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In deep neural networks, representational learning in the middle layer is essential

for achieving e�cient learning. However, the currently prevailing backpropagation

learning rules (BP) are not necessarily biologically plausible and cannot be

implemented in the brain in their current form. Therefore, to elucidate the learning

rules used by the brain, it is critical to establish biologically plausible learning

rules for practical memory tasks. For example, learning rules that result in a

learning performance worse than that of animals observed in experimental studies

may not be computations used in real brains and should be ruled out. Using

numerical simulations, we developed biologically plausible learning rules to solve

a task that replicates a laboratory experiment where mice learned to predict the

correct reward amount. Although the extreme learning machine (ELM) and weight

perturbation (WP) learning rules performed worse than the mice, the feedback

alignment (FA) rule achieved a performance equal to that of BP. To obtain a more

biologically plausible model, we developed a variant of FA, FA_Ex-100%, which

implements direct dopamine inputs that provide error signals locally in the layer of

focus, as found in the mouse entorhinal cortex. The performance of FA_Ex-100%

was comparable to that of conventional BP. Finally, we testedwhether FA_Ex-100%

was robust against rule perturbations and biologically inevitable noise. FA_Ex-

100% worked even when subjected to perturbations, presumably because it could

calibrate the correct prediction error (e.g., dopaminergic signals) in the next step

as a teaching signal if the perturbation created a deviation. These results suggest

that simplified and biologically plausible learning rules, such as FA_Ex-100%,

can robustly facilitate deep supervised learning when the error signal, possibly

conveyed by dopaminergic neurons, is accurate.

KEYWORDS

backpropagation, feedback alignment, deep learning, neuromorphic engineering,
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1. Introduction

Nowadays, deep learning with the backpropagation rule (BP) is very popular because

of its high performance (Schmidhuber, 2015); accordingly, neuromorphic engineering has

garnered attention (Richards et al., 2019). One of the merits of BP is that it automatically

obtains an appropriate representation of features in the middle layers without manual

tuning. BP efficiently leverages the explicit and repetitive function y = f(x) for neural

networks to calculate gradients for updating synaptic weights. However, BP faces challenges,

such as the vanishing gradient problem (Schmidhuber, 2015) and, more importantly,
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GRAPHICAL ABSTRACT

Schematic illustration of three learning rules: BP, backpropagation; FA, feedback alignment; and FA_Ex-100%, feedback alignment with 100%

excitatory neurons in middle layer. BP requires the information in W2 to backprop. FA requires heterogeneity in the tentative impact of the middle

layer neurons on the output. FA_Ex-100% is the most biologically plausible in the sense that it can be computed at a synaptic triad only with locally

available information as explained below, but its performance is fairly good and comparable to that of BP. With the notations, yi1 : = f
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· xj, whose Wi
2 is replaced by a random number Bi

for FA and by 1 for FA_Ex100%. Therefore, for FA_Ex-100%, the synaptic weights in the middle layer are updated by the following rule:

(1W)ij = −0.01 ∂J

∂W
ij

1

= −0.01 xj θ (Ii) e, where θ is a step function and Ii is the current input to neuron i. This can be interpreted as

(1W)ij ∝ prei × postj × dopamine. Interestingly, simplified and biologically plausible learning rules like FA_Ex-100% work robustly as far as the error

signal, possibly conveyed by dopaminergic neurons, is accurate.

struggles to backpropagate across the many layers of information

required for fine-tuning synaptic weights (Lillicrap et al., 2020).

That is, BP is not necessarily biologically plausible because it

requires sophisticated information that propagates over long

distances. What synaptic learning rules are adopted by the brain?

The simplest candidate has no learning in the middle layers.

An extreme learning machine (ELM) that sets the synaptic weights

in the middle layers to random initial values and updates only

the synaptic weights in the output layers, similar to reservoir

computing, could be implemented in the brain. However, the

performance of ELM is limited because it fails to fully exploit the

potential of deep neural networks, as the neural representations in

the middle layers do not improve during the training period.

The second well-known candidate is weight perturbation (WP),

where synaptic weight changes in the middle layers are randomly

sampled, similar to Markov chain Monte Carlo (MCMC) (Lillicrap

et al., 2020). In this learning rule, the proposed synaptic weight

changes are adopted if they reduce the error, which is conveyed

as a teacher signal, possibly by the dopaminergic neurons (Schultz

et al., 1997; Eshel et al., 2015, 2016; Tian et al., 2016; Watabe-

Uchida et al., 2017; Kim et al., 2020; Amo et al., 2022). In other

words, the gradients are not analytically computed like BP but are

obtained “numerically” through trial-and-error. However, WP is

inefficient as it cannot immediately identify the steepest descent

direction, like BP, but rather explores better synaptic weights using

random walks.

The third candidate is the recently developed feedback

alignment (FA) and its variants (Lillicrap et al., 2016; Nokland,

2016; Frenkel et al., 2021). FA updates synaptic weights in the

middle layers using a modified backpropagation rule, where theW2

term, which represents the synaptic weight vector to the output

layer, is replaced with a fixed ([-1,1]-uniformly) random vector

B. FA should successfully complete learning; for example, if W2

approaches B by the end of learning, consistent with the learning

assumption (W2 = B). Note that the difference between BP and

FA resides in the learning of synaptic weights in the middle layers;

however, the learning rule for synaptic weights in the output layers

remains common for both rules. Because FA is fairly heuristic, there

may be room for improvement.

The candidates for the learning rule that the brain implements

can be narrowed down by comparing the performances of FA and

its variants to those of BP (see also Scellier and Bengio, 2017; Song

et al., 2020, 2022; Meulemans et al., 2021; Millidge et al., 2022;

Salvatori et al., 2022 for other potential learning rules). Learning

rules that underperform the behavioral performance of mice, for

example, are unlikely to be implemented in the brain.

However, most benchmarks in previous studies on FA and its

variants were unsatisfactory because they used image recognition

tasks. (1) There is no evidence that dopaminergic signals are used

as error signals for learning in the primary and other visual cortices.

(2) Specifically, there is no evidence that the “middle layers” in the

visual system exhibit enough plasticity depending on the training
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images and their labels. (3) The BP for conventional convolutional

neural networks specialized in image processing is too complex

to be implemented in the brain. (4) The object recognition task

requires excessively long training sequences, which do not end

while the animals are alive. Given that the performance of various

learning rules can heavily depend on the tasks imposed, it is very

important to impose a biologically plausible task when comparing

different learning rules as candidates implemented in the brain.

That is, the mathematical neural network models to be constructed

should cover the brain regions where the “middle layers” display

enough plasticity for a given task.

Therefore, we focused on the plasticity in the entorhinal

cortex (Igarashi et al., 2014, 2022; Igarashi, 2015, 2016), where

dopaminergic inputs are known to exist, and constructed a

mathematical model to explain it as learning in the middle

layer of a deep supervised neural network. A previous study

reported that during an experiment in which mice performed a

task to obtain a water reward, the entorhinal cortex displayed

plasticity, which can be viewed as representation learning in the

middle layer, with dopamine serving as a teacher signal (Lee

et al., 2021). Thus, it is worth modeling this olfactory system

to elucidate learning rules in the middle layer of the brain.

Furthermore, knowledge of the network structure of the olfactory

system, which is evolutionarily conserved to some extent, can

be utilized for mathematical modeling (Hiratani and Latham,

2022). We used a basic mathematical model of the olfactory

system as a multilayer neural network, including the olfactory

cortex (sensory input layer), entorhinal cortex (middle layer), and

prefrontal cortex (output layer). In this study, we compared the

learning performance of this model under different learning rules.

A graphical summary is presented in Graphical Abstract.

2. Materials and methods

In this study, we performed numerical simulations in which

a three-layer network solved a generalized XOR task (k-dXOR

task) using various learning rules and learning parameters. All

numerical calculations were implemented using handmade code in

Python 3.9.13. The Python codes used to reproduce all figures are

publicly available.

2.1. k-dXOR task

We simulated a laboratory task in which the output neuron

learned the reward amount (Wang et al., 2013). As the expected

reward amount is a continuous variable, we used a regression task

rather than a classification task.

As the input-output function to learn, we used the k-dXOR

task, where, of the d dimensions of the inputs, the first k inputs are

relevant and necessary to predict the output, and the remaining d-k

inputs are irrelevant. Specifically, the true input-output function to

learn is assumed to be

y = sign(x1)sign(x2) . . . sign(xk).

To generate the training and test artificial data, we first

randomly generated the x-coordinates (x1, x2, . . . , xn) and then

determined y according to the above equation. xi was generated

randomly according to the normal distribution, with its expectation

randomly chosen as+1 or−1 with a probability of 0.5 and standard

deviation of 0.01:

xi = (random.rand() > 0.5)∗2− 1+ random.randn()∗0.01

A nonlinear task was considered because it is too easy to reflect

a realistic laboratory task. Thus, we used k = 2 because it is known

that rodents can perform reversal learning, which can be regarded

as k = 2 (Roesch et al., 2007) and therefore, a realistic brain model

should be able to solve the k-dXOR task, at least for k = 2. In the

reversal learning, the emergence of the cue (or the first) stimulus

upsets the entire task and reverses the output.

Learning performance was measured using the squared error

of the test data or the predicted squared error. In each figure, the

average and standard deviation of the predicted squared errors for

100 repeated simulations with different random seeds are plotted.

2.2. Three-layer neural network

Throughout the paper, we used a three-layer neural network

consisting of the input layer (tentative olfactory cortex or olfactory

bulb; Cury and Uchida, 2010; Miura et al., 2012; Haddad et al.,

2013; Uchida et al., 2014), the middle layer (tentative entorhinal

cortex; Nakazono et al., 2017, 2018; Funane et al., 2022), and

the output layer (tentative prefrontal cortex; Starkweather et al.,

2018). The neural activity in the input layer represents the input

x of the k-dXOR task, whereas the neural activity in the output

layer represents the output y. Note that we began with the

olfactory representation at the olfactory cortex as an input for the

neural network, although there are other early areas for olfactory

information processing before the olfactory cortex, such as the

olfactory bulb and olfactory receptor neurons. However, if there is

low plasticity in these early areas, we believe that we can begin with

a higher-level area (olfactory cortex) to simplify the model.

The number of neurons in the input layer is the same as that

in the dimensions of the task inputs. The number of neurons

in the output layer is one because the output is a scalar (one-

dimensional) representing the expected amount of reward. The

numbers of neurons in the middle layer were 10 or 20 for the case

depicted in Figure 1 and 20 for the cases depicted in Figures 2–7.

Initial values of synaptic weights W1 and W2 were randomly

chosen according to the uniform distribution [−0.01, 0.01].

Then, for training, the weights were updated using one of the

following rules.

2.3. Learning rules

The learning rules are described as follows: Note that the

difference resides only in the weight update rule for the middle

layers. That is, the weight-update rule in the output layer is

common for all learning rules; thus, it is the same as that for BP.
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FIGURE 1

Predicted mean squared errors for four learning rules: BP, FA, WP, and ELM. The input dimension is 12, of which the relevant input dimension is two

and the noise input dimension is 10. The learning rate η = 0.02 for tanh or η = 0.01 for ReLU is chosen to be large enough to maximize training

speed while preserving stability. The performance of FA is comparable to that of BP. The performances increased with number of middle layer

neurons and with ReLU as an activation function.

FIGURE 2

Predicted squared errors for BP, FA, FA_normal, FA_Ex-80%, and FA_Ex-100% with various noise input dimensions. The relevant input dimension is

two, the number of middle layer neurons is 20, and the learning rate is η = 0.01. The performances for the variants of FA are fairly good and

comparable to those of FA and BP.

2.3.1. Extreme learning machine
ELM (Huang et al., 2004, 2006) sets the synaptic weights in the

middle layers to random initial values and updates only the synaptic

weights in the output layers, similar to reservoir computing. In

other words, the ELM never learns in the middle layers. Therefore,

if the neural network does not obtain adequate representation in the

layer immediately before the output layer, the task cannot be solved

successfully. Specifically, a task can be solved only if the output is

represented by the weighted sum of the neural activities in the layer

immediately before the output layer.
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2.3.2. Weight perturbation
For the synapses in the middle layer, WP (Lillicrap et al., 2020)

chooses a candidate for the small weight update 1W1 randomly.

Then, if the change of weights reduces the squared error for the

training data, WP adopts the update and modifies the synaptic

weight as W1 = W1 + 1W1. In other words, a randomly

“perturbed” weight vector 1W1 is adopted if the perturbation

decreases the cost function. To be precise, at each epoch, the

elements of a candidate matrix (1W1)ij are randomly proposed

according to a normal distribution with a mean and standard

deviation of 0 and ǫ(=0.005), respectively.

2.3.3. Back propagation
BP (Richards et al., 2019; Lillicrap et al., 2020) updates the

synaptic weights using the usual backpropagation rule for both the

middle and output layers. The weight vector is updated according

to the gradient vector to minimize the cost function (squared

error). Graphical Abstract presents a concrete equation for the

weight update.

2.3.4. Feedback alignment
FA (Lillicrap et al., 2016) updates synaptic weights in themiddle

layers using themodified backpropagation rule, where theW2 term,

which represents the synaptic weight vector to the output layer, is

replaced by a fixed ([-1,1]-uniformly) random vector B. FA should

finish learning successfully; for example, if W2 approaches B by the

end of learning, consistent with the learning assumption (W2 =

B). Graphical Abstract presents a concrete equation for the weight

update. The variants of FA are described in the main text.

2.4. Leaning parameters

The learning rate η was set at 0.02 for tanh or 0.01 for ReLU for

the case depicted in Figure 1, 0.01 for the case depicted in Figure 2,

and 0.005 for the cases depicted in Figures 3–7. To simplify the

comparison, we did not schedule the learning rate across the

epochs. That is, we maintained a fixed learning rate within each

simulation and did not change it across training epochs (time).

This approach allowed us to use a learning rate that maximized

performance and ensured a fair comparison of different learning

rules. Note that as long as the training proceeds stably, the final

performance does not essentially depend on the learning rate,

except for its effect on learning speed. For example, halving the

learning rate doubles the number of learning epochs required

for training.

The batch size was fixed at eight. In each epoch, the cost

function was measured for eight samples of training data, and a

weight update was performed to reduce the cost function once per

epoch. Thus, one epoch corresponds to a single weight update. Note

that, as long as the total sample size for training remains the same,

the batch size has minimal impact on the final performance. For

example, if the batch size is reduced to four from eight, the number

of epochs required to complete the learning doubles. However, the

total number of samples (experimental trials) required to achieve a

given level of accuracy remains unchanged. Using this trial count,

one can judge whether the number of trials required is biologically

realistic, which is discussed further in the Discussion section.

3. Results

3.1. Comparison of learning rules: ELM, WP,
FA, and BP

In this study, using numerical simulations, we compared the

performance of deep neural networks with different learning rules

(ELM, WP, FA, and BP) for a task that simulated a laboratory

experiment wheremice predicted reward amounts (Lee et al., 2021).

One important goal here is to judge the biological plausibility of

the learning rules. Thus, a learning rule that underperforms in

laboratory mice is unlikely to be adopted in the brain. Indeed, there

is an easy and unique rule to update synaptic weights toward the

output layer. Thus, the update rule in the output layer is common

across different learning rules. However, the learning rule that

performs best in the middle layer remains uncertain. Consequently,

we compared the performance of the different synaptic update rules

in the middle layers.

First, we compared the prediction performance of a three-layer

neural network trained with ELM (Huang et al., 2004, 2006), WP

(Lillicrap et al., 2020), BP (Richards et al., 2019; Lillicrap et al.,

2020), and FA (Lillicrap et al., 2016). Although the details of each

learning rule are available in the Materials and Methods section,

they are briefly summarized below. ELM never updates the synaptic

weights in the middle layers and maintains them at their initial

randomized values. In other words, ELM only updates the synapses

leading to the output layer.WP randomly proposes (small) synaptic

updates in the middle layer and adopts them if they reduce the

squared error for the training data in the current batch. BP updates

synaptic weights using the conventional backpropagation rule for

both the middle and output layers. Note that the synaptic update

rule for the output layer is common to the four rules, and thus is

the same as that for BP. FA updates synaptic weights in the middle

layers using a modified backpropagation rule where the W2 term,

which represents the synaptic weight vector to the output layer, is

replaced by a fixed ([-1,1]-uniformly) random vector B. FA should

successfully complete learning; for example, if W2 approaches B

by the end of learning, consistent with the learning assumption

(W2 = B).

To simulate the laboratory task where mice learned the

expected amount of reward (sugar water), we trained a three-

layer network consisting of the input layer (piriform cortex, N =

12), middle layer (entorhinal cortex, N = 20), and output layer

(prefrontal cortex, N = 1) to learn the artificial data generated

by the k-dXOR task, which is a generalization of XOR to various

input dimensions. Further details are provided in the Materials and

Methods section. Taking advantage of the fact that task difficulty

can be controlled by the number of neurons in the middle layer and

the input dimensions, we set the number of neurons in the middle

layer to 20 and the input dimension d to 12, of which the dimension

of the input that is relevant to the output k is 2 and the irrelevant

dimension dnoise is 10. We used k = 2 entirely because rodents

can perform reversal learning, which can be regarded as k = 2

(Roesch et al., 2007). Therefore, a realistic brain model should be
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FIGURE 3

Predicted squared errors when f’(s) is shifted along y-axis. As an activation function, ReLU is used. The learning rate is 0.005 (commonly used for

Figure 3 and later and the half of that for Figures 1, 2). The number of middle layer neurons is 20 (left–bottom). The epoch (learning time) when the

predicted squared error falls below 0.1 is plotted against the x-shift. The learning with FA or its variants is robust even if f and f’ is inconsistent.

able to solve the k-dXOR task, at least for k= 2. Note that although

we use rather small noise input dimensions dnoise, which makes

the task less challenging in the real brain, the number of input or

sensory neurons is relatively large. However, we believe that the

number of neurons in themiddle layers is also high in the real brain.

Therefore, the same task can be solved by increasing both numbers

in a balanced manner (Hiratani and Latham, 2022). However,

owing to the limitations in computational resources, this study

used a rather limited number of neurons to perform simulations, as

described above. Future work may explore GPU-based simulations

to increase both the input- and middle-layer neuron counts in a

balanced manner. Note that as an activation function, we used

either tanh (Figure 1, top), which was used in the original FA study

(Lillicrap et al., 2016), or ReLU (Figure 1, bottom), which generally

enhances the learning performance (Krizhevsky et al., 2017).

Figure 1 (top-left) demonstrates that the accuracy increases

or the predicted squared error decreases with epochs (learning

time). The performance was outstanding for conventional BP

and its variant FA, where the predicted squared error dropped

below 0.1, effectively solving the task of predicting sugar water

amounts. FA, even in its original form, performed slightly better

than BP, suggesting that biologically plausible FA may have

the potential to work fairly well, particularly for specific tasks.

In contrast, ELM and WP struggled to solve this problem.

ELM and WP excel at simpler tasks, such as k-dXOR tasks

with dnoise = 0 (d-k = 0, no noise input). However, as the

input dimension increases and the task complexity increases,

ELM and WP fall short. Given that the brain likely deals with

a large number of noise inputs and solves challenging tasks,

ELM and WP cannot apparently be adopted by the brain.

Moreover, the training period for ELM and WP exceeds 1,000

epochs, further suggesting their implausibility in biological learning

processes.

The reasons why ELM and WP underperformed may be

attributed to several factors. When ELM does not have a sufficient

number of neurons in the middle layers, such as in the current

setting, its neural representations in the middle layer immediately

before the output layer are too inadequate to solve the task. WP,

which essentially randomly explores synaptic weights in the middle

layers, can, in principle, eventually learn any task, but it tends to

require an impractically long time to converge. This is because

there are too many possibilities to explore randomly when the

dimensions of the input and the space to explore are large. For

example, because WP can only propose one synapse at each epoch

for a possible update, it takes at least as many epochs as the

number of synapses to explore all directions. Given the efficiency

of exploration, BP, which skillfully utilizes the steepest descent

(greedy) direction, can converge much faster, particularly for high-

dimensional tasks.

Figure 1 (top-right) shows that increasing the number of

neurons in the middle layer to 20 expedited the training, possibly

owing to the enhanced representational capacity. In fact, the errors

for FA and BP fall below 0.1 more quickly. In general, performance

(generalization error) is determined by the balance between the

difficulty of the task and the structure of the neural network, such

as the number of neurons in the middle layer. Although the original

FA uses the suboptimal weight update vector 1W, which is not

necessarily parallel to gradients like BP, the performance of FA is

only slightly lower than that of BP. The time (number of training

epochs) for FA to fall below 0.1 takes only 40% longer than that of

BP. In fact, the performance of FA is much better than that of ELM

or WP, making it a practical choice for solving the task.

Figure 1 (top-right) shows that replacing tanh with ReLU as

an activation function, which is a widely recommended empirical

practice, enhances performance, especially for BP and FA. ELM

and WP did not show any noticeable enhancements. Notably, the
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predicted squared error for FAwith ReLU quickly reached 0.1 in the

early phase of the training. In contrast, after a considerable number

of epochs, the predicted squared error for BP decreased below

0.001, faster than that for FA. However, because this asymptotic

accuracy can be easily tuned by parameters, such as the scheduling

of learning rates, and may be unnecessarily high for laboratory

experiments, the initial phase may be more important than the

asymptotic phase.

While the superiority of FA over ELM and WP in the

experimental results is expected, exploring functions that depend

on only a few input features is novel. Therefore, Figure 1 compares

different learning rules under identical conditions, similar to a

Rosetta Stone.

In the following subsection, we exclusively use ReLU as

an activation function, as it demonstrates superior performance

compared to tanh, as shown in Figure 1. When we used ReLU, FA

demonstrated a striking performance in the early phase of training.

Therefore, we continue to examine FA as a promising candidate

for biological learning. ELM and WP are not considered in the

subsequent figures, as they yielded relatively poor performance.

Next, we attempted to further improve FA and BP by tuning

various learning parameters. It is especially worth developing a

variant of the FA, as the FA in its original form has already

shown fairly good performance. Among themany possible variants,

we wanted to explore the biologically plausible variants with

adequately high performance.

3.2. Proposed variants of FA enhance
learning performance

As shown in Figure 1, both FA and BP exhibit good

performance. However, from a biological plausibility perspective,

conventional BP and its variant FA, in their original forms, suffer

from two challenges: (1) they require the activities of postsynaptic

neurons with high accuracy, and (2) they require information that

physically backpropagates across layers. Therefore, we propose new

variants of FA to address these challenges. However, it is empirically

known that most ad-hoc learning rules destabilize during training

and fail. Meanwhile, learning rules based on cost functions such as

BP tends to be more reliable. Thus, we base our new learning rules

on BP and FA.

Fortunately, the first challenge can be resolved by simply

adopting the ReLU as an activation function, which tends to

outperform other activation functions. The resulting learning

rule only requires ON or OFF resolutions for the activities

of postsynaptic neurons and can be easily implemented in a

living system with stability. This is because the differentials of

the activation function for the postsynaptic neuron required to

compute the learning rule are simpler for ReLU than for the tanh

and sigmoid functions. For f(s) = ReLU(s), f ’(s) = 0 for s < 0, or

1 for s > 0. Note that the only assumption we have proposed thus

far is to use ReLU as an activation function, and no approximation

to the cost function is needed to compute the differentials of the

activity of postsynaptic neurons in the living system.

Note that the ReLU is not only powerful and simple in

computing but also biologically plausible when rate-based models

are considered. For example, it has been shown that the f-I curve

(firing frequency plotted against the input current) of a realistic

neuron model is well described by a ReLU (Shriki et al., 2003).

Regarding the second challenge, it is insightful to review the

original FA, where the impact of the activity of a neuron in the

middle layer x on the activity of a neuron in the output layer y,

or dy/dx, which is used to compute the weight update 1W in

BP, is modified by replacing the connection matrix with output

layer W2 with a random matrix B. Because the weight in the

middle layer W1 is trained with this modification, learning can

converge if the assumption W2 = B holds and everything is

consistent. However, the physical substances representing B remain

unclear, and information on B is required to backpropagate across

the layers.

Therefore, we further modify FA slightly and use (B)ij = 1 for

all i and j, assuming that all middle-layer neurons have the same

impact on the output layer. We call this learning rule FA_Ex-100%.

However, this finding implies that only excitatory neurons exist

in the middle layer. Therefore, we can further modify it to have

20% inhibitory neurons with (B)ij = 1 (for i: excitatory, 80%) or

−1 (for i: inhibitory, 20%) randomly according to the Bernoulli

distribution. We call this learning rule FA_Ex-80%. Furthermore,

we define FA_normal as the third variant of FA, where the random

matrix B is neither uniform nor Bernoulli but normal. As we will

demonstrate later, these three variants of FA are comparable to FA

and significantly outperform ELM andWP.

Remarkably, the FA and their variants can be implemented as

synaptic triads. That is, in order to compute the synaptic weight

update (1W)ij, only three types of information that are available

at the synapse are required: the activities of the presynaptic neuron

i, the postsynaptic neurons j, and the dopaminergic neuron (error

signal). Multiplying the three activities available at the synapse is a

biologically plausible computation.

1W
ij
1 = prei × postj × dopamine, (1)

The reason why only locally available information suffices to

compute 1W
ij
1 is simply that W2 has been replaced by B. That is,

if B = 1 (or is fixed to a constant) and the backpropagation of W2

information is no longer required, as shown in Graphical Abstract,

we can simply send e (the error signal) directly to the synapses in

the middle layer.

Figure 2 compares the predicted squared errors for the five

learning rules, BP, FA, and the three FA variants. Here, we fixed

the relevant input dimension to two and varied the noise input

dimension between 50, 100, and 200 to control the task difficulty.

The learning rate η = 0.01 is fixed (not scheduled), and the

activation function f = ReLU and its derivative f ’ =ReLU’ are

consistently used in the equation to compute the weight update

1W (this is not necessarily satisfied in the case depicted in

Figures 3–7).

Figure 2 (left) shows that the performance for the variants of FA

is sufficient, and, similar to FA in Figure 1, their predicted squared

losses fall below 0.1 faster than that of BP. This demonstrates

that learning comes into effect even if the FA does not use a

uniformly random matrix B. Surprisingly, the learning rule that

is implementable at a synaptic triad with only locally available

information, such as FA_Ex-100% (or FA_Ex-80%), works fairly
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well. Furthermore, the differentials of the postsynaptic neuron’s

activity can easily be computed using ReLU instead of tanh as an

activation function. Figure 2 (middle, right) shows that the variants

of the FA can solve difficult tasks with high-dimensional noise

inputs. Even a task with an input noise dimension (200) that is ten

times larger than the number of middle-layer neurons (20) can be

solved. Although we did not perform large-scale simulations, it is

possible to solve the high-dimensional problem by balancing the

input noise dimensions and the number of middle-layer neurons

(Hiratani and Latham, 2022).

3.3. Proposed learning rules are robust and
even approximated rules work

Thus far, we have proposed new learning rules as variants of

the FA and have demonstrated that these variants are effective in

solving challenging tasks. In FA_Ex-100% and FA_Ex-80%, the

weight update 1W (which is essentially a gradient vector) can be

represented as a multiplication within a synaptic triad:

1W
ij
1 = prei × f ′(Ij)× dopamine. (2)

Intuitively, all we need for computing 1W
ij
1 is the impact

of weight updates on postsynaptic activities, which is why W2

appeared in 1W
ij
1 for BP (see Graphical Abstract for details). Then

replacing W2 by a random vector B is equivalent to assuming that

the impact of the weight update 1W
ij
1 on the neural activity in the

output layer is (proportional to) Bj. Therefore, postj in Equation

1 for FA and its variants can be expressed as f ′(Ij), where f is

the activation function (of the postsynaptic neuron j) and Ij is the

current input to the j-th postsynaptic neuron. Note that because we

use ReLU as an activation function f , f ′ is actually a step function.

However, it may be challenging to implement Equation 2 in

the brain because it requires an accurate calculation of f ′, that is,

the differential of the activity of postsynaptic neurons with respect

to their input current. It is unclear whether accurate information

on the activity of postsynaptic neurons can be conveyed to

presynaptic neurons and if the differential of neural activity can

be accurately computed in the brain. Therefore, we would like to

determine whether the learning rules function even if the brain

cannot accurately compute f ′ and is forced to approximate it

with some errors. Specifically, we consider a series of systematic

approximations for f ′ as variants of the learning rules and assess

the extent to which they still work. We not only confirm the

robustness by maintaining the accuracy but also determine if we

can improve the accuracy by approximations for the heuristically

derived FA and its variants, which have room for improvement.

That is, although we used ReLU as the activation function f , f ′ in

Equation 2 for computing the weight updates is not necessarily

its derivative ReLU, but something different. In this context, f ′ is

inconsistent with f . Specifically, to explore methods of perturbing

f ′ in a systematic manner, we consider parallel translations, scaling,

and noise addition.

First, we shifted f ′orig(=ReLU’) along the y-axis and considered

f
′

= ReLU’(s)+shift. This shift should yield a bias in computing

1W
ij
1 in Equation 2. However, as shown in Figure 3, these

perturbed learning rules functioned fairly well as long as the shifts

were sufficiently small. For example, once the weight-update rule

for FA_Ex-100% in Graphical Abstract is averaged across the input

x and error e for large data or long epochs, the effect of the y-

shift (adding a constant) on f ’(s) should approach zero when the

mean of x or e is zero. This may explain why the effect of the y-

shift is negligible if it is small. Similarly, the weight update rule,

which can be interpreted as the multiplication of three terms,

may become more stable if x, e, and f ’(s) are balanced (i.e., any

of the three terms have a zero-mean). In fact, strikingly, when

we shifted by −0.5 along the y-axis, and f
′

is the most balanced

(zero-mean), the accuracy improved. This may provide a hint for

improving accuracy, although it is uncertain whether making each

term easy to cancel generally works. Note that it is generally very

challenging to improve accuracy in an ad hoc manner, and this

approach represents one of the few ways to significantly improve

performance based on our experiments in this paper.

Next, we shifted f ′orig(=ReLU’) along the x-axis, introducing

f
′

= ReLU’(s-shift). As shown in Figure 4, these perturbed learning

rules functioned fairly well as long as the shifts were positive

and sufficiently small. However, when the shift was negative or

adequately positive, the performance deteriorated. Thus, although

these learning rules are robust against x-shifts of f
′

to some extent,

it is not straightforward to significantly enhance performance solely

through x-shifts.

As depicted in Figure 5 (top), amplifying f ’ along the y-axis

as f
′

= f ′orig x constant, sped up the learning. However, this

result is trivial. For example, multiplying f
′

by a constant is

almost equivalent to multiplying the learning rate by the same

constant (Figure 5, bottom). However, in Figure 5 (top), we do not

multiply the learning constant for the output layer by the same

constant, which leads to unbalanced learning. Therefore, there are

discrepancies between Figure 5 (top, bottom).

Because it does not make sense to magnify ReLU’ along the x-

axis (it has no discernible effect), we consider a sigmoid function

f
′

(s) = Sigmoid(cs) for some constant c. As shown in Figure 6, the

performance was enhanced with c (slope at s = 0). Especially at

the large limit of c (=50), the performance approached that of the

original learning rules with f
′

= f ′orig(=ReLU’) as expected.

Finally, we added normal noise as f
′

= f ′orig + noise. Figure 7

(top) shows that the learning functions fairly well as long as the

noise amplitude is significantly smaller than one. The same result

was observed when fixed noise was applied, as shown in Figure 7

(bottom), where the initially fixed noise was used across epochs for

the same neuron. The results demonstrate robustness in learning

against noise.

4. Discussion

Our contribution resides in demonstrating successful learning

for FA_Ex-100% with a more biologically plausible connection

matrix B. Note that B is a random weight matrix (vector) in the

original FA paper (Lillicrap et al., 2016), whereas an all-1 vector

B was also considered in this study. A condition on B for the

successful learning ofW1 was derived under the assumption that all

activation functions are linear (i.e., linear neurons), and W2 is not
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FIGURE 4

Predicted squared errors when f’(s) is shifted along x-axis. As an activation function, ReLU is used (forig =ReLU). The learning rate is 0.005. The number

of middle layer neurons is 20 (left–bottom). The epoch (learning time) when the predicted squared error falls below 0.1 is plotted against the y-shift.

The learning performance with FA or its variants is robust even if f and f’ is inconsistent.

trainable (related to Figure 5 in Lillicrap et al., 2016). In essence, the

derived conditionW2·B > 0 was not satisfied before learning where

W2 ·B = 0, whileW2 gets aligned with B during the training ifW2 is

also trainable. From this viewpoint, it is expected that any B (with a

randomly initializedW2) suffices the conditionW2 ·B > 0 after the

training, and FA works in the end. Thus, the conditionW2 · B > 0

provides insight into the entire learning process, including both

W1 and W2 as trainable parameters to be successful, although it

does not serve as a sufficient condition for general cases rigorously.

Note that what matters actually is whether the cost function (J

= sum of squared errors) consistently decreases at each update:

1J (W1,W2) =
∂J

∂W1
·1W1 +

∂J
∂W2

·1W2 = −eW2 · Be+ 0 < 0,

which leads to the condition W2 · B > 0 for W1 in Lillicrap et al.

(2016) as the error e is just a scalar. Overall, there is no rigorously

proven condition for successful learning, and the results in our

study cannot be predicted from such a simple condition. Thus, we

believe that our contribution, demonstrating successful and robust

learning for a more biologically plausible B is not trivial.

4.1. What are the constraints imposed by
biological plausibility?

In this study, in a narrow sense, biological plausibility means

that the weight update rule can be computed only with local

information that is available at a synaptic triad. Additionally, a

biologically plausible learning rule should exhibit high performance

comparable to that of a real brain, as the brain is unlikely to adopt

a learning rule that underperforms it.

We cannot emphasize enough that rules that use only the

synaptic triad are highly biologically plausible. As a variant of the

FA, we derived rules that exclusively use a synaptic triad. Their

performances are comparable to those of BP and FA. Among them,

FA_Ex-100% is particularly elegant in the sense that its weight

update rule is uniform throughout the network. This is because B=

1. The update rule is not exclusive to middle-layer neurons but also

applies to output neurons. Therefore, we may only require a single

learning rule for the entire brain. It is worth examining whether

FA and its variants are implemented in the brain and whether the

experimentally observed synaptic updates are consistent with these

learning rules.

We acknowledge that FA encounters challenges as networks

become deeper. Even if the FA only works with a limited number

of layers, here we consider shallow networks as a model olfactory

system because dopaminergic inputs are only available in a limited

number of layers in the real brain. We do not claim that many

trainable layers with plasticity are required to reproduce the

biological brain.

It is known that animals can learn a task where a preceding

cue reverses the outcomes. Therefore, it is natural to assume that

the ability to solve an XOR task is necessary for an algorithm to

be used in the real biological brain. We agree that this is not a

sufficient condition. Although the XOR task is just a minimum-

level problem that must be solved by a biological algorithm, it is

ideal in that its difficulty can be controlled by changing the input

dimensions to achieve a wide range of task levels. We agree that

further benchmarks, possibly with larger networks, are necessary

and will be left for future work.

Performing well with 3-layer ANNs is the minimum

requirement. Future work should attempt more realistic network

structures with untrainable layers and loops. We agree that

the reality of the model can be an endless argument, although

previous studies on the olfactory system have considered similar

mathematical models with random connections and inputs

(Hiratani and Latham, 2022). Even so, we are committed to

the study of biology, and our model serves as a valuable tool
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FIGURE 5

Predicted squared errors when f’(s) is scaled along y-axis. As an activation function, ReLU is used (forig = ReLU). The learning rate is 0.005. The

number of middle layer neurons is 20. The learning performance with FA or its variants is robust even if f and f’ is inconsistent.

FIGURE 6

Predicted squared errors when f’(s) is scaled along x-axis as f’(s) = Sigmoid(cx). As an activation function, ReLU is used (forig = ReLU). The learning rate

is 0.005. The number of middle layer neurons is 20. The learning performance with FA or its variants is robust even if f and f’ is inconsistent.

in the sense that the proposed local synaptic learning rule can

be easily compared with the experimental observations. We

strongly believe that this new line of research involving end-to-end

training under local synaptic rules will be the key to understanding

human intelligence.

4.2. Scalability is essential for pursuing
biological plausibility

In this study, tuning the task difficulty significantly changed

the results. If the real tasks that the brain must solve are more

difficult than the ones used here, the candidates for the learning

rules should be narrowed down. Therefore, it will be essential

to simulate tasks involving various difficulties in the future. For

example, we use rather small noise input dimensions, dnoise, which

makes the task easy; however, in the real brain, the number of input

or sensory neurons is large. However, we believe that the number

of neurons in the middle layers is also large in the real brain.

Therefore, the same task may be solved by increasing both numbers

in a balanced manner (Hiratani and Latham, 2022). Future work

may explore GPU-based simulations to increase both the input-

and middle-layer neuron counts in a balanced manner.

Although we maintained a batch size of eight throughout this

study, it is natural for mice to learn from each trial as an epoch

or with a batch size of one. However, it is also realistic for mice to

exploit the memories of several past trials. In addition, when the

total sample size for training was the same, the batch size did not

affect the final performance. Therefore, it is important to determine

whether mice can perform tasks within a realistic number of

laboratory trials (training samples). For example, Figure 2 (bottom

right) shows that 100 epochs or 800 trials (with a batch size of eight)

were required for training with BP or FA. This number of trials may

initially appear substantial, as the brain can learn more quickly for

some tasks. However, this number is primarily influenced by the

task complexity and network parameters. In practice, this number
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FIGURE 7

Predicted squared errors when an unfixed (top) or fixed normal noise (bottom) with various amplitudes is added to f’(s) as f’=ReLU+Noise. As an

activation function, ReLU is used (forig =ReLU). The learning rate is 0.005. The number of middle layer neurons is 20. The learning performance with

FA or its variants is robust even if f and f’ is inconsistent.

can be significantly reduced by introducing more neurons in the

middle layer. The brain may indeed adopt a regime of abundant

middle-layer neurons. Therefore, although we set the maximum

epoch to 1,000 (8,000 trials) in all figures, as it is too long for mice

to perform in the laboratory experiment, this trial number can be

efficiently controlled by adjusting learning parameters such as the

number of middle-layer neurons.

Taken together, many issues related to biological plausibility

can be rephrased as issues of scalability in the sense that the

learning parameter can counterbalance task difficulty, such as input

dimensions, as the performance in the large limit is unknown.

Checking the scalability requires future work, and it is necessary

to elucidate, possibly with GPUs, the types of regimes used by

the brain.

We agree that high-dimensional experiments using larger

networks assisted by GPUs are desirable. However, not only

GPU availability but also software development is pivotal

for scaling; the existing frameworks for deep learning are

mostly prepared for the backpropagation learning rule.

Therefore, implementing a handmade learning rule without

explicit cost functions for training is challenging. Although

we are currently developing original Python code to utilize

GPUs for handmade learning rules, we believe that this

is worth further work. We aim to publish the current

paper separately using highly readable code specialized for

attached CPUs.

4.3. From spiking models to rate-based
models

In this study, we focused exclusively on rate-based learning

rules and did not discuss spike timing. However, it is easy

to bridge the gap between these two approaches by starting

with small time bins and subsequently averaging them, which

results in rate-based learning rules. This is because FA variants

require only the spike frequencies of presynaptic, postsynaptic, and

dopaminergic neurons.
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