occipital (PO)
regions, it is noteworthy that PO denotes the EEG channel
placed between occipital and parietal regions;
• on the basis of the six EEG channels, we add another three

EEG channels that are placed over PO regions, the nine EEG
channels are labeled by O1, Oz, O2, Pz, PO3, PO5, PO4, PO6,
and POz;
• thirty-two EEG channels that are placed over occipital,

parietal, central, and central-parietal regions.
• Sixty-four EEG channels are placed over all brain regions.

The results demonstrate that there is an increasing tendency
of the classification metrics of our approach as the EEG
channel number increases, indicating the data collected from
all EEG channels can help to improve the model performance.
In addition, it is noteworthy that based on the combination
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FIGURE 4

Average classification accuracies obtained by GDNet-EEG and model 1∼model 6 over 10-fold cross-validation. Error bars indicate standard errors.

TABLE 2 Classification results (ACC, SPE, SEN, and their corresponding STDs) of our model is reported versus varying number of channels and
1.0 s of stimulation.

Channel
number

Benchmark BETA Combination

ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%) ACC (%) SPE (%) SEN (%)

3 65.32± 1.96 68.95± 2.12 63.58± 70.52± 1.74 69.72± 3.26 72.56± 2.51 86.16± 2.07 83.47± 1.85 88.73± 2.36

6 68.89± 2.52 70.32± 1.73 65.49± 72.46± 1.38 69.89± 2.79 73.85± 1.86 86.73± 1.96 84.59± 2.20 89.39± 1.82

9 75.28± 1.15 78.64± 1.58 73.24± 76.57± 2.21 74.87± 2.58 77.31± 2.70 91.27± 1.47 89.76± 1.63 92.26± 2.18

32 80.19± 1.09 81.79± 1.17 79.37± 82.91± 1.93 79.41± 2.90 83.46± 1.93 91.52± 2.15 89.50± 2.37 91.87± 2.60

64 84.11± 1.28 85.27± 0.93 83.81± 1.70 85.93± 1.36 83.26± 2.14 86.97± 2.36 93.35± 1.59 91.24± 1.54 94.12± 1.67

dataset, the classification metrics of 9 EEG channels are
close to the classification metrics of 32 EEG channels while
lower than the classification metrics of 64 EEG channels.
This result indicates the EEG channels that are placed over
the occipital and parietal regions might provide the most
informative SSVEP signals while other channels might be
informative as well.

3.5. Comparison studies

The ablation study shows that the GDNet-EEG model achieves
the best classification accuracies based on the three datasets with
the input sample length of 0.8 and 1 s. To further validate the model
performance of the GDNet-EEG, we present average classification
accuracies obtained by GDNet-EEG and five other models over 10-
fold cross-validation using the signal length of 0.8 and 1 s. Figure 5
shows that the average classification accuracies of the other five
model baselines trained on a combination dataset decreased from
1.96 to 18.2% compared to the GDNet-EEG. It indicates that the
GDNet-EEG can produce more robust features than existing EEG-
oriented deep learning methods and improve the discriminability
between different stimulation frequencies. Compare with FB-
SSVEPformer, our model achieves better classification rate based
on the combination dataset, indicating the superiority of the

GDNet-EEG based on the dataset with larger scale. In addition,
the average classification accuracies of the FBCCA are lower
than the classification accuracies of the GDNet-EEG model across
the three EEG datasets, while the Conv-CA trained on the
benchmark and BETA datasets outperformed the GDNet-EEG
in average classification accuracies. Since the technical route
of the Conv-CA and the GDNet-EEG is different, it gives us
a cue for adapting the model architecture of the GDNet-EEG
by integrating the CCA method to discriminate stimulation
frequencies.

4. Discussion

Glaucoma is a common eye condition caused by a damaged
optic nerve and can lead to vision loss if not diagnosed and
treated early. The SSVEPs-based BCI application can generate
brain signals when human looks at something flickering. If
a patient has a blind area in a region, the signals extracted
from these stimuli are weak, and it is reflected on the visual
response map. That is, the patient cannot accept the stimulation
from the flickering object at the field of vision loss occurred.
Thus, the SSVEPs-based BCI application, e.g., visual speller,
can diagnose glaucoma (Lin et al., 2015; Nakanishi et al.,
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FIGURE 5

The average classification accuracies obtained by GDNet-EEG and five other models over 10-fold cross-validation using a signal length of 0.8
and 1 s.

2017; Khok et al., 2020). Based on SSVEPs-based BCI application,
accurate glaucoma diagnosing requires effective EEG analysis
methods to discriminate stimulation frequencies. Machine learning
methods, especially deep learning, can achieve high accuracy in
EEG-based classification tasks. However, most EEG-oriented deep
learning methods focused on applying existing techniques to the
EEG-based brain activity analysis task rather than proposing new
ones specifically suited to the domain (Rasheed and Extraction,
2021). The standard well-known network architectures were
designed for the data collected in natural scenes (e.g., natural
images) and did not consider the EEG-based brain activity’s
peculiarities. Therefore, research must understand how these
architectures can be optimized for SSVEPs-based classification
tasks.

The peculiarities of EEG-based brain activity at least include
the following two aspects: regional characteristics and network
characteristics. The former can be represented by the temporal
and spectral features of the signal generated from a single brain
region. The BFC can represent the latter via learning all brain
regions’ global and local connectivity features. Although many
existing studies extract temporal, spectral, and spatial features
to represent the regional and network characteristics and feed
them into deep learning models for generating decision results
(Rocca et al., 2014; Amin et al., 2019; Su et al., 2020), they are
not end-to-end deep learning frameworks. Convolution operation
using the 1D convolutional filter is the priority choice for
building the end-to-end deep learning framework for SSVEPs-
based BCI applications (Waytowich et al., 2018). Unlike the
previous studies using the regular 1D convolutional filter to
learn EEG features, we utilize group depth-wise convolution
operations containing a set of 1D convolutional filters and
use each filter to convolve the data of the corresponding
single brain region. An attention mechanism is adopted to
identify important EEG channels from a single feature map
and recognize significant feature maps as specialized brain
networks.

An ablation study and comparison study are implemented to
validate the performance of our proposed method in discriminating
stimulation frequencies. From the experiment results described
in Figures 4, 5 we can conclude that the average classification
accuracies achieved by the models trained on the combination
dataset are better than the average classification accuracies of the
models trained on the benchmark and BETA datasets. The average
classification accuracies obtained via the models trained on the
BETA dataset are better than the models trained on the benchmark
dataset. The reason can be explained from the aspect of deep
learning model performance affected by the dataset size. As we
know, insufficient training data can lead to poor performance
of deep learning models. Small training and testing datasets will
result in underfitting the deep learning model, generating an
optimistic and high variance estimation of model performance.
By observing the experiment results of the ablation study, we
can see an upward trend of average classification accuracies along
with the signal length increasing. This result coincides with the
experiment result of other studies (Li et al., 2020; Guney et al.,
2021), which indicates better classification accuracy can be obtained
by lengthening the stimulation duration (i.e., signal length of
input sample). In addition, the comparison results between the
average classification accuracies obtained by the GDNet-EEG
using a regular 1D convolutional filter. Additionally, our method
demonstrates the superiority of the group depth-wise convolution
operation. Compared with EEGNet and Compact-CNN, our
model’s group depth-wise convolution layer covers the receptive
field of the same size and has a deeper model architecture with fewer
parameters. The higher classification accuracies achieved by our
model indicate that the architecture of our model can capture more
robust EEG features to discriminate stimulation frequencies. The
ablation study also validates that using an attention mechanism can
improve the classification accuracies of models in discriminating
different stimulation frequencies.
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Our proposed GDNet-EEG has three potential improvement
directions: (1) This study is a pilot study for glaucoma diagnosing
by implementing an effective deep learning method for SSVEPs-
based stimulation frequency discrimination. The datasets used
in this study are collected from healthy participants. Collecting
an SSVEP dataset from glaucoma patients is a feasible route
for making our method more available in SSVEPs-based BCI
application of early glaucoma diagnosis. (2) Inspired by the method
of using CCA to discriminate stimulation frequencies, we plan to
use a self-attention mechanism (e.g., Transformer model) (Vaswani
et al., 2017) to calculate how similar between stimulation signals
and reference signals and utilize the similarity to generate more
robust EEG feature for discriminating stimulation frequencies.
(3) Although the experimental results have demonstrated that
group depth-wise convolution and EEG attention facilitates the
GDNet-EEG to achieve promising classification performance in
discriminating SSVEPS-based stimulation frequencies, this result
may be unable to provide strong support for clinical treatment
that is associated with EEG biomarkers. Because DL methods are
essentially black boxes, we require novel methods to open the box
and visualize the feature learned by the DL model. To this end,
an emerging technique known as explainable artificial intelligence
(AI) (Gunning et al., 2019) enables the understanding of how DL
methods work and what drives their decision-making. We plan
to use the explainable AI method to visualize the critical brain
regions and significant specialized networks and further validate
our method’s performance.

5. Conclusion

In this study, we propose a novel deep learning model named
the GDNet-EEG, which is tailored to learn regional characteristics
and network characteristics of EEG-based brain activity to perform
the SSVEPs-based stimulation frequency recognition task. The
group depth-wise convolution is proposed to extract temporal
and spectral features from the EEG signal of each brain region
and represent regional characteristics as diverse as possible. Based
on the output of the group depth-wise convolutional layer, EEG
attention consisting of EEG channel-wise attention and specialized
network-wise attention is designed to identify essential brain

regions and form significant feature maps as the specialized brain
functional networks. The experiment results demonstrate that our
method outperforms the existing deep learning models tailored
to process EEG data on two publicly SSVEPs datasets (large-
scale benchmark and BETA dataset) and their combined dataset.
Our approach could be potentially suitable for providing accurate
stimulation frequency discrimination and being used in the early
glaucoma diagnosis using SSVEP signals.
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