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Glucocorticoids (GCs) are essential drivers of mammalian tissue growth and 
maturation during one of the most critical developmental windows, the perinatal 
period. The developing circadian clock is shaped by maternal GCs. GC deficits, 
excess, or exposure at the wrong time of day leads to persisting effects later in life. 
During adulthood, GCs are one of the main hormonal outputs of the circadian 
system, peaking at the beginning of the active phase (i.e., the morning in humans 
and the evening in nocturnal rodents) and contributing to the coordination of 
complex functions such as energy metabolism and behavior, across the day. Our 
article discusses the current knowledge on the development of the circadian 
system with a focus on the role of GC rhythm. We  explore the bidirectional 
interaction between GCs and clocks at the molecular and systemic levels, discuss 
the evidence of GC influence on the master clock in the suprachiasmatic nuclei 
(SCN) of the hypothalamus during development and in the adult system.
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1. Circadian clock development and organization at 
systemic, circuit, and molecular level in the adult

Circadian rhythms are controlled by a clock system that conveys ~24 h rhythmicity to almost 
every physiological function in a living organism. When (and how) does the clock system really 
start ticking, and more specifically, which cells and mechanisms are involved, are long-standing 
questions in the field of chronophysiology. In adult mammals, circadian timekeeping is 
organized hierarchically with a central clock synchronizing subordinated clocks in all tissues to 
ensure that complex functions such as activity (Moore and Eichler, 1972), sleep (Collins et al., 
2020), food intake (Nagai et al., 1978; Koch et al., 2020), and stress responses (Oster et al., 2006; 
Son et al., 2008) are efficiently adapted to a rhythmic environment.

The master pacemaker of the circadian system is located in the hypothalamic suprachiasmatic 
nucleus (SCN) (Lehman et al., 1987; Romero et al., 1993; Silver et al., 1996). Environmental 
factors that set the time (or entrain) internal clocks are called zeitgebers (from the German term 
for “time givers”). The main zeitgeber for the SCN is ambient light which reaches the retina and, 
in turn, the SCN through the retino-hypothalamic tract (RHT) (Ibuka et al., 1977; Hannibal 
et al., 2000).

The SCN has been traditionally described as a nucleus of around 20,000 neurons localized 
on each side of the third ventricle. It is topologically divided into “ventral core” and “dorsal shell” 
(Hastings et al., 2018). Neurons in the core receive direct photic input from the retina and 
transmit this signal to the surrounding shell. The neurons in the SCN shell, that in absence of 
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light show autonomous activity with an endogenous period of ~24 h, 
are then entrained and translate their synchrony by efferent 
connections to subordinated clocks in multiple brain regions 
including, importantly, clocks within the medial hypothalamus, where 
key cell groups organize hormone release and set the tone of the 
autonomic nervous system (Dibner et al., 2010; Kalsbeek et al., 2011). 
Interestingly, this neuron-centered view changed recently when 
astrocyte clocks were found to be partially necessary and completely 
sufficient to restore neuronal circadian function in the SCN 
(Brancaccio et al., 2019). Rather than being “mere support cells” for 
the SCN neuronal circuit, they play an essential role as time-keepers 
of the adult master clock (Barca-Mayo et al., 2017; Brancaccio et al., 
2017, 2019; Tso et al., 2017).

Glucocorticoids (GC) are examples of rhythmic hormonal 
outputs tightly regulated by the SCN and well-known mediators 
of circadian entrainment in the peripheral tissues (Pevet and 
Challet, 2011; Pezük et al., 2012). The circadian regulation of GC 
release is a result of close interaction between the SCN and clocks 
along the hypothalamus-pituitary–adrenal (HPA) axis (Oster 
et al., 2006; Son et al., 2008). Efferences from the SCN influence 
the release of corticotropin-releasing hormone (CRH) by the 
paraventricular nucleus of the hypothalamus (PVN), both 
inhibitory and stimulatory inputs from the SCN, depending on 
fluctuating arginine vasopressin (AVP) levels, are responsible of 
generating the complete daily profile of GCs (Kalsbeek et al., 1992, 
1996; Buijs et al., 1993). The PVN controls the rhythmic secretion 
of adrenocorticotropic hormone (ACTH) from the pituitary and, 
consequently, GC production by the adrenal gland. Via autonomic 
pathways the SCN-PVN synchronize adrenal clocks regulating the 
time-of-day-dependent sensitivity of the adrenal to ACTH 
stimulation (Oster et al., 2006; Son et al., 2008). As a result, GCs 
are peaking at the beginning of the active phase to coordinate 
complex functions when high energy demands are expected 
(Balsalobre et al., 2000). For instance, GCs promote glucose and 
lipid mobilization through gluconeogenesis in the liver and the 
release of free fatty acids from adipocytes. GC rhythms are key 
regulators of mood and cognition, demonstrated by the 
improvement of learning skills during GC peak (Liston et  al., 
2013) and the impairment of memory retrieval when circadian 
GC rise is blocked pharmacologically (Rimmele et al., 2010).

Compared to the knowledge we  have on the adult circadian 
system, little is known about its assembly and function during 
development. The view of the fetal hypothalamic clock as a 
“dependent” oscillator entrained by maternal rhythmic signals has 
been questioned by our own findings and by others (Landgraf et al., 
2015; Astiz et al., 2020; Lužná et al., 2020; Greiner et al., 2022). In 
mice, the SCN circuit develops, matures, and connects to afferent and 
efferent pathways around birth (Munekawa et al., 2000; Sekaran et al., 
2005; Kabrita and Davis, 2008). However, some early rhythmic genes 
of the molecular clock machinery, such as RevErbα, are already 
expressed in the hypothalamus earlier (Čečmanová et al., 2019; Astiz 
et al., 2020; Carmona-Alcocer et al., 2020). Since both, astrocytes and 
neurons, display strong circadian rhythmicity, it seems possible that 
the two could promote the gain of autonomous function of the 
developing SCN and participate in organizing the coupling between 
the SCN and the HPA axis, essential for the adaptation to the 
environment after birth (Astiz and Oster, 2018). Extensive evidence 
suggests that during this critical developmental window, the fetal/

neonatal SCN and HPA axis are susceptible to GCs. An excess, a 
deficit or even the exposure at the wrong time of day can have 
persisting effects later on (Moisiadis and Matthews, 2014a; Busada 
and Cidlowski, 2017; Astiz et al., 2020).

2. Molecular interaction between 
Glucocorticoid receptors and the 
clock machinery

The strong coupling between the clock and the stress system is 
nourished by a solid bidirectional interaction at the molecular level. 
GCs activate, in target cells, intracellular GC receptors (GR) and 
mineralocorticoid receptors (MR). The primary ligands of GR are 
cortisol and other GCs (i.e., corticosterone, the main GC in rodents), 
while the primary ligand of MR is aldosterone in the periphery and 
corticosterone in the central nervous system (CNS) (Fuller et  al., 
2012). While GR is widely distributed within the body and especially 
abundant in the brain and the pituitary, MR is prominently present in 
peripheral tissues and in the brain, the expression is high in the 
magnocellular neurons and pre-sympathetic neurons of the 
hypothalamic paraventricular nuclei (PVN) as well as in the 
hippocampus and cerebral cortex (Oyamada et al., 2008; Fuller et al., 
2019). Since MR has a 10-fold higher affinity for GCs than GR, it 
becomes active even at nadir GC levels (Kolber et al., 2008; Daskalakis 
et  al., 2022). In contrast, GR is only activated at higher GC 
concentrations, such as those reached during the circadian peak or 
after stress-induced HPA axis activation (Kolber et al., 2008). The 
presence of both GR and MR in the neurons of the SCN of adult mice 
and humans remains a controversial (Rosenfeld et al., 1988; Olejníková 
et al., 2018). The genes encoding for GR and MR are not expressed in 
adult SCN neurons in rodents and humans.1

GR acts as a ligand-activated transcription factor. In the 
inactive/unbound state, GR locates in the cytosol bound to the 
N-terminal and middle region of a chaperone complex containing 
Heat shock protein 90 (HSP90) (Antunica-Noguerol et al., 2016; 
Fries et al., 2017; Mazaira and Galigniana, 2019). HSP90 does not 
form part of the active receptor complex, but is important for 
correct GR protein folding and stability (Biebl and Buchner, 
2019). The HSP90 complex is also formed by co-chaperones 
important for GR stabilization and feedback, such as FK506-
binding protein 5 (FKBP5) (Binder, 2009; Biebl and Buchner, 
2019). Fkbp5 is transcriptionally induced by GC-GR and, in turn, 
regulates GR sensitivity through an intracellular negative feedback 
loop, essentially keeping inactive GR in the cytosol (Pratt and 
Toft, 1997; Nicolaides et al., 2000; Binder, 2009; Klengel et al., 
2013; Criado-Marrero et  al., 2018). Upon ligand binding, GR 
monomers dimerize (either with other GR monomer or with MR) 
and translocate to the nucleus where the dimer binds the DNA at 
GC response elements (GREs), regulatory regions of target genes 
(George et  al., 2017; Oakley et  al., 2021). Through binding of 
GREs, the transcription of GR target genes is modulated positively 
or negatively (Reddy et al., 2009; Surjit et al., 2011). Besides this 
canonical signaling cascade, GR and MR activation have shown 

1 https://portal.brain-map.org/
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rapid non-genomic changes, mediated by membrane-anchored 
GR/MR that might mediate the coordination of rapid adaptive 
responses to stress (Groeneweg et al., 2012).

The clock gene machinery is present in almost every cell of the 
body and reciprocal interaction with GR is found at 
transcriptional, translational, and post-translational levels 
(summarized in Figure 1; Nader et al., 2010). The molecular clock 
machinery works as an interlocked transcriptional-translational-
feedback loop (Takahashi, 2017). The positive members of the 
loop: BMAL1 (brain and muscle aryl hydrocarbon receptor 
nuclear translocator-like 1) and CLOCK (circadian locomotor 
output cycles kaput) heterodimerize and activate the transcription 
of their repressors Per1/2 (Period 1/2), Cry1/2 (Cryptochrome 1/2) 
through binding of E-Box promoter elements. Upon translation, 
PER and CRY form complexes in the cytosol, translocate into the 
nucleus and repress CLOCK/BMAL1 activity, shutting down their 
own transcription. After clearance of PER/CRY complexes, the 
inhibition of CLOCK/BMAL1 is released and a new circadian 
(~24 h) cycle begins. The cycle is further stabilized by accessory 
loops in which CLOCK/BMAL1 drive the circadian expression of 
Dec 1/2 and nuclear receptors of the ROR and the REV-ERB 
family (Takahashi, 2017).

As mentioned above, GR through its ability to respond to GCs’ 
circadian oscillations, is an ideal coupling partner of the molecular 
clock (Lambrou et al., 2021). Activated GR is able to influence the 
transcription of various clock genes via binding to GREs in their 
promoter regions, among them Per2, Rev-ERBß, Dec2, NPAS2, and 
E4BP4/NFIL3 (So et al., 2009; Nader et al., 2010). The clock gene Per1 
contains both, E-Box and GRE elements in its promoter; it is therefore 
responsive to both, BMAL1/CLOCK and GR binding (Conway-
Campbell et al., 2010). Moreover, the nuclear receptor Rev-ERBα is 

repressed by GR activity through negative GREs present in its 
promoter (Surjit et al., 2011).

The clock machinery and GR also interact at the protein level. It 
has been shown that Rev-ERBα, GRs and HSP90 interact in the 
cytosol (Okabe et al., 2016). Moreover, Rev-ERBα and GR distribute 
differentially between the nuclei and the cytosol depending on the 
phase of the clock, suggesting a possible influence of each other with 
regard to intracellular trafficking (Surjit et  al., 2011; Okabe et  al., 
2016). The above-mentioned interaction has been shown in cultured 
fibroblast, whether this mechanism is also present in brain cells needs 
to be  determined. CLOCK harbors a histone-acetyl-transferase 
activity which is able to alter the affinity of GR to GREs through 
acetylation of lysine clusters in its hinge region (Nader et al., 2010). 
Also, CRY proteins are able to decrease GR’s transactivation potential 
by interacting directly with GR (Lamia et al., 2011). These multiple 
and reciprocal molecular interactions stress the relevance of both 
pathways for the cellular and systemic regulation of circadian rhythms.

3. Glucocorticoids during circadian 
system development

During pregnancy, maternal physiology including the circadian 
system has to adapt to fulfill fetal requirements. During the first two 
thirds of pregnancy, the embryo/fetus is protected by the placenta from 
excessive levels of GCs by expressing (among others) the enzyme 
11β-Hydroxysteroid dehydrogenase (11β-HSD2) which inactivates 
GCs converting them into an inactive metabolite, cortisone (O’Donnell 
et al., 2012). Even though only 10% of maternal GCs reach the fetus, a 
circadian rhythmicity of GCs can still be detected in fetal blood (Astiz 
et al., 2020). During the last third of pregnancy, there is a gradual 

FIGURE 1

Scheme of the reciprocal molecular interaction between GR and the clock machinery at transcriptional, translational, and post-translational levels as 
described in detail in the text. BMAL1: brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1. CLOCK: circadian locomotor output 
cycles kaput. Pers: Periods. Dec2: differentially expressed in Chondrocytes 2. Npas2: Neuronal PAS Domain-Containing Protein 2. RevErb-beta: 
Nuclear Receptor Subfamily 1 Group D Member 2. AC: acetyl group. GR: Glucocorticoid receptor. RevERb-Alpha: Nuclear Receptor Subfamily 1 Group 
D Member 1. CRY1/2 (Cryptochrome 1/2). HSP90: Heat shock protein 90. FKBP5: FK506-binding protein 5. CORT: Corticosterone.
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increase of GC levels in fetal blood (Atkinson and Waddell, 1995) that 
helps the fetus to continue developing and growing (Fowden et al., 
2022). This is partly due to a down-regulation of 11β-HSD2 
(Wieczorek et al., 2019). Therefore, even if GC concentration changes 
over pregnancy, the circadian rhythmicity is always present, and since 
GR is expressed at high levels in the fetal hypothalamus (including the 
SCN during that period), it could be  a key signal driving the 
development and maturation of the circadian system and its coupling 
to the HPA axis (Astiz et al., 2020; Greiner et al., 2022).

Indeed, extensive evidence shows that maternal stress or 
circadian rhythm disruption (e.g., through altered photoperiod, 
sleep deprivation, shift work) leads to a higher risk of developing 
metabolic, behavioral, and sleep disorders later in life (Moisiadis 
and Matthews, 2014b; Vilches et al., 2014; Marín, 2016; Mendez 
et  al., 2016; Logan and McClung, 2019; Lužná et  al., 2020). 
Interestingly, due to the close SCN-HPA axis relationship most of 
the experimental paradigms assessing the long-term effects of 
maternal stress used in nocturnal rodents entail some degree of 
circadian disruption because animals are subjected to different 
manipulations during their normal rest/light phase. Reciprocally, 
circadian disruption paradigms entail a certain degree of 
activation of the stress system. This issue was disentangled 
recently by our lab, when we demonstrated that the offspring from 
mothers exposed to GCs during the rest phase show worse 
circadian and stress-related behavioral phenotypes than those 
from mothers exposed to the same GC concentration, but during 
the active phase. This means that the effect of prenatal GCs 
activating epigenetic mechanisms and programming offspring 
behavior depends on the maternal exposure time (Astiz et  al., 
2020). We have found that when GC exposure happens, GR in the 
fetal hypothalamus is activated only if the signal reaches the tissue 
during the inactive phase. This time-dependent sensitivity to GCs 
in the fetal hypothalamus was gated by an autonomous function 
of the fetal molecular clock (Astiz et  al., 2020). Then, the 
maturation of the clock and stress axis of the newborn seems to 
depend not only on maternal GCs but also on GR sensitivity, 
which is time-dependent.

4. Glucocorticoids and the adult 
circadian system

From a physiological point of view, an efficient synchronization of 
the circadian system would require that central or peripheral signals 
feedback to the SCN to adjust its function according to the internal 
environment. In the adult, SCN hypothalamic efferences reach the 
sub-PVN, PVN, supraoptic nuclei (SON), dorsomedial nucleus 
(DMH), and the arcuate nucleus (ARC) among many others (Saeb-
Parsy et al., 2000; Kalsbeek et al., 2004; Postnova et al., 2013; Buijs 
et al., 2017) and some of those connections are reciprocal (e.g., with 
the ARC). However, the SCN clock is quite resistant to re-setting 
signals. This property, so far attributed to the robust network feature 
of the SCN circuit, might be  important to prevent the impact of 
Zeitgeber noise such as sporadic light exposure, acute stress, or miss-
timed food intake on the central pacemaker (Schibler et al., 2015).

GCs, as one of the main outputs of the circadian system, might 
feedback to the SCN, however, it is still under discussion whether the 

influence is direct or indirect (Balsalobre et al., 2000). In the early 90s, 
it was demonstrated that SCN neurons are among the few cell types in 
adult rodents that do not express GR (Rosenfeld et  al., 1988). 
Interestingly, experiments manipulating GC circadian phase have 
shown that, GCs have a key role in circadian resynchronization of 
locomotor activity after jetlag, indicating a clear influence on the SCN 
(Kiessling et al., 2010). Furthermore, either the removal of the adrenal 
glands or the restitution of the hormone within physiological limits in 
adrenalectomized rats, demonstrated that glucocorticoids are involved 
in plastic rearrangements of the SCN circuit (Maurel et al., 2000). These 
ultrastructural arrangements have been observed over the 24 h cycle 
characterized by day/night changes of the glial, axon terminal, and/or 
somato-dendritic coverage of neurons expressing arginine vasopressin 
(AVP) or vasoactive intestinal peptide (VIP) (Becquet et al., 2008).

As mentioned before, we know now that astrocytes play a key role 
as time-keepers of the adult SCN. Astrocytes express the molecular 
clock machinery with self-sustained circadian rhythms that persist 
even in constant environmental conditions (Prolo et  al., 2005; 
Marpegan et al., 2009; Barca-Mayo et al., 2017). The molecular clock 
in SCN astrocytes is entrainable by neuronal signals (Marpegan et al., 
2009), temperature changes (Prolo et al., 2005), and they reciprocally 
modulate neuronal rhythms (Barca-Mayo et al., 2017). Additionally, 
several astroglial functions are under circadian control such as, 
intracellular Ca2+ waves (Brancaccio et al., 2017) and the release of 
gliotransmitters, ATP (Burkeen et  al., 2011) and glutamate 
(Svobodova et  al., 2018) and even their morphological changes 
during the day (Becquet et al., 2008). Interestingly, we have found GR 
expression in the SCN of adult mice colocalizing with glial fibrillary 
acidic protein (GFAP) a marker of mature astrocytes (Figure  2) 
confirming previous observations (Moriya et al., 2000; Leone et al., 
2006). Although this needs further investigation it opens the 
possibility that not only neurons but also astrocytes might play an 
essential role in the complex cooperation between the SCN, the HPA 
axis and the systemic coordination of circadian rhythms.

5. Perspective

In summary, accumulating evidence suggests that GCs play an 
important role in the development and maturation of the circadian 
system. This, in turn, feeds back on stress axis regulation in the adult. 
Glial clocks may play an important role in this context, but 
experimental evidence for this is still sparse. To causally address such 
interaction, it would be important to study clock system development 
in animals with alterations in glial clock function and how glial 
disruption affects clock and stress regulation in the offspring. With 
regard to humans, the relevance of perinatal rhythms for shaping 
circadian system regulation and stress responses offers tremendous 
potential for therapeutic interventions. Can stabilization of GC 
rhythms during the end of pregnancy lead to increased resilience of 
the offspring against stress and stress-associated disorders, and what 
type of interventions beyond GC treatment are efficient in this 
context? To which extent is GC perinatal programming reversible 
later in life, and—against the background of the broad impact of 
stress hormones on physiological functions—what other systems are 
affected? Finally, how does GC programming affect glial function 
later in life, and what does this mean for neuro-immunologic 
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disorders? First steps in this direction have been taken with the 
studies on perinatal GC treatments (Astiz et  al., 2020). It will 
be  interesting to further decipher the underlying mechanisms of 
GC-fetal rhythm interaction and search for additional factors that 
impinge on this crosstalk.
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FIGURE 2

Representative double fluorescence immunostainings in the adult SCN. GFAP (green) used as an astrocyte marker, GR (red) and DAPI (blue) as a 
nuclear marker. Brain was collected from a 90-day old mouse at ZT (Zeitgeber time) 7, immediately frozen on dry ice, and sectioned (12 μm) in a 
cryostat. After fixation (20 min at room temperature (RT)), sections were blocked with goat serum 4% in phosphate buffer (PBS) containing 0.4% of 
Triton X-100 for 1 h at RT. Sections were incubated with anti-GR (Abcam Ab183127, 1:200 in blocking) for 2 nights at 4°C. Sections were incubated 
afterwards with anti-GFAP (ThermoFisher 14–9,892-82, 1:200 in blocking) for 1 night at 4°C. The day after, sections were incubated with secondary 
antibodies – goat anti-rabbit Alexa 594 (ThermoFisher A11012, 1:500) and goat anti-mouse Alexa 488 (ThermoFisher A11029, 1:500) in a dark chamber 
for 2 h at RT. DAPI staining was performed to stain nuclei by incubating slides with 300 nM DAPI (ThermoFisher D1306) in PBS for 2 min in the dark. 
Images of immunofluorescent staining were made using Nikon Ts2R-FL (10X (insets) and 40X magnification).
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