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Purpose of review: To provide a detailed overview of the assessment of 
COVID-19-related olfactory dysfunction and its association with psychological, 
neuropsychiatric, and cognitive symptoms.

Recent findings: COVID-19-related olfactory dysfunction can have a detrimental 
impact to the quality of life of patients. Prior to the COVID-19 pandemic, olfactory 
and taste disorders were a common but under-rated, under-researched and 
under-treated sensory loss. The pandemic has exacerbated the current unmet 
need for accessing good healthcare for patients living with olfactory disorders 
and other symptoms secondary to COVID-19. This review thus explores the 
associations that COVID-19 has with psychological, neuropsychiatric, and 
cognitive symptoms, and provide a framework and rationale for the assessment 
of patients presenting with COVID-19 olfactory dysfunction.

Summary: Acute COVID-19 infection and long COVID is not solely a disease 
of the respiratory and vascular systems. These two conditions have strong 
associations with psychological, neuropsychiatric, and cognitive symptoms. 
A systematic approach with history taking and examination particularly with 
nasal endoscopy can determine the impact that this has on the patient. Specific 
olfactory disorder questionnaires can demonstrate the impact on quality of life, 
while psychophysical testing can objectively assess and monitor olfaction over 
time. The role of cross-sectional imaging is not yet described for COVID-19-
related olfactory dysfunction. Management options are limited to conservative 
adjunctive measures, with some medical therapies described.
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Introduction

Coronavirus disease 2019 (COVID-19), a highly contagious viral illness caused by SARS-
CoV-2, resulted in a global pandemic and more than 6.8 million deaths worldwide to date (WHO, 
2023). SARS-CoV-2 is an enveloped positive single stranded RNA (+ssRNA) virus, which 
primarily is transmitted via exposure to respiratory droplets carrying the infectious virus from 

OPEN ACCESS

EDITED BY

Dongdong Qin,  
Yunnan University of Traditional Chinese 
Medicine, China

REVIEWED BY

Luiz Fábio Magno Falcão,  
Universidade do Estado do Pará, Brazil  
Dalinda Isabel Sánchez-Vidaña,  
Hong Kong Polytechnic University,  
Hong Kong SAR, China

*CORRESPONDENCE

Lavandan Jegatheeswaran  
 lavandan.jegatheeswaran@nhs.net

RECEIVED 13 February 2023
ACCEPTED 18 July 2023
PUBLISHED 

CITATION

Jegatheeswaran L, Gokani SA, Luke L, 
Klyvyte G, Espehana A, Garden EM, Tarantino A, 
Al Omari B and Philpott CM (2023) Assessment 
of COVID-19-related olfactory dysfunction and 
its association with psychological, 
neuropsychiatric, and cognitive symptoms.
Front. Neurosci. 17:1165329.
doi: 10.3389/fnins.2023.1165329

COPYRIGHT

© 2023 Jegatheeswaran, Gokani, Luke, Klyvyte, 
Espehana, Garden, Tarantino, Al Omari and 
Philpott. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 
DOI 10.3389/fnins.2023.1165329

04 August 2023

04 August 2023

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1165329%EF%BB%BF&domain=pdf&date_stamp=2023-08-04
https://www.frontiersin.org/articles/10.3389/fnins.2023.1165329/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1165329/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1165329/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1165329/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1165329/full
mailto:lavandan.jegatheeswaran@nhs.net
https://doi.org/10.3389/fnins.2023.1165329
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1165329


Jegatheeswaran et al. 10.3389/fnins.2023.1165329

Frontiers in Neuroscience 02 frontiersin.org

close contact, or from droplet transmission from pre-symptomatic, 
asymptomatic or symptomatic individuals incubating the virus 
(Cascella et al., 2022). Whilst COVID-19 is predominantly considered 
a respiratory and vascular illness, emerging reports early in the 
pandemic identified the presence of sudden olfactory loss (anosmia or 
hyposmia) as being prevalent in patients with COVID-19 (Menni et al., 
2020; Parma et al., 2020; Vetter et al., 2020; Gerkin et al., 2021). Despite 
there being a long association between olfactory and taste disorders 
during and after viral upper respiratory tract infections including 
influenza, parainfluenza, rhinoviruses and endemic coronaviruses 
(Suzuki et al., 2007), it is estimated that the prevalence of anosmia and 
dysgeusia is 10.2 fold higher and 8.6 fold higher, respectively, in 
COVID-19 patients when compared to other viral upper respiratory 
tract infections (Mutiawati et al., 2021). Furthermore, to date there has 
been over 755 million cumulative COVID-19 cases worldwide, with 
millions of patients now living with new onset olfactory and taste 
disorders (Parma et al., 2020; Cecchetto et al., 2021; Mutiawati et al., 
2021; Ohla et al., 2022; WHO, 2023).

In addition to the acute symptoms of COVID-19, there are 
individuals that have the prevalence of these symptoms lasting longer 
than 12 weeks – this syndrome being termed “long COVID.” Data 
from the United Kingdom (UK) Census 2021, run by the Office for 
National Statistics (ONS), places the prevalence of long COVID 
within the UK population as being between 3.0 to 11.7% (Gokani 
et al., 2022). Groups at higher risk of developing long COVID include 
women, those aged 35–49 years old, Caucasian ethnicity or those 
living with disabilities (Ayoubkhani et al., 2021; Gokani et al., 2022; 
Ohla et al., 2022).

Prior to the emergence of COVID-19, olfactory and gustatory 
disorders were a common but under-researched, under-treated and 
under-rated sensory loss but increasing evidence has shown that 
anosmia (complete loss of smell) is as an independent risk factor for 
reduced longevity in this patient cohort (Pinto et al., 2014; Laudisio 
et al., 2019; Liu et al., 2019). This disease brings with it novel challenges 
and also highlights and exacerbates the current unmet need for 
accessing good healthcare for these patients living with olfactory 
disorders and other symptoms secondary to COVID-19 (Ball et al., 
2021). This article thus explores the associations that COVID-19 has 
on psychological, neuropsychiatric, and cognitive symptoms, and 
provide a framework and rationale for the assessment of patients 
presenting with COVID-19 olfactory dysfunction.

COVID-19 associations

Cognitive symptoms

Coronaviruses, the broad family of viruses that the SARS-CoV-2 
virus belongs to, is one of many pathogens known to cause post-
infectious olfactory dysfunction (Suzuki et al., 2007). Nasal epithelial 
cells show relatively high expression of the angiotensin-converting 
enzyme 2 (ACE-2) receptor, which is required for the entry of SARS-
CoV-2 (Sungnak et al., 2020; Song et al., 2021). SARS-CoV-2 thus can 
enter the Central Nervous System (CNS) through the olfactory nerve 
which is the only cranial nerve in contact with the environment. Viral 
damage of the olfactory bulb may be the first insult needed for further 
degeneration to occur (Song et al., 2021; Kay, 2022). In the acute phase 
of COVID-19 infection, autopsy studies have identified the prevalence 

of neuroinflammation, activation of microglia, neuronal death, and 
meningeal hyperaemia in post-mortem cortex tissues of COVID-19 
patients (Boroujeni et al., 2021; Colombo et al., 2021).

Other hypotheses in literature have been proposed for SARS-
CoV-2 route of entry into the CNS. A proposed haematogenous route, 
which is adopted by coronaviruses and other viruses, include the 
infection of leucocytes by the virus which allows it to be transported 
across the blood brain barrier (Koyuncu et al., 2013; Nagu et al., 2021). 
Consequently, neuroinflammation occurs by the triggered release of 
proinflammatory chemokines and cytokines resulting in increased 
blood brain barrier permeability and the easier facilitation of SARS-
CoV-2 entry into the CNS (Koyuncu et al., 2013; Nagu et al., 2021). 
An enteric route has also been proposed, whereby SARS-CoV-2 entry 
into the CNS occurs as a result of there being a direct connection of 
the enteric nervous system with the brain via the vagus nerve (Gao 
et al., 2020). All the routes proposed involve the binding of the SARS-
CoV-2 spike protein with the ACE-2 receptor on target cells thus 
facilitating the entry of the virus into the CNS (Gao et  al., 2020; 
Sungnak et al., 2020; Nagu et al., 2021; Song et al., 2021).

Moreover, studies have reported long term CNS involvement and 
the prevalence of cognitive impairment in long COVID infection 
ranging from 25 to 50% (Miners et al., 2020; Miskowiak et al., 2021; 
Rahman et al., 2021; Chen et al., 2022). One proposed theory for the 
persistent cognitive impairment seen in long COVID may 
be secondary to the presence of viral RNA in the brain of long COVID 
patients and persistent systemic inflammation (Stein et al., 2022; de 
Paula et al., 2023). Furthermore, structural brain changes found in 
long COVID anosmic patients include lower concentration of grey 
matter in the amygdala, insular cortex, parahippocampus, frontal 
orbital gyrus, olfactory cortex, caudate and putamen (Miners et al., 
2020; Campabadal et al., 2023). Other structural changes seen include 
medial temporal lobe dysfunction involving the hippocampus (Llana 
et al., 2022), entorhinal and perirhinal cortex (Douaud et al., 2022). 
The medial temporal lobe is important in multiple cognitive processes 
including semantic memory and processing of emotions and is also 
one of the first regions to atrophy in Alzheimer’s disease (AD). 
Semantic memory is long-term memory and relies heavily on the 
temporal lobe and structures such as the hippocampus and 
parahippocampus. At least 20% of patients with COVID-19-related 
olfactory dysfunction had impaired semantic memory (Gokani et al., 
2022). Thus, semantic memory impairment seen in long COVID 
patients is similar in presentation to patients diagnosed with AD 
(Fiorentino et  al., 2022). Other studies have reported additional 
impairments of executive functions, attention, memory, information 
processing and fatigue after acute COVID-19 infection (Braga-Paz 
et al., 2022; Fiorentino et al., 2022; de Paula et al., 2023). It appeared 
that these symptoms persisted and were more common after follow 
up at 4 months.

One study comparing patients with chronic fatigue syndrome 
with patients with long COVID brain fog showed similarity in 
cognitive patterns between the two groups (Azcue et  al., 2022). 
Although the underlying neuronal substrate is unknown for chronic 
fatigue, hypothalamic changes which has been observed in chronic 
fatigue syndrome and myalgic encephalitis may be responsible for 
long COVID brain fog (Carruthers et al., 2011). Thus, this implies that 
SARS-CoV-2 is neuroinvasive and may remain in the brain tissue 
causing neuroinflammation which increases cognitive burden (Stein 
et al., 2022; de Paula et al., 2023).
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COVID-19-related olfactory dysfunction can be  a marker of 
impending cognitive dysfunction. Further large high quality cohort 
studies investigating the genetic and biomarkers between cognitive 
dysfunction, anosmia and severity of acute COVID-19 infection are 
needed. Future studies should also focus on prevention and identifying 
at risk patients of cognitive dysfunction within this cohort.

Neuropsychiatric symptoms

Olfactory dysfunction is a known early sign of many 
neuropsychiatric disorders, particularly AD and Parkinson’s Disease 
(Yoo et al., 2018; Rebholz et al., 2020; Cristillo et al., 2021; Azcue et al., 
2022). It is hypothesized that the neurodegenerative patterns seen in 
these disorders begin in the olfactory bulb, which is susceptible to 
damage from inflammatory processes triggered by viral neuroinvasion 
(Attems et al., 2014; de Erausquin et al., 2021). Furthermore, COVID-
19-related olfactory dysfunction, and the observed pattern of 
degeneration in the olfactory bulb and limbic brain regions, is similar 
to that seen in the early stages of AD and Lewy body disease (Kay, 
2022). Notably olfactory loss, and many neuropsychiatric disorders 
are associated with high levels of interleukin-6 (IL-6), an inflammatory 
marker which is also implicated in the cytokine storm in COVID-19 
patients (Gialluisi et al., 2020; de Erausquin et al., 2021). In addition 
to increased IL-6 levels, an increase in levels of C-Reactive Protein 
(CRP), IL-1β, IL-2 and Tumour Necrosis Factor (TNF) has been 
observed in both acute COVID-19 patients and Parkinson’s patients, 
which may imply that high levels of these markers (as seen in the 
COVID-19 cytokine storm) are associated with a higher clinical 
severity risk of Parkinsonian symptoms in acute COVID-19 patients 
(Qin et al., 2016; Qiu et al., 2019; Gialluisi et al., 2020; de Erausquin 
et al., 2021). This inflammatory process may have the potential to 
induce neurological damage such as encephalitis (Gialluisi et  al., 
2020). The use of IL-1 and IL-6 receptor antagonists such as 
tociluzimab has been seen to reduce the severity of acute COVID-19 
illness in patients, which in turn may reduce the neurological damage 
that occurs secondary to the cytokine storm (Ghofrani Nezhad 
et al., 2023).

Moreover, acute COVID-19 and neuropsychiatric disorders share 
common risk factors such as APOE4 allele homo/heterogeneity, 
increased age, sex, hypertension, diabetes mellitus and obesity (Ortiz 
et  al., 2022). Apolipoprotein 4 (APOE4) allele homogeneity or 
heterogeneity may lead to potential cerebrovascular dysfunction and 
neuroinflammation blood brain barrier leakiness (Zhang and Xie, 
2020; Ortiz et al., 2022). Furthermore, the SARS-CoV-2 N protein has 
been shown to inhibit RIG-1-like pathway. RIG-1 (retinoid acid-
inducible gene-1) has been found to have associations with 
schizophrenia suggesting that coronavirus infection could lead to 
exacerbation of previous neuropsychiatric illness (Rhoades et  al., 
2022). Moving forward, more research is required to clarify the exact 
mechanisms underlying the associations between COVID-19-related 
olfactory dysfunction and neuropsychiatric disorders.

Psychological symptoms

Psychological impacts are associated with both acute COVID-19 
infection and long COVID. In the acute setting, acute COVID-19 

infection has been associated with negative feelings and behaviors 
such as anxiety, stress, anger, avoidance, and isolation (DeJong et al., 
2020). In a cohort study of 461 patients hospitalised with acute 
COVID-19 infection, Kim et  al. (2021) identified the presence of 
symptoms such as anxiety (16.3%), depression (26.5%), insomnia 
(33.4%), and suicidal ideation (11.7%). These symptoms significantly 
improved in the week following hospitalisation (Kim et al., 2021). A 
fluorodeoxyglucose positron emission tomography (FDG-PET) study 
on acute COVID-19 patients suggests the increased presence of these 
psychological symptoms being due to COVID-19-related dysfunction 
of the cingulate cortex, an anatomical area involved in the processing 
of emotions, decision making, memory and depression (Hugon, 
2022). Studies in literature have also observed high levels of various 
cytokines that are raised in patients infected with SARS-CoV-2, such 
as IL-6, TNF-α, IL-1β and ferritin in patients with psychiatric 
disorders such as depression, post-traumatic stress disorder (PTSD) 
and obsessive–compulsive disorder (OCD) (Ma et al., 2010; Parker 
et al., 2015; Lindqvist et al., 2017; Karagüzel et al., 2019). Furthermore, 
pathological analysis of autopsy specimens of patients with acute 
COVID-19 infection has identified that Neurolipin-1 (NRP-1) is 
expressed in olfactory epithelial cells and can potentiate SARS-CoV-2 
infectivity and provide a route for CNS penetration of the virus 
(Cantuti-Castelvetri et al., 2020).

Long COVID also has significant psychological associations. In 
the 3 months following acute COVID-19 infection, patients are at 
increased risk of mood and anxiety disorders. Taquet et al. (2021) 
identified that 5.8% of patients had a new psychiatric diagnosis in the 
14–90 days after COVID-19 infection in a retrospective study of 
62 354 COVID-19 cases in the USA (Taquet et al., 2021). However, 
this relationship is complex, with patients with pre-existing psychiatric 
disorders also at a potential increased risk of long COVID (Kataoka 
et al., 2023). Studies have also suggested that the psychological impact 
of acute and long COVID is associated with the severity of the initial 
acute COVID-19 infection. A prospective cohort study in 6 European 
countries of 247,249 adults, including 9,979 with COVID-19, found a 
higher prevalence of depression and poor sleep quality amongst 
individuals with COVID-19, with an increased risk of depression 
amongst patients who were bedridden for more than 7 days 
(Magnúsdóttir et al., 2022). Tackling psychological symptoms should 
be a priority area of focus for survivors of COVID-19 due to the 
increased incidence of mental health disorders when compared to 
patients hospitalised for other causes or similar infections such as 
seasonal influenza (Xie et al., 2022).

Figure  1 below summarises the proposed mechanisms of 
destruction in acute COVID-19 infection and its downstream effects 
on the limbic system and its resulting cognitive, neuropsychiatric, and 
psychological symptoms.

Assessment of COVID-19 olfactory 
dysfunction

Clinical features of long COVID

The continuing presence of olfactory dysfunction and the 
potential for it to become permanent sequelae in the context of 
patients with long COVID presents a problem to clinicians 
worldwide (Gokani et  al., 2022; Mendes Paranhos et  al., 2022). 
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Olfactory dysfunction in acute COVID-19 infection tends to 
be  transient, lasting around 2–3 weeks and may be  partially 
explained by SARS-CoV-2 having a high affinity for the 
sustentacular cells of the olfactory epithelium that express ACE-2 
and that these cells possess substantial capacity for repair and 
regeneration after damage (Doty, 2021; Mendes Paranhos et al., 
2022). Long term prevalence of olfactory dysfunction may 
be secondary to continuous inflammation, damage to basal cells 
and chronic SARS-CoV-2 infection in the olfactory epithelium 
(Liang and Wang, 2021). Chronic inflammation could result in gene 
expression modulation which in turn can alter the function of 
olfactory epithelium basal cells from neural regeneration to 
inflammatory signalling and immune cell proliferation (Chen et al., 
2019). This has been highlighted in Figure 2.

Olfactory dysfunction history and 
examination

A thorough history is required to establish the nature of olfactory 
dysfunction which patients are suffering from, and the extent to which 
their quality of life has been affected. Firstly, it is crucial to differentiate 
whether the patient has anosmia, hyposmia, phantosmia, or parosmia. 
Next, establishing a timeline of their symptoms will help identify what 
their smell was like before, any events that may have triggered these 
symptoms (besides an acute COVID-19 infection), and how they have 
developed over time (Luke et al., 2022).

It is important to look out for other potential causes of olfactory 
dysfunction. These include sinonasal disorders such as chronic 
rhinosinusitis, previous head trauma, surgery, or neurodegenerative 

FIGURE 1

A flowchart explaining proposed mechanisms of destruction by SARS-CoV-2 and its effects on the limbic system and resultant effects on 
psychological, neuropsychiatric and cognitive symptoms.

FIGURE 2

A flowchart explaining possible mechanisms of olfactory dysfunction in acute COVID-19 infection and in long COVID with its eventual progression to 
transient or potential permanent olfactory dysfunction.
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disorders. Conducting a full review of all body systems will help uncover 
any other symptoms of long COVID. Furthermore, it is important to 
elicit the patient’s drug history, as many common medications are 
known to cause olfactory dysfunction (Schiffman, 2018). Finally, 
whether the patient has history of smoking, and any occupational 
exposure to certain hazardous chemicals is also important, as these can 
cause olfactory dysfunction (Schiffman, 2018; Werner and Nies, 2018).

After recording the olfactory dysfunction history, an examination 
of the nose is essential. Direct visualisation using fine nasal endoscopy 
will allow assessment of the nose, nasopharyngeal space, and olfactory 
cleft to rule out any causes of conductive olfactory loss (Seiden and 
Duncan, 2001). If the history from the patient raises suspicion of a 
sensorineural cause of olfactory dysfunction, a full cranial nerve 
examination is warranted.

Investigating COVID-19-related olfactory 
dysfunction

Subjective assessments such as the Olfactory Disorders 
Questionnaire (ODQ) can be  useful in establishing the degree of 
olfactory dysfunction and the impact to patients’ quality of life 
(Langstaff et al., 2019; Garden et al., 2023), as well as help identify 
qualitive symptoms such as phantosmia and parosmia.

As olfaction plays a major role in flavor perception, many patients 
may report a disturbance in their sense of taste. However true 
gustatory loss is rare and their perception of “loss” of their sense of 
taste is due to their olfactory dysfunction affecting retronasal olfaction 
(Wrobel and Leopold, 2004). Gustatory testing using Taste Strips may 
be a quick way in ruling out true gustatory loss. It involves using strips 
of filter paper consisting of four different flavours (sweet, sour, salty, 
bitter) in various concentrations. These strips are placed on the tongue 
of patients, and they are asked to identify which of the four flavours 
they think it is (Mueller et al., 2003).

Psychophysical olfactory testing can be  performed to 
quantitatively measure olfactory function and confirm the presence of 
olfactory dysfunction (Hummel et  al., 2016; Luke et  al., 2022). 
Olfaction can be assessed orthonasally or retronasally; odours can 
be sniffed through the nostrils (orthonasal olfaction) or allowed to 
enter through the nasopharynx through the use of powders (retronasal 
olfaction) (Croy et al., 2014; Hummel et al., 2016; Goldberg et al., 
2018). Objective testing of orthonasal olfaction can be done by using 
common validated psychophysical tests such as the Sniffin’ Sticks test, 
University of Pennsylvania Identification Test (UPSIT), the Toyota & 
Takagi Olfactometer, the Cross-Cultural Smell Identification Test, the 
Brief Smell Identification Test or the Connecticut Chemosensory 
Clinical Research Center (CCCRC) test (Doty et al., 1984, 1996; Cain 
et al., 1988; Kobal et al., 1996; Kondo et al., 1998; Menon et al., 2013; 
Hummel et  al., 2016; Hutson et  al., 2022). These tests have been 
established in objectively assessing the degree of olfactory dysfunction, 
categorizing patients into normosmia, hyposmia or anosmia (Doty 
et al., 1984, 1996; Cain et al., 1988; Kobal et al., 1996; Kondo et al., 
1998; Menon et al., 2013; Hummel et al., 2016; Hutson et al., 2022). 
While the UPSIT test can be performed by the patient on their own, 
the Sniffin’ Stick Test requires a medical professional to administer the 
test. Therefore, the choice of which test to use is up to the resources 
and capacity of the clinic the patient is being assessed. Retronasal 
psychophysical testing can be performed in patients where there is a 

perceived mismatch between orthonasal and retronasal olfaction that 
is not accounted for by a gustatory component (Heilmann et al., 2002; 
Croy et al., 2014; Goldberg et al., 2018; Luke et al., 2022). The most 
common retronasal olfaction technique is the retronasal olfaction test 
(ROT) (Heilmann et al., 2002). This involves the placement of twenty 
food powders onto the tongue using squeezable plastic vials, whilst the 
subject’s nose is clipped. A forced-choice odour identification test 
method (whereby a suprathreshold odour is presented to a subject 
whom must identify the odour from a list of descriptors) is used with 
four possible options and responses recorded (Heilmann et al., 2002).

It Is important for clinicians to utilise a psychophysical test that is 
appropriately and culturally adapted for the subject population 
identified to obtain results that are reliable (Rombaux et al., 2009; 
Frasnelli et al., 2010; Patel et al., 2022). Furthermore, increased length 
of the screening testing is associated with increased reliability and 
validity of the results (Doty et  al., 1995). Consequently, it is 
recommended that short screening tests be used for identification of 
subjects with olfactory dysfunction whereby longer tests be used to 
quantitatively assess the degree of olfactory dysfunction (Hummel 
et al., 2016; Luke et al., 2022; Patel et al., 2022).

As mentioned earlier, patients with acute COVID-19 infection 
and long COVID may suffer from anxiety and depression. 
Furthermore, patients who suffer from smell and taste disorders suffer 
higher rates of anxiety and depression compared to the general 
population. Thus, it may be beneficial in asking patients to complete 
validated questionnaires such as the Patient Health Questionnaire 
Anxiety and Depression scale to identify those who are suffering from 
depression and anxiety (Erskine and Philpott, 2020). A referral to the 
relevant mental health services can then be made.

The role of cross-sectional imaging in 
investigating COVID-19-related olfactory 
dysfunction

The role of cross-sectional imaging in the context of COVID-19-
related olfactory dysfunction has yet to be established (Whitcroft and 
Hummel, 2020). Computerized Tomography (CT) imaging of the 
paranasal sinuses and brain may be performed to exclude sinonasal or 
intracranial abnormalities (including malignancies) (Lund and 
Mackay, 1993; Higgins and Lane, 2014). Generally, structural 
Magnetic Resonance Imaging (MRI) has many uses in the assessment 
of olfactory disorders, as it allows for the assessment of the olfactory 
apparatus, the exclusion of asymptomatic chronic inflammation of the 
paranasal sinuses, the assessment of neurodegenerative disorders, the 
characterisation of traumatic brain injuries and the exclusion of 
intracranial or sinonasal neoplasms (Decker et al., 2013; Higgins and 
Lane, 2014; Luke et al., 2022). However, there is limited evidence to 
suggest a role for this modality in the context of post-infectious 
olfactory disorder (Hutson et al., 2022).

Olfactory dysfunction management

Addison et al. (2021) provided an evidence-based practical guide 
for the management of post-infectious olfactory dysfunction, 
including COVID-19-related olfactory dysfunction (Addison et al., 
2021). The Clinical Olfactory Working Group members emphasized 
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the recommendation for olfactory training; a non-surgical and 
non-pharmacological approach to manage COVID-19-related 
olfactory dysfunction. Other key medical management options were 
discussed including steroids and vitamin A, but they highlighted the 
need for further research to confirm the place for the varying 
therapeutic options available.

Adjunctive treatments

There are limited treatment options available for persistent 
COVID-19-related olfactory dysfunction as this is a relatively novel 
condition (Whitcroft and Hummel, 2020). However, there are 
numerous adjunctive management options used for post-viral 
olfactory dysfunction that could be used for patients who suffer from 
persistent olfactory dysfunction, including simple lifestyle measures, 
olfactory training, and traditional Chinese acupuncture (TCA).

The olfactory system is closely linked to the limbic system 
(Albrecht and Wiesmann, 2006). Consequently, olfactory dysfunction 
is associated with a deterioration in the quality of life, social skills, 
relationships and mental wellbeing of this patient cohort (Saniasiaya 
and Prepageran, 2021). Patients with olfactory dysfunction, including 
COVID-19-related olfactory dysfunction, report a decrease in flavour 
perception due to impaired retronasal olfaction (Nordin et al., 2011). 
This is associated with loss of or reduced appetite, as well as diminished 
food enjoyment (Elkholi et al., 2021; AlShakhs et al., 2022). Scheduled 
eating hours may address the dysregulated appetite observed (Croy 
et al., 2014). In addition, COVID-19-related olfactory dysfunction has 
been linked to depression and patient isolation (Coelho et al., 2021; 
AlShakhs et  al., 2022). This association may be  explained by the 
overlap between the brain areas involved in olfaction and depression, 
notably the orbitofrontal cortex, anterior and posterior cingulate 
cortices, insula, amygdala, hippocampus and thalamus (Seo et al., 
2010; Marine and Boriana, 2014). Social support groups such as Fifth 
Sense and AbScent can play an important role in facilitating patients 
to emotionally accept their olfactory deficit, allowing patients to 
perform adaptive adjustments to their lives living with this disease 
(Nordin et al., 2011; Saniasiaya and Prepageran, 2021).

It is also well recognised that patients with olfactory dysfunction 
have concerns regarding personal safety and hygiene (Philpott and 
Boak, 2014). Patients with olfactory dysfunction are significantly more 
likely to be  involved in more household accidents compared to 
normosmic individuals (Croy et al., 2012). Simple lifestyle measures 
that patients can do to keep themselves and co-habitants safe include 
maintaining smoke and natural gas detectors and monitoring food 
expiry dates and nutritional intake (Whitcroft and Hummel, 2020).

There is evidence that olfactory training (OT) is an effective and 
frequently used treatment option for patients with hyposmia or 
anosmia secondary to various aetiologies (Pekala et  al., 2016; 
Sorokowska et  al., 2017). It involves patients receiving repeated 
exposure to different odours over time to help improve their olfactory 
sensitivity (Altundag et al., 2015). Specifically, the odours typically 
used in OT include phenylethyl alcohol (rose scent), eucalyptol 
(eucalyptus scent), citronella (lemon scent) and eugenol (clove scent) 
(Hummel et al., 2009). Standard OT involves patients sniffing these 
odours (present on cotton pads within containers) twice daily for at 
least 20–30 s for each scent. (Kronenbuerger and Pilgramm, 2023). 
Hura et al. (2020) conducted a review of the treatments of post-viral 

olfactory dysfunction which showed OT is recommended to improve 
olfactory outcomes with higher concentrations, longer duration of OT 
and a wide variety of odours to be the most effective (Hura et al., 
2020). Furthermore, OT over 4 weeks has been demonstrated to 
improve subjective and psychophysical testing scores in patients with 
persistent COVID-19-related olfactory dysfunction (De AT et  al., 
2022). OT is a low-cost adjunctive therapy with negligible adverse 
effects for patients with persistent COVID-19-related olfactory 
dysfunction (Whitcroft and Hummel, 2020).

TCA is a popular complementary therapy that is used for a wide 
variety of conditions. There have been studies investigating its use in 
otorhinolaryngological conditions such as allergic rhinitis, tinnitus, 
and sudden sensorineural hearing loss. However, there is a paucity of 
high-quality evidence to demonstrate its benefit (Kahn et al., 2020). 
There are a few studies demonstrating a possible improvement in 
psychophysical assessment scores with TCA in patients with post-viral 
olfactory loss but these have small sample sizes (Vent et al., 2010; Dai 
et al., 2016). To date, there is no research conducted examining the 
efficacy of TCA on COVID-19-related olfactory dysfunction. TCA is 
performed by the placement of needles in acupoints by trained 
professionals, with these needles kept in place for 20 min. TCA is 
administered 3 times a week, with each course lasting 10 sessions. 
There are 3–5 days of rest in between courses, and courses are 
repeatedly administered until the patient has received 3 months in 
total (Vent et al., 2010; Dai et al., 2016). Similar to OT, TCA is a cost 
effective, low risk complementary therapy that may benefit patients, 
but further research is needed to determine its efficacy in post-viral 
olfactory loss and COVID-19-related olfactory dysfunction.

Pharmacological treatments

For COVID-19-related olfactory dysfunction that does not resolve 
spontaneously, pharmacological intervention may be  indicated. A 
Cochrane review on intervention of persistent COVID-19-related 
olfactory dysfunction has highlighted the significant lack of evidence 
exploring the efficacy and harms of treatment for patients with 
COVID-19-related olfactory dysfunction (Webster et al., 2022).

Intranasal and oral corticosteroids

Huart et al. (2021) have recently published an international expert 
group viewpoint that there is currently no evidence for the use of 
intranasal or oral corticosteroids in COVID-19-related olfactory 
dysfunction (Huart et al., 2021). Current literature is often underpowered 
and any evidence supporting the use of corticosteroids is weak (Saussez 
et al., 2021; Kim et al., 2022; Schepens et al., 2022). Furthermore, there 
is sufficient evidence that even limited systemic corticosteroid treatment 
can have harmful side-effects, such as increased risk of hip fractures and 
decompensating glaucoma (Yasir et al., 2022).

Non-steroidal pharmacological management

Vitamin A
It has been theorised that vitamin A will encourage regeneration 

of olfactory epithelium. This is because vitamin A is converted to 
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retinoic acid, which is thought to control olfactory progenitor cell 
differentiation, and can thus prevent exhaustion of stem cell supply or 
accumulation of non-functional immature neurones (Paschaki et al., 
2013). At present, there has been no RCT that has examined the 
efficacy of intranasal vitamin A specifically on patients with COVID-
19-related olfactory dysfunction. Promisingly, a pseudo-randomised 
clinical trial showed than in 124 patients with post-viral olfactory loss, 
a minimum clinically important difference in olfactory function was 
seen in 37% of those receiving intranasal vitamin A compared with 
23% receiving smell training alone (Hummel et al., 2017). However, 
due to the unbalanced treatment groups and pseudo-randomisation, 
the study lacked scientific rigor that is required for further proof of 
concept evidence for intranasal vitamin A. There is currently an 
ongoing double blind randomised controlled trial (RCT), APOLLO, 
which aims to further explore the use of intranasal vitamin A drops in 
the treatment of post-viral olfactory loss (ISRCTN - ISRCTN13142505, 
n.d.). This in turn will provide further baseline information for this 
treatment option to be  investigated for patients with COVID-19-
related olfactory dysfunction.

Platelet rich plasma
Platelet rich plasma (PRP) is an autologous blood product, with 

supraphysiologic concentration of growth factors, and can be used in 
peripheral nerve regeneration. Several studies have indicated that PRP 
administered intravenously may be effective in improving olfactory 
outcomes in patients following acute COVID-19 infection (Steffens 
et al., 2022; Wang et al., 2022; Lechien et al., 2023); including a recent 
randomised controlled trial which found that patients receiving PRP 
injection resulted in a 3.67 increase in Sniffin’ Sticks score compared 
with the placebo (95% CI 0.05–7.29; p = 0.047) (Yan et al., 2023). 
However, findings were significantly underpowered with only 26 
participants completing the study. Two of the studies found no adverse 
effects were reported, however Lechien et al. (2023) reported transient 
epistaxis (n = 31), parosmia related to the xylocaine spray (n = 10) and 
vasovagal episode (n = 2) (Lechien et al., 2023). Findings may therefore 
suggest that PRP could be a helpful tool in managing COVID-19-
related olfactory dysfunction, however larger randomised trials 
are required.

Theophylline
Theophylline is a drug derived from methylxanthine, with it 

having systemic properties including smooth muscle relaxation, 
bronchial dilatation, and diuresis as well as having a stimulant effect 
on the cardiac and central nervous systems (Jilani et  al., 2023). 
Clinically, theophylline is widely used in various obstructive 
respiratory pathologies including Chronic Obstructive Pulmonary 
Disease (COPD), asthma and infant apnoea (Jilani et al., 2023). In the 
context of anosmia, theophylline is suggested to improve olfactory 
neuroepithelium regeneration, by inhibiting phosphodiesterase and 
increasing secondary messengers (such as cyclic adenosine 
monophosphate and cyclic guanosine monophosphate) (Henkin et al., 
2009, 2011). A RCT evaluating the impact of intranasal theophylline 
on patients with post-viral olfactory dysfunction initially indicated 
that there was no significant improvement in smell between the 
theophylline group compared with the placebo saline irrigation (Lee 
et  al., 2022). However, authors hypothesized that the dosage of 
theophylline could be safely elevated, and thus conducted a phase 2 
trial specifically on patients with COVID-19-related olfactory 

dysfunction (Gupta et al., 2022). At the higher dose, mixed model 
analysis revealed that the change in UPSIT score was not significantly 
different between the two groups. These findings were limited by the 
small sample size of 45 participants and the use of subjective 
assessments of olfactory dysfunction. Larger studies, using more 
objective testing methods, are warranted to further investigate the 
impact and efficacy of intranasal theophylline on patients with 
COVID-19-related olfactory dysfunction.

Ultramicronized palmitoylethanolamide and 
luteolin supplements

Ultramicronized palmitoylethanolamide and luteolin (PEA-LUT) 
are anti-inflammatory and neuroprotective agents. One hypothesis is 
that COVID-19-related olfactory dysfunction may be  due to 
neuroinflammatory results within the olfactory bulb and central nervous 
system, therefore PEA-LUT may have a potential role in its management. 
A RCT of 185 patients with COVID-19-related olfactory dysfunction 
found that those treated with PEA-LUT oral supplements plus olfactory 
training showed significantly greater improvement in Sniffin’ Sticks score 
compared with controls (Di Stadio et al., 2022). By the 90-day endpoint, 
there was greater than a ten-fold prevalence of anosmia in the control 
versus intervention. Although providing promising results, further 
longitudinal studies are required for clarifying optimal timing and 
dosing parameters of PEA-LUT for patients with limited or absent 
recovery from COVID-19-related olfactory dysfunction and to also 
evaluate the effect of PEA-LUT on neuroinflammation by measuring 
specific neuroinflammatory biomarkers.

Zinc sulphate
Zinc is an important trace metal in the human body, and it regulates 

the differentiation, proliferation, maturation and function of 
lymphocytes and other leucocytes (Jeong and Eide, 2013; Gammoh and 
Rink, 2017; Abdelmaksoud et  al., 2021). Consequently, it was 
hypothesised that zinc deficiency may contribute to COVID-19-related 
olfactory dysfunction due to these patients being more susceptible to 
severe acute COVID-19 infection and its associated complications. 
However, a recent study has found that serum zinc levels in patients 
with acute COVID-19 infection were not significantly different between 
those with the presence of or those with the absence of olfactory and/
or gustatory dysfunction (Abdelmaksoud et al., 2021). Interestingly, 
they did find that the median duration of olfactory and/or gustatory 
dysfunction was significantly shorter in patients who received oral zinc 
supplements. Further longitudinal studies should be  conducted to 
investigate the impact and efficacy of oral zinc supplements in the role 
of treating COVID-19-related olfactory dysfunction.

Buffer solutions
Free calcium plays a fundamental role in peripheral olfactory 

processing, including feedback inhibition. Thus, it is proposed that the 
reduction of intranasal free calcium with buffer solutions may improve 
olfactory function in patients with olfactory impairment (Whitcroft 
and Hummel, 2019). Examples of buffer solutions include sodium 
citrate, tetra sodium pyrophosphate (TSPP) and sodium gluconate, 
which are discussed below.

Sodium citrate
Sodium citrate administered intranasally can modulate the 

cascade of olfactory receptor transduction (Whitcroft and Hummel, 
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FIGURE 3

A flowchart illustrating a proposed algorithm for clinicians to follow when managing a patient with suspected COVID-19-related olfactory dysfunction.

2019). At present there is currently no RCT investigating the efficacy 
of intranasal sodium citrate in patients with COVID-19-related 
olfactory dysfunction. However, an improvement in olfactory 
threshold was seen in a prospective placebo-controlled trial, whereby 
intranasal sodium citrate was trialled against intranasal sodium 
chloride treatment for 57 patients with olfactory loss (Whitcroft et al., 
2016). Furthermore, in a prospective placebo-controlled trial with 49 
patients exclusively with post-viral olfactory dysfunction, intranasal 
sodium citrate showed significant improvement in the compound 
threshold and ident cation scores but nil change in odour or threshold 
identification when compared to the placebo (Whitcroft et al., 2017). 
A single application of 0.5 mL of sodium citrate per nostril, compared 
to sterile water in a RCT of 55 patients with non-conductive olfactory 
dysfunction, was shown to have statistically significant improvement 
in olfactory function using olfactory thresholds for phenyl ethyl 
alcohol, 1-butanol, and eucalyptol, with thresholds measured up to 2 h 
post intervention (Philpott et al., 2017). It is proposed that the sodium 
citrate solution administered nasally binds to the free calcium ions in 
the nasal mucus, thus reducing the free calcium available in the nasal 
mucosa (Philpott et al., 2017). All the aforementioned studies lack 
robust long-term data as well as data specific to patients with COVID-
19-related olfactory dysfunction, and this will need to be addressed in 
future RCTs in order to explore the clinical applications and efficacy 
of sodium citrate as a buffer solution in this patient cohort.

Tetra sodium pyrophosphate
Tetra sodium pyrophosphate (TSPP) is a calcium chelating agent 

that lowers calcium concentration (Shirashoji et al., 2016). Reduced 
calcium has been suggested to increase sensitivity to odorants, as 
shown utilising sodium citrate to improve olfactory function (Philpott 
et  al., 2017). A randomised controlled trial, on 64 patients with 

COVID-19-related olfactory dysfunction, claimed to find that there 
was a statistically significant improvement in Sniffin’ Stick scores 
between those treated with intranasal TSPP compared with sodium 
chloride, but the study was underpowered for the minimum clinically 
important difference in the Sniffin’ Sticks (Abdelazim et al., 2022). 
This may be due to the role of intranasal TSPP as a chelating agent, as 
the TSPP group had a statistically significant lower nasal calcium 
concentration than those treated with sodium chloride. Larger, 
higher-powered studies will be required to further investigate the role 
of intranasal TSPP as a buffer solution in treating COVID-19-related 
olfactory dysfunction.

Sodium gluconate
Similarly, to TSPP, sodium gluconate has also shown to be a highly 

efficient chelating agent (Fiume et al., 2019). It has also shown some 
potential in the use to treat COVID-19-related olfactory dysfunction, 
with a statistically significant improvement in Sniffin’ Stick scores in 
those receiving intranasal sodium gluconate at 1 month (Abdelazim 
and Abdelazim, 2022). As with TSPP, these studies are underpowered 
at best, and will require larger, well powered studies to investigate its 
efficacy as a buffer solution in improving olfactory function in this 
patient cohort.

Proposed algorithm for investigating 
COVID-19-related olfactory dysfunction

Utilising the aforementioned evidence, the authors propose an 
algorithm for clinicians to utilise when presented with patients with 
possible COVID-19-related olfactory dysfunction. This can be seen in 
Figure 3 below.
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In summary, the efficacy of the medical management of COVID-
19-related olfactory dysfunction remains experimental at best, with 
studies for the different treatment strategies either being 
underpowered or not performed on patients with COVID-19-related 
olfactory dysfunction. Future larger, highly powered studies which 
utilises validated olfactory assessment scores will provide light on the 
efficacy of these treatments.

Conclusion

Acute COVID-19 infection and long COVID have strong associations 
with psychological, neuropsychiatric, and cognitive symptoms. A 
systematic and holistic approach with history taking and examination 
particularly with nasal endoscopy can determine the impact that COVID-
19-related olfactory dysfunction has on the patient. Specific olfactory 
disorder questionnaires can demonstrate the impact on quality of life, 
while psychophysical testing can objectively assess and monitor olfaction 
over time. The role of cross-sectional imaging is not yet described for 
COVID-19-related olfactory dysfunction. Management options are 
limited to conservative adjunctive measures, with medical therapies 
having a yet unproven role in the treatment of this disorder. Further 
research, in the form of larger, highly powered RCTs will be needed to 
examine the efficacy of pharmacological and non-pharmacological 
interventions for patients with COVID-19-related olfactory dysfunction.
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