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Torsional nystagmus recognition 
based on deep learning for vertigo 
diagnosis
Haibo Li * and Zhifan Yang 

College of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 
China

Introduction: Detection of torsional nystagmus can help identify the canal of 
origin in benign paroxysmal positional vertigo (BPPV). Most currently available 
pupil trackers do not detect torsional nystagmus. In view of this, a new deep 
learning network model was designed for the determination of torsional 
nystagmus.

Methods: The data set comes from the Eye, Ear, Nose and Throat (Eye&ENT) 
Hospital of Fudan University. In the process of data acquisition, the infrared 
videos were obtained from eye movement recorder. The dataset contains 
24521 nystagmus videos. All torsion nystagmus videos were annotated by the 
ophthalmologist of the hospital. 80% of the data set was used to train the model, 
and 20% was used to test.

Results: Experiments indicate that the designed method can effectively identify 
torsional nystagmus. Compared with other methods, it has high recognition 
accuracy. It can realize the automatic recognition of torsional nystagmus and 
provides support for the posterior and anterior canal BPPV diagnosis.

Discussion: Our present work complements existing methods of 2D nystagmus 
analysis and could improve the diagnostic capabilities of VNG in multiple 
vestibular disorders. To automatically pick BPV requires detection of nystagmus 
in all 3 planes and identification of a paroxysm. This is the next research work to 
be carried out.
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1. Introduction

The vestibular system informs us of three-dimensional (3D) head position in space. 
Vestibular asymmetry creates a hallucination of head movement and therefore generates a 
compensatory slow phase eye movement and a quick phase that returns the eye closer to its 
starting position. Nystagmus is an involuntary oscillating eye movement that accompanies 
vestibular disorders (Leigh and Zee, 2015). The involvement of a specific vestibular end organ 
can be identified by the nystagmus trajectory (Jiang et al., 2018). Nystagmus can be summarized 
into two types: pathological nystagmus and physiological nystagmus. A variety of diseases, such 
as BPPV, Meniere’s disease and vestibular neuritis, are all associated with pathological nystagmus 
(Newman et al., 2019). Pathological nystagmus arises from asymmetries in the peripheral or 
central vestibular system. Physiological nystagmus can be generated by rotational or thermal 
stimulation of the vestibular system (Henriksson, 1956; Cohen et al., 1977). BPPV is usually 
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accompanied by nystagmus, which provoked by changes of the head 
position relative to gravity (Lim et al., 2019). To diagnose different 
types of BPPV, clinicians inspect the directional and velocity 
characteristics of positional nystagmus during provocative testing. 
Among them, for BPPV with the highest incidence rate in the 
posterior semicircular canal, the typical torsional nystagmus was 
regarded as an important diagnostic factor. So, nystagmus examination 
is very important for the diagnosis of BPPV (Wang et al., 2014).

Some nystagmus can be observed by doctors with naked eyes or 
Frenzel googles that allow for better visualization of nystagmus at the 
bedside. However, this diagnostic method was easily affected by the 
subjective experience of doctors (Slama et al., 2017). Not all pathological 
nystagmus was visible to the naked eye, since visual fixation suppresses 
peripheral spontaneous nystagmus. The other method is objective. This 
method usually uses electronystagmography (ENG) or video 
nystagmography (VNG) to record eye movements. The ENG method 
(Costa et al., 1995; Cesarelli et al., 1998) places sensors around the eyelid. 
Benign positional nystagmus arising from stimulation stimulation of one 
or more semicircular canals produces horizontal, vertical and torsional 
eye movements in the plane of that canal. The potential difference 
measured by the sensors is related to the horizontal and vertical 
movement of eyes. The velocity and frequency of eye movements can 
be  obtained through potential difference analysis. BPPV also 
demonstrates a crescendo decrescendo velocity profile, the identification 
of which could assist with separation of BPV from its mimics. However, 
this method is vulnerable to electromagnetic interference, in which case 
the measured information is not accurate enough. The VNG methods 
generally uses infrared camera to obtain nystagmus video. The frequency 
and amplitude of nystagmus were obtained by analyzing the motion 
information of pupil in video (Eggers et al., 2019). Recognizing 3D eye 
movement trajectory assists in identifying the canal of origin in patients 
with BPPV.

Under normal test conditions, VNG system includes a series of 
visual and dynamic function tests (Halmágyi et al., 2001; Newman-
Toker et al., 2008). At present, some researchers (Buizza et al., 1978; 
Van Beuzekom and Van Gisbergen, 2002; Akman et al., 2006) have 
done some related work on how to use technical means to detect 
nystagmus. Most of the proposed methods can not fully recognize 
nystagmus automatically. Some parts or stages of these methods need 
human intervention, for example, a recognition method of nystagmus 
proposed by Buizza et al. (1978). In this method, doctors need to 
calibrate the direction of phase change. Akman et  al. proposed a 
method to detect the period of nystagmus (Akman et al., 2006). The 
confirmation of the end point of nystagmus still needs to be further 
improved with this method. Van et  al. proposed a nystagmus 
recognition method with VNG technology (Van Beuzekom and Van 
Gisbergen, 2002). This method requires researchers to manually 
confirm the two endpoints of the phase and remove interference 
factors such as noise from videos.

The research work stated above can be summarized as invasive 
and non-invasive (Newman et al., 2019). Invasive methods, such as 
electromagnetic coil method, mainly embed hardware equipment into 
human eyes, which leads to direct contact between equipment and 
human eyes. This will cause direct or potential harm to human eye 
health. The non-invasive detection methods were mainly gaze 
description methods based on video image processing. These methods 
detect and locate the pupil based on the contours of the eyes, which 
were greatly improved in comfort and accuracy.

The Non-invasive inspection methods can be  combined with 
artificial intelligence (AI) methods. At present, AI technology is 
developing rapidly. Deep Learning has promoted the development of 
Computer Vision (He et al., 2016; Mane and Mangale, 2018; Kim and 
Ro, 2019; Cong et al., 2020), Natural Language Processing (Karpathy 
and Fei-Fei, 2014; Sundermeyer et al., 2015; Young et al., 2018) and 
other technologies. The development of deep learning technology also 
provides the possibility for medical intelligent aided diagnosis. For 
example, CT images of thoracic nodules were analyzed to determine 
whether there was a tumor in the chest (Anthimopoulos et al., 2016; 
Setio et  al., 2016). Other medical applications include automatic 
analysis of skin disease images (Rathod et al., 2018; Wu et al., 2019), 
automatic analysis of fundus disease images (Ting et al., 2017; Sertkaya 
et al., 2019) and automatic analysis of tumor pathological sections (Tra 
et al., 2016; Lavanyadevi et al., 2017), etc. A variety of algorithms 
based on deep learning were integrated into the innovative diagnosis 
and treatment system (Litjens et al., 2017). For example, Google used 
neural network to analyze diabetic retinopathy, and its analysis results 
were similar to those of human experts (Gulshan et al., 2016). In other 
application fields, deep learning has been applied to motion detection 
in videos and achieved good recognition results (Saha et al., 2016). 
Therefore, the recognition of nystagmus can be tried by using the 
method of deep learning. At present, many scholars have begun to use 
artificial intelligence methods to identify nystagmus (Zhang et al., 
2021; Lu et  al., 2022; Wagle et  al., 2022). From the experimental 
results, the deep learning method can be used to detect nystagmus, 
and the recognition accuracy can be further improved.

This paper mainly focuses on a torsional nystagmus recognition 
method based on deep learning. With the development of deep 
learning technology, this paper proposed an automatic recognition 
method of torsional nystagmus based on deep learning technology to 
help doctors make rapid diagnosis.

2. Materials and methods

2.1. Detail of data sources

The data set of this paper comes from Eye, Ear, Nose and Throat (Eye 
& ENT) Hospital of Fudan University. In the process of data acquisition, 
the infrared videos were obtained from eye movement recorder with the 
model of VertiGoggles R ZT-VNG-II, which was provided by Shanghai 
Zhiting Medical Technology Co., Ltd. Eye movement recorder was used 
to record and save the patient’s eye movements video. The video format is 
MP4. The size of video frame is 640×480 and the frame rate is 60fps. The 
data set include 26,931 nystagmus videos from 1,236 patients. After 
removing the abnormal and disturbed data, the remaining 24,521 videos 
were used as the data set. The length of each nystagmus video was not 
required to be exactly equal. The length of video in the data set was 
reduced to 6–10 s. The data were from patients with BPPV. The videos 
were monocular, including left and right eyes. All data were annotated by 
four ophthalmologists according to the motion characteristics of torsional 
nystagmus. 80% of the data were used for training and 20% for verification.

The doctors recruited eligible subjects in the otolaryngology clinic or 
vestibular function examination room. For patients who complained of 
positional vertigo, bilateral Dix-Hallpike test was performed first, and 
then bilateral Roll test was performed. Each body position change was 
rapid, but not exceeded the patient’s tolerance. In case of atypical 
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symptoms such as hearing loss, severe headache, limb sensation or 
movement disturbance, consciousness disturbance, ataxia, etc., 
corresponding audiological or imaging examination was carried out first 
to eliminate other inner ear or central lesions. After judging that the 
conditions for enrollment were met, the subjects themselves signed the 
informed consent form and collected their basic information and contact 
information. The doctor collected nystagmus videos of patients in the 
whole process of Dix-Hallpike test suspension sitting position and Epley 
method reduction. The Epley reposition method maintained each 
position for at least 30 s until the nystagmus disappears. After the 
restoration, the subjects rested for 15 min, and then performed 
Dix-Hallpike test again. The negative person indicated that the restoration 
was successful. If the first reset failed, the doctor performed the reset again 
and collected the nystagmus video of the second reset.

2.2. Network model structure and 
classification process

Ethical statement. The study was conducted according to the 
guidelines of the Declaration of Helsinki and approved by Ethics 
Committee of the Eye, Ear, Nose and Throat Hospital affiliated to 
Fudan University (approval number: 2020518). Written informed 
consent was obtained from all enrolled patients.

In order to recognize nystagmus automatically by deep learning, 
a recognition model as shown in Figure  1 was designed in this 
paper. Firstly, the nystagmus video was sent to the sequence layer 
in the model for processing. The output video frame sequence was 
transmitted to the input of the sequence folding layer. Secondly, the 
motion characteristics of each frame in the video was extracted 
independently by convolution operation. Thirdly, the extracted 

features were restored to the sequence structure after passing 
through the sequence unfolding layer and flattening layer. At the 
same time, the output was transformed into vector sequences. 
Finally, the obtained vector sequences were classified by using 
Bi-directional Long Short-Term Memory (BiLSTM) layer and 
output layer. The functions of each part of the network model are 
introduced as follows.

2.3. Converting video into video sequence 
and sequence folding

Firstly, a single video was processed to obtain the relevant 
parameters of the video, such as the height, width, number of channels 
and frames of the video. Then the video was cropped. This paper 
adopted the longest edge of the cropped video and adjusted its size to 
obtain a 224 × 224 fixed size. In order to enable the feature extraction 
network to obtain the features of single frame, a sequence folding layer 
was constructed to convert sequences into images. The sequence 
folding layer converts a batch of image sequences into a batch of 
images. The sequence unfolding layer restores the sequence structure 
of the input data after the sequence was folded.

2.4. Feature extraction

Feature extraction was mainly completed by five modules. The first 
module includes convolution layers and the maximum pooling layer. 
Convolution layer: the kernel size is 7 × 7; the step of sliding window is 
2; the number of output channels is 64. Pooling layer: the window size 
is 3 × 3; the step of sliding window is 2; the output channel number is 64. 

FIGURE 1

Network model structure of the proposed method.
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The second module has two convolution layers and a maximum pool 
layer. Convolution layer: the kernel size is 3 × 3; the step of sliding 
window is 1; the output channel number is 192. Pooling layer: the 
window size is 3 × 3; the step of sliding window is 2; the output channel 
number is 192. The third module has two Inception modules in series, 
followed by a maximum pool layer. Figure 2 illustrates the structure of 
the Inception module. The Inception module adopts the idea of network 
in network (NIN). It extracts the local features of the image by using 
multiple convolution kernels with different scales. Each branch in the 
Inception module adopts 1 × 1 convolution kernel. It can effectively 
improve the receptive field of convolution kernel and reduce the 
dimension to accelerate the network calculation and strengthen the 

real-time performance. As can be seen from Figure 2, the Inception 
module has four main components: 1 × 1, 3 × 3, 5 × 5 convolution and 
3 × 3 pooling. An example of extracted features in the four components 
of the inception module was shown in Figure 3. The main purpose of 
this structure is to extract the multi-scale information through a variety 
of convolution kernels of different sizes, and then fuse them, so as to 
have better image representation ability. In practice, using 3 × 3 and 5 × 5 
convolution directly will lead to too much calculation. So, 1 × 1 
convolution layer should be concatenated in front. The nonlinearity of 
the network can be increased at the same time.

The numbers of channels output by 4 lines of the first Inception 
are 64, 128, 32 and 32. The total number of output channels is the 

FIGURE 2

Inception structure.

FIGURE 3

An example of extracted features. (A) Original image. (B) Extracted features.
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accumulation of the four lines, which is 256. The numbers of channels 
output by 4 lines of the second Inception are 128, 192, 96 and 64 
respectively, and the total number of output channels is 480. Pooling 
layer: the window size is 3 × 3; the step of sliding window is 2; the 
output channel number is 480.

The fourth module has five Inception blocks in series, followed by 
a maximum pool layer. The numbers of channels output by 4 lines of 
the first Inception are 192, 208, 48 and 64 respectively, and the total 
number of output channels is 512. The numbers of channels output by 
4 lines of the second Inception are 160, 224, 64 and 64 respectively, 
and the total number of output channels is 512. The numbers of 
channels output by 4 lines of the third Inception are 128, 256, 64 and 
64 respectively, and the total number of output channels is 512. The 
numbers of channels output by 4 lines of the fourth Inception are 112, 
288, 64 and 64 respectively, and the total number of output channels 
is 528. The numbers of channels output by 4 lines of the fifth Inception 
are 256, 320, 128 and 128 respectively, and the total number of output 
channels is 832. Pooling layer: the window size is 3 × 3; the step of 
sliding window is 2; the output channel number is 832.

The fifth module has two Inception blocks in series, followed by a 
pooling layer. The output channel number of 4 lines are 256, 320, 128 
and 128, respectively, in the first Inception, and the total number of 
output channels is 832. The numbers of channels output by 4 lines of 
the second Inception are 384, 384, 128 and 128 respectively, and the 
total number of output channels is 1,024. The pooling layer adopts 
global average pooling and the convolution layer with height and 
width of 1 is obtained. The number of output channels is 1,024.

2.5. Recovering sequence structure

The sequence structure was deleted by the sequence folding 
layer. So, the sequence structure should be restored after feature 
extraction. The recovery task of sequence structure was 
completed by sequence unfolding layer. The sequence unfolding 
layer takes the minibatchsize output information of the sequence 
folding layer as the minibatchsize input information of the 
sequence unfolding layer. The output of the sequence unfolding 
layer was reconstructed into vector sequences. The spatial 
dimension of the tensor was flatted to channel dimension. Flatten 
layer flattens input spatial dimension into a single channel. This 
layer retains the observation dimension (N) and sequence 
dimension (S) after flattening.

2.6. Sequence classification

Long Short-Term Memory (LSTM) model can record the 
relationship between elements in a spatial distance. This memory 
function can be  realized by training LSTM model. But one 
disadvantage of LSTM model is that the order of memorizing 
information can only be from front to back. In order to better classify 
the types of nystagmus, this paper uses BiLSTM to solve this problem. 
BiLSTM is composed of two LSTMs with opposite directions. Figure 4 
shows the structure of the one-way branching model in BiLSTM. In 
the figure, xt , ot, Ct, ft , ht, Ct and it represent input vector, output gate, 
cell state, forgetting gate, hidden layer state, temporary cell state and 
memory gate, respectively.

The classification calculation process was completed by the 
following steps. Step 1: The discarded information was determined by 
calculating the forgetting gate. The input is the hidden layer state ht−1 
at time t-1 and the input vector xt  at time t. The output is the value ft  
of the forgetting gate at time t. As shown in Figure 5.

The input of ht−1 and xt  were calculated to obtain a forgetting gate 
output ft  through the sigmoid function, and its expression is shown 
in Equation (1).

 
f w h x bt f t t f= ⋅[ ] +( )−σ 1,  (1)

Where ft ∈[ ]01,  (0 indicates to discard the information 
completely, and 1 indicates to retain the information completely); σ  
indicates the activation function; wf  represents a learnable connection 
vector; xt  is input; bf  represents the offset value.

Step  2: The retained information was determined by 
calculating the memory gate. The input is the hidden layer state 
ht−1 at time t-1 and the input vector xt  at time t. The output is the 
value it  of the memory gate at time t and the value Ct  of the 
temporary cell state at time t. As shown in Figure 6. The value of 
the memory gate was obtained after that the hidden layer state 
value at time t-1 and the input vector at time t pass through the 
sigmoid activation function. The value of the temporary cell state 
was obtained after the hidden layer state value at time t-1 and the 
input vector at time t pass through the tanh activation function. 
The output values of two activation functions were multiplied to 
obtain the value of the input gate. The corresponding equation 
can be written as:

xt

σht-1

ot
tanh

ht

ht
Ct

σ σ tanh

ft it
tC%

FIGURE 4

Structure of one-way branching model.

σht-1

xt

ft

FIGURE 5

Computation of the forgetting gate.
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xt

σht-1

ot
tanh

ht

ht

Ct

FIGURE 8

Calculation of hidden layer.

 
i W h x bt i t t i= ⋅[ ] +( )−σ 1,  (2)

 
C W h x bt c t t c= ⋅[ ] +( )−tanh 1,  (3)

Where: tanh represents the activation function; Wi and Wc  
represent the learnable connection vectors; bi  and bc represent the 
offset values.

Step 3: The cell state Ct was obtained through the joint action of 
forgetting gate and input gate. The input is the memory gate it at time 
t, the forgetting gate ft  at time t, the temporary cell state Ct at time t 
and the cell state Ct−1 at time t-1. The output is the cell state Ct at time 
t. As shown in Figure 7. The corresponding equation can be written as:

 C f C i Ct t t t t= ∗ + ∗−1   (4)

Step 4: The value of the output gate and the value of the hidden layer 
state were determined by calculation. The input is the hidden layer state 
ht−1 at time t-1, the input vector xt  at time t and the cell state Ct at time 
t. The output is the value ot of the output gate at time t and the value ht of 
the hidden layer at time t. As shown in Figure 8. The value of output gate 
was obtained after that the hidden layer state value at time t-1 and the 
input vector at time t pass through the sigmoid activation function. The 
value of hidden layer state was obtained after that the output gate value 
at time t and the cell state at time t pass through the tanh activation 
function. The corresponding expression can be written as:

 
o W h x bt O t t O= ⋅[ ] +( )−σ 1,  (5)

 h o Ct t t= ∗ ( )tanh  (6)

WO  and bO represent learnable connection vectors and offset 
values, respectively.

Through the above steps, we can get the corresponding sequence, 
which is h h hn0 1 1, , , −{ }. BiLSTM consists of two branches in different 
directions mentioned above. The parameters on each branch are 
independent of the other branch. One branch can only fit time-related 
data from one direction. BiLSTM has two branches in opposite 
directions so that it can capture patterns that one branch may ignore. 
The structure can be seen in Figure 9.

If the hidden layer state sequence calculated by one branch of 
BiLSTM was represented by hr, the hidden layer state sequence of the 
other branche in the opposite direction was represented by hl. The 
final output result is as follow:

 h h ht
r l= +α β  (7)

 y ht t= ( )σ  (8)

Where α , β  are constants and α β+ =1. σ  is the 
activation function.

After that the output results pass through the classification layer, 
the type results of nystagmus recognition can be obtained. The output 
layer includes dropout layer, full connection layer, softmax layer and 
classification layer.

3. Results

3.1. Model training and verification process

The data set of this paper comes from Eye, Ear, Nose and Throat (Eye 
& ENT) Hospital of Fudan University. In the process of data acquisition, 
the infrared videos were obtained from eye movement recorder with the 
model of VertiGoggles R ZT-VNG-II, which was provided by Shanghai 
Zhiting Medical Technology Co., Ltd. Eye movement recorder was used 
to record and save the patient’s eye movements video. The video format is 
MP4. The size of video frame is 640×480 and the frame rate is 60fps. The 

xt

σht-1
it

tanh
tC%

FIGURE 6

Calculation of the input gate.

FIGURE 7

Calculation of the current cell state.
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data set include 26,931 nystagmus videos from 1,236 patients. After 
removing the abnormal and disturbed data, the remaining 24,521 videos 
were used as the data set. All data were annotated by four ophthalmologists 
according to the motion characteristics of torsional nystagmus. 80% of the 
data were used for training and 20% for verification. The model training 
and verification process are shown in Figure 10.

Figure 10 shows that the classification accuracy of the training and 
verification process tends to be stable with the increase of iterations. 
The average accuracy after stabilization is shown in Table 1.

The loss during training and verification is shown in Figure 11.
As can be seen from Figure 11, with the increase of the number 

of iterations, the loss in the training and verification process has 
decreased to a stable state. In order to further evaluate the designed 
method. Figure 12 shows Area Under Curve (AUC).

3.2. Results of feature extraction by 
different methods

In addition, we also study the impact of different methods to 
extract video frame features on the classification effect. We use eight 

Fire modules to extract the video frame features, and the structure of 
other parts remains unchanged. This method is named method 2. The 
structure of Fire module (Kim and Kim, 2020) is shown in Figure 13.

It can be  seen from Figure  12 that the proposed method can 
identify torsional nystagmus more accurately. In addition, 
sensitivity⊕0 912.  and specificity⊕0 946. .

The same data set was used for training and verification. Figure 14 
shows the classification accuracy of training and verification by 
method 2.

As can be seen from Figure 14, the classification accuracy tends to 
be  stable with the increase of iterations, whether in the training 
process or verification process. Figure 15 shows the Loss during the 
training and verification process by method 2 using the same data set.

As can be seen from Figure 15, with the increase of iterations, the 
Loss of method 2 decreased to a stable state, whether in the training 
process or verification process. Method 2 was compared with the 
method proposed in this paper. The comparison results of 
classification accuracy in training set are shown in Figure 16.

As can be seen from Figure 16, the recognition accuracy of two 
methods tends to be stable with the increase of iterations. The average 
accuracy after stabilization is shown in Table 2.

It can be seen from Table 2 that the proposed method has high 
recognition accuracy in training process. The recognition accuracy of 
two methods in verification set is shown in Figure 17.

Figure 17 shows that the recognition accuracy of two methods in 
verification set tends to be stable with the increase of iterations. The 
average recognition accuracy of two methods after stabilization is 
shown in Table 3.

It can be seen from Table 3 that the proposed method has high 
recognition accuracy in verification set.

4. Discussion

The proposed method was compared with Zhang’s method 
(Zhang et al., 2021) and Zhou’s method (Zhou et al., 2022). The same 
data set was used for training and verification, respectively. The 
recognition accuracy of different methods in training set is shown in 
Figure 18.

As can be seen from Figure 18, the recognition accuracy of all 
methods in training set tends to be  stable with the increase of 

yt-1 yt

hrt-1

yt+1

xt-1 xt xt+1

hrt hrt+1

hlt-1 hlt hlt+1

FIGURE 9

Structure of BiLSTM.

FIGURE 10

Classification accuracy of training and validation process.
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FIGURE 11

Loss during training and verification.

FIGURE 12

AUC curve.

iterations. The average recognition accuracy of different methods after 
stabilization is shown in Table 4.

It can be seen from Table 4 that the proposed method has high 
recognition accuracy in training set. The recognition accuracy of 
different methods in verification set is shown in Figure 19.

Figure  19 shows that the recognition accuracy of different 
methods in verification set tends to be stable with the increase of 
iterations. The average recognition accuracy of different methods after 
stabilization is shown in Table 5.

It can be seen from Table 5 that the proposed method in this paper 
has high recognition accuracy in verification set. This shows that the 
proposed method has a good effect in torsional nystagmus recognition. 
In addition, other statistical comparisons of the variable performance 
accuracy across models are shown in Table 6.

It can be seen from Table 6 that the proposed method has high 
precision and recall rate, which indicates that the recognition 

TABLE 1 Recognition accuracy in training and verification stage.

Recognition accuracy Stage

96.1% Training

92.9% Validation

TABLE 2 Recognition accuracy of two methods in training set.

Recognition accuracy Method

96.1% The proposed method

89.9% Method 2

TABLE 3 Recognition accuracy of two methods in verification set.

Recognition accuracy Method

92.9% The proposed method

87.4% Method 2

TABLE 4 Recognition accuracy of different methods in training set.

Recognition accuracy Method

96.1% The proposed method

91.2% Zhang’s method

93.9% Zhou’s method

TABLE 5 Recognition accuracy of different methods in verification set.

Recognition accuracy Method

92.9% The proposed method

89.4% Zhang’s method

90.7% Zhou’s method

TABLE 6 Statistical comparisons of the variable performance accuracy.

Method Precision Recall

The proposed method 94.3% 91.2%

Zhang’s method 90.1% 87.6%

Zhou’s method 91.9% 88.4%
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1×1 convolu�ons

1×1 and 3×3 convolu�ons

ReLU

ReLU

FIGURE 13

Fire module structure.

FIGURE 14

Classification accuracy of method 2.

FIGURE 15

Loss during training and verification with method 2.
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FIGURE 16

Comparison of accuracy in training set.

FIGURE 17

Comparison of accuracy in verification set.

FIGURE 18

Comparison of accuracy in training set.
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performance of the algorithm is better than other methods. In 
addition, we also compared with the method proposed by Wagle et al. 
(2022), and the recognition accuracy of their method is 82.7%, which 
is lower than the proposed method.

Based on the real data of a large number of clinical patients, the 
characteristics and types of torsional nystagmus were intelligently 
recognized through the deep learning algorithm. The diagnosis of BPPV 
can be accurately predicted by combining the body position information, 
so as to realize the intelligent diagnosis and treatment of BPPV, improve 
the diagnosis efficiency and reduce the pain of patients. It is expected to 
comprehensively improve the diagnosis and treatment capacity of medical 
institutions at all levels for typical BPPV patients.

5. Conclusion

In this paper, a recognition model of torsional nystagmus was 
proposed based on deep learning network. From the experimental 
results, the nystagmus recognition model used convolution neural 
network to extract the frame features of the video sequence, and 
classified the obtained vector sequence, which can effectively identify 
torsional nystagmus. This shows that the recognition of torsional 
nystagmus can be accomplished by using deep learning network 
models with different structures. Although these changes in 
nystagmus are very complex for clinicians, they are indeed 
extractable features for deep learning. Once these specific nystagmus 
classification features are obtained, computer-aided clinical 
screening and classification of typical diseases can widely benefit 
patients with vertigo disease and help improve the diagnosis 
efficiency of vertigo disease. Compared with the existing methods, 
the proposed method further improved the recognition accuracy. In 
the future, we  will label the slow phase velocity (SPV) of the 
nystagmus, so that we can analyze the performance of the model 
according to the SPV of the nystagmus. The development of an 
accurate torsion detection method has implications for correct 
interpretation of nystagmus overall. BPV is not the only disorder 
producing torsional nystagmus: stroke, vestibular migraine can 
present with torsional nystagmus; vestibular neuritis and Menieres 
disease can also generate horizontal torsional nystagmus. Our 

present work complements existing methods of 2D nystagmus 
analysis and could improve the diagnostic capabilities of VNG in 
multiple vestibular disorders. To automatically pick BPV requires 
detection of nystagmus in all 3 planes and identification of a 
paroxysm. This is the next research work to be carried out.
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Comparison of accuracy in verification set.
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