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The mammalian circadian system generates an approximate 24-h rhythm 
through a complex autoregulatory feedback loop. Four genes, Period1 (Per1), 
Period2 (Per2), Cryptochrome1 (Cry1), and Cryptochrome2 (Cry2), regulate 
the negative feedback within this loop. Although these proteins have distinct 
roles within the core circadian mechanism, their individual functions are poorly 
understood. Here, we used a tetracycline trans-activator system (tTA) to examine 
the role of transcriptional oscillations in Cry1 and Cry2 in the persistence of 
circadian activity rhythms. We demonstrate that rhythmic Cry1 expression is an 
important regulator of circadian period. We  then define a critical period from 
birth to postnatal day 45 (PN45) where the level of Cry1 expression is critical 
for setting the endogenous free running period in the adult animal. Moreover, 
we show that, although rhythmic Cry1 expression is important, in animals with 
disrupted circadian rhythms overexpression of Cry1 is sufficient to restore normal 
behavioral periodicity. These findings provide new insights into the roles of the 
Cryptochrome proteins in circadian rhythmicity and further our understanding of 
the mammalian circadian clock.

KEYWORDS

cryptochrome, circadian rhythms, period length, development, gene expression

Introduction

Many biological, physiological, and behavioral processes oscillate with a daily (approximately 
24-h) rhythm. These circadian rhythms provide synchrony between an organism and its external 
environment, allowing the organism to adapt its physiology and behavior to changing 
environmental conditions (Pittendrigh, 1960). In the mammalian circadian system, light 
information is detected by specialized ganglion cells in the retina and is then transmitted along 
the retinal hypothalamic tract to the suprachiasmatic nucleus (SCN) of the hypothalamus 
(Johnson et al., 1988; Moore et al., 1995; Provencio et al., 2002). The SCN acts as the central 
circadian pacemaker, regulating circadian rhythms in mammalian behavior and physiology 
(Low-Zeddies and Takahashi, 2001; Takahashi et al., 2008; Welsh et al., 2010).

Individual cells and groups of cells within the mature SCN have cell-autonomous circadian 
periods (Welsh et al., 1995; Herzog et al., 1998) and oscillate with different phases (Quintero 
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et al., 2003; Shan et al., 2020). These rhythms are determined by a cell-
autonomous molecular clock that is the result of interlocking 
transcriptional regulatory feedback loops that come together to 
produce an approximate 24-h  cycle (Takahashi, 2017; Cox and 
Takahashi, 2019). The positive elements in the primary feedback loop 
are two transcription factors, CLOCK and BMAL1 (Vitaterna et al., 
1994; King et al., 1997; Bunger et al., 2000), whereas the negative 
elements consist of the PER1 and PER2 proteins (members of the PAS 
protein family) and CRY1 and CRY2 proteins (members of the 
vitamin B2-based blue light photoreceptor/photolyase protein family; 
Kume et  al., 1999; van der Horst et  al., 1999; Zheng et  al., 1999; 
Cermakian et al., 2001). The PER proteins dimerize with the CRY 
proteins to inhibit the CLOCK and BMAL1 complex, preventing Per 
and Cry gene expression (Cox and Takahashi, 2019).

All four of the negative feedback loop proteins are necessary for 
the core circadian mechanism (Griffin et al., 1999; van der Horst et al., 
1999; Vitaterna et  al., 1999; Zheng et  al., 1999; Bae et  al., 2001). 
However, mice lacking Cry1 have a short circadian period, while mice 
lacking Cry2 have a lengthened period (van der Horst et al., 1999; 
Vitaterna et al., 1999), suggesting that the CRY proteins have different 
modes of action within the molecular clock. One limitation of null 
mouse lines is that they permanently remove genes in an irreversible 
manner throughout the lifespan of the entire organism. Thus, very 
little is known about the importance of these proteins in the 
development of the SCN.

In this study, we  used a tetracycline-controlled transactivator 
(tTA) system to investigate the developmental impact of Cry1 and 
Cry2 expression. We created tg(tetO:Cry1) and tg(tetO:Cry2) mice, 
which in combination with pre-existing tg(Scg2:tTA) mice (Hong 
et al., 2007) allow for inducible, brain-specific overexpression of Cry1 
or Cry2, respectively. We  first assessed the persistence and 
maintenance of circadian behavioral rhythms in mice overexpressing 
Cry1 or Cry2 specifically in the brain. Surprisingly, we found that 
oscillations in Cry1 and Cry2 expression are not essential for the 
persistence of circadian rhythmicity but play an important role in 
maintaining the period of circadian behavioral rhythms. Next, in 
order to better understand the role of the molecular clockwork in SCN 
development, the tTA system was used to overexpress Cry1 throughout 
the brain at various points through development. We uncovered a 
novel role for Cry1 in the development of free running period and 
defined a critical period of Cry1 expression lasting from birth until 
postnatal day 45 (PN45). Finally, to test the hypothesis that 
rhythmicity of Cry1 (not just expression) is necessary for a functional 
circadian clock, Cry1 was constitutively expressed in Cry1/Cry2 null 
and double null mice to assess its impact on circadian locomotor 
activity. We found that Cry1 overexpression in the brain is able to 
partially rescue behavioral rhythmicity of Cry1/Cry2 null mice. 
Together, our findings demonstrate that Cry1 expression is important 
for the maintenance of circadian period but is not essential for the 
persistence of circadian rhythmicity per se.

Materials and methods

Generation of the tetO:Cry1 vector

The tetO:Cry1 vector was constructed using Gateway technology 
(Invitrogen, Carlsbad, CA). All reactions were performed as described 

in Invitrogen’s Gateway cloning manual, except at half of the 
recommended volumes. BP and LR clonase (Invitrogen) were used to 
transfer a full length Cry1 cDNA from ATTC (GenBank accession 
number BCO22174) from pCMV-Sport6 into a pTRE2ppDEST 
destination vector to facilitate cloning of gateway compatible cDNAs. 
To do this, the pTRE2 vector (Clontech) was modified by the addition 
of a gateway destination cassette and four rare restriction endonuclease 
sites. The gateway destination cassette contained attR sites and positive 
(Cmr) and negative (ccdB) selection markers required for gateway 
recombinant cloning. The rare 8 base pair restriction endonucleases 
PmeI (New England BioLabs, Beverly, MA) and PacI (New England 
BioLabs) were added into the 5′ end of the tetO sequence and the 3′ 
end of the poly A by site-directed mutagenesis to allow for removal of 
the tetO-transgene from the vector backbone for injection into 
oocytes. All recombinants were transformed into DH5α cells, and 
positive transformants were selected for on LB + Km 25 μg/mL plates. 
The presence of the correct fragment in the transformants from both 
reactions were verified by digestion with BsrG1 (New England 
BioLabs), followed by gel electrophoresis on a 1% agarose gel in 1X 
TBE. The vector was then purified on a cesium chloride gradient.

Generation of the tetO:Cry2 vector

The tg(tetO:Cry2) vector was created from a full length Cry2 
cDNA from ATTC (GenBank accession number BC054794) in the 
pYX-Asc vector. Due to the incompatibility of the pYX-Asc vector 
with the Gateway system, the Cry2 cDNA was first cloned from 
pYX-Asc into pTRE2pp to convert it to a Gateway compatible vector. 
pYX-Asc was linearized with AscI (New England BioLabs) and the 
ends were blunted with T4 DNA polymerase. The fragment was 
purified on a 1% agarose gel in 1X TBE and the 5.6 kb fragment was 
extracted using a Qiagen gel extraction kit (Cat. NO. 28706) by the 
methods described in the QIAquick Spin Handbook (Cat. NO. 28706). 
Simultaneously, digests were conducted on the pYX-Asc fragment 
with NotI (New England BioLabs) and the pTRE2pp vector with 
PvuII (blunt end, New England BioLabs) and NotI. Both of these 
fragments (a Cry2 3.9 kb and a pTRE2 3.8 kb fragment) were gel 
purified using the Qiagen gel extraction kit. The two purified 
fragments were then ligated with T4 DNA Ligase (New England 
BioLabs). The products of the ligation were transformed into DH5α 
cells and purified on LB + Amp 100 μg/mL plates. The presence of the 
correct fragments in the transformants and the purification of these 
fragments were conducted in the same manner as described above for 
tg(tetO:Cry1).

Creation of tg(tetO:Cry1) and tg(tetO:Cry2) 
mice

Using standard transgenic techniques, vectors were linearized 
with PmeI (New England BioLabs) and microinjected as previously 
described (Antoch et al., 1997). Transgenic mice were identified by 
PCR analysis of gDNA using a tetO-specific forward primer 
(CGCCTGGAGACGCCATCC) and a Cry1 (ATGAATGGAGG 
CTGCCGAGG) or Cry2 (AGGTGTCGTCATGGTTCTCC) specific 
reverse primer which yield a 400 bp and 748 bp band, respectively. 
PCR reactions were carried out using 1 μL of extracted gDNA in 
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11.1 μL water, 0.1 μL of AmpliTaq (Applied Biosystems, Carlsbad, CA), 
1.6 μL of 1.25 mM dNTP, 2.0 μL 10X GeneAmp PCR Buffer I (Applied 
Biosystems), 4.0 μL 5  M Betaine, and 0.1 μL of each primer at a 
concentration of 100 mM to create a 20 μL reaction. The 
Thermocycling profile was as follows: 95° for 5 min, followed by 
33 cycles of 95° for 15 s, 55° for 30 s, and 72° for 15 s, which was 
followed by a single extension step of 72° for 2 min. Each individual 
transgenic mouse resulting from the microinjection was backcrossed 
to WT C57BL/6 J mice to create the individual hemizygous tetO lines. 
All mice were maintained in groups of five under standard controlled 
environmental conditions, with a 12-h light and 12-h dark (12:12 LD) 
cycle (lights on at 5 am standard time) and free access to food and 
water unless otherwise stated.

Conditional overexpression of Cry genes 
driven by tg(Scg2:Tta)

Both tg(tetO:Cry1) and tg(tetO:Cry2) lines were crossed to a 
pre-existing driver line to overexpress Cry1 and Cry2 in the brain 
(Hong et al., 2007). Hemizygous tg(Scg2:tTA) mice were crossed with 
the hemizygous tetO transgenic lines to produce F1 double-
transgenic mice, as well as single transgenic and WT controls, as 
described previously with DTg Per2 mice (Chen et  al., 2009; 
Supplementary Figure 1A).

Validation of Cry overexpression in 
double-transgenic mice

Both tg(tetO:Cry1) and tg(tetO:Cry2) lines were validated by in 
situ hybridization and qPCR to determine expression from the 
transgene. In situ hybridization was conducted as previously described 
(Sangoram et al., 1998). Briefly, 20 μm coronal sections encompassing 
the SCN were thaw mounted on gelatin-coated slides. Sections were 
fixed for 5 min in 4% paraformaldehyde in PBS, treated for 10 min in 
0.1 M triethanolamine/acetic anhydride, and then dehydrated through 
an ethanol series. Slides were hybridized overnight at 47 °C in a 
hybridization solution composed of 50% formamide, 300 mM NaCl, 
10 mM Tris HCL (pH 8.0), 1 mM EDTA, 1X Denhardt’s, 10% dextran 
sulfate, 10 mM DTT and containing 5 × 107 cpm/mL of the relevant 
33P-labled probe. The Cry1 riboprobe was generated from nucleotides 
1,015–1,320 of accession number BC022174 while the Cry2 riboprobe 
was generated from nucleotides 1,256–1,559 of accession number 
BC054794. For both probes the nucleotide sequence was PCR 
amplified and cloned into the pCR 2.1-topo vector (Invitrogen). To 
prepare the probe, the vector was linearized with HindIII; and the 
transcription reaction was initiated from the T7 promoter/priming 
site. The relative expression was quantified using NIH “Image” 
software version 1.34 s on a Macintosh computer as previously 
described (Panda et al., 2002).

Rearing tg(tetO:Cry1 L1) animals on 
doxycycline

Hemizygous tg(tetO:Cry1) animals were crossed to hemizygous 
tg(Scg2:tTA) animals to produce double-transgenic, single-transgenic, 

and WT control animals. All breeding cages were maintained under 
standard controlled environmental conditions, with a 12:12 LD cycle 
(lights on at 5 am standard time) with free access to food and water 
containing 10 μg/mL doxycycline. Doxycycline treatment was started 
when animals were placed into breeding cages and was continued 
through conception, gestation, birth, and postnatal development of 
the pups. Pups were weaned from their mothers at approximately 
21 days of age and were maintained in groups of five under the same 
environmental conditions with free access to food and water 
containing 10 μg/mL doxycycline until behavior testing.

Time course of Cry1 developmental effects

Groups of mice were raised on water and switched to 10 μg/mL 
doxycycline at points from embryonic day 0 to postnatal day 231. 
Other groups were reared on 10 μg/mL doxycycline and converted to 
water from embryonic day 0 to postnatal day 104. Animals were then 
maintained under the appropriate condition (either on 10 μg/mL 
doxycycline or on water depending on the paradigm) until the 36th 
day of the wheel running experiment where they were once again 
switched to the opposite condition. The timing of the change was 
based on the date of birth (postnatal day 0).

Rescue of Cry1/Cry2 double null animals

Cry1−/− / Cry2−/− / tg(Scg2:tTA) / tg(tetO:Cry1) animals were 
produced by systematically crossing the single-transgenic animals to 
a congenic C57BL/6 J background containing the Cry1−/− and 
Cry2−/− alleles. The transactivator line was produced by crossing a 
hemizygous tg(Scg2:tTA) female to a Cry1−/− / Cry2−/− male to 
produce G1 mice. G1s were selected based on PCR amplification of a 
500 bp band from genomic DNA (Forward Primer-CAAGTGTAT 
GGCCAGATCTCAA; Reverse Primer-AGACAAGCTTGATGCAA 
ATGAG; 38 cycles with an annealing temperature of 57° followed by 
a single 72° step (for 5 min) demonstrating the presence of 
tg(Scg2:tTA). Once Cry1± / Cry2± / tg(Scg2:tTA) animals were 
created, they were intercrossed to a siblings of identical genotype to 
produce Cry1−/− / Cry2−/− / tg(Scg2:tTA) mice. The operator line 
was produced by crossing hemizygous tg(tetO:Cry1) L1 females with 
a Cry1−/− / Cry2−/− male to produce the G1 generation. G1s were 
selected based on PCR amplification of genomic DNA for the presence 
of tg(tetO:Cry1) to create Cry1± / Cry2± / tg(tetO:Cry1) animals. 
These animals were intercrossed to siblings of the same genotype to 
produce the G1F2 generation. Cry1/2 Genotyping was conducted as 
previously described (Vitaterna et  al., 1999). The transactivator 
Cry1−/− / Cry2± / tg(Scg2:tTA) G1F2s were then crossed with the 
operator Cry1−/− / Cry2−/− / tg(tetO:Cry1) G1F2s to produce 
Cry1−/− /Cry2−/− / tg(Scg2:tTA) / tg(tetO:Cry1) mice.

Circadian activity analysis

Circadian locomotor activity was analyzed for double-transgenic, 
single-transgenic, and WT-control animals for all tg(tetO:Cry1) and 
tg(tetO:Cry2) lines. Wheel-running activity was recorded and analyzed 
as described previously (Yoo et  al., 2004). Briefly, activity (wheel 
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revolutions) was recorded continuously by a PC system ClockLab 
(Actimetrics, Wilmette, IL) and displayed and analyzed using ClockLab 
software (Actimetrics, Wilmette, IL). Period was calculated using a 
Chi-square periodogram (Sokolove and Bushell, 1978) with a 
six-minute resolution between hours 10 and 36 (ClockLab). The 
relative power of the circadian component from 18 to 30 h was 
determined from a normalized Fast Fourier transformation using a 
Blackman-Harris window (ClockLab). For Cry1 developmental 
studies, animals were maintained for 7 days in a 12:12 LD cycle on 
10 μg/mL doxycycline followed by constant darkness for 28 days on 
10 μg/mL doxycycline and 25 days on water. The free running period 
was analyzed for days 10–25 (Doxycycline) and 45–60 (H2O) 
respectively. For the rescue experiments, circadian locomotor activity 
was also analyzed for double-transgenic tg(tetO:Cry1) Cry1/Cry2 
double nulls, single-transgenic double nulls, and WT double nulls. Free 
running period and the relative power of the circadian components 
were calculated for days 10–25 (H2O), days 45–60 (Doxycycline), and 
days 70–85 (H2O). The period and relative power values were compared 
between groups by ANOVA and Tukey post hoc analysis.

Results

Overexpression of either Cry1 or Cry2 
alters circadian behavioral rhythms

Both tg(tetO:Cry1) double-transgenic (DTg Cry1) and 
tg(tetO:Cry2) double-transgenic (DTg Cry2) mouse lines 
demonstrated constitutive overexpression of Cry1 or Cry2 in  
the SCN when compared to single-transgenic and WT controls 
(Supplementary Figures 1B–E). After this was confirmed, adult DTg 
Cry1 and DTg Cry2 mice were assayed for circadian locomotor 
rhythms in both constant darkness (DD) and constant light (LL) 
(Figure 1). DTg Cry1 animals exhibited a free running period in DD 
that was significantly longer than WT and single-transgenic controls 
(Figures 1A,B). This long rhythm was also lower in amplitude than the 
WT and tetO single-transgenic controls (Average power for DTg 
Cry1 = 0.019 ± 0.154, tetO = 0.129 ± 0.009, Scg2 = 0.079 ± 0.019, and 
WT = 0.150 ± 0.01). There was no additional lengthening of period in 
DTg Cry1 mice in response to LL (Figure 1C). In contrast, DTg Cry2 
mice exhibited a free running period that was significantly shorter 
than WT and single-transgenic controls in both DD and LL 
(Figures 1D,E).

When the transgene was silenced by treatment with 10 μg/mL of 
doxycycline, DTg Cry1 animals exhibited a significant period change 
and in some cases a phase shift was apparent in DD, although periods 
remained significantly longer than WT and single-transgenic animals 
on doxycycline (Figure 1B). Importantly, these changes were reversed 
by placing mice back on regular water (Figure 1B). In contrast, DTg 
Cry2 mice on doxycycline returned to a period comparable to WT and 
single-transgenic controls (Figure 1D). Interestingly, in LL DTg Cry2 
mice on doxycycline had periods that remained shorter than the tetO 
single-transgenic and WT controls (Figure 1E). Taken together, these 
results suggest that oscillations/levels of Cry1 and Cry2 are important 
the maintenance of circadian period; however, they are not necessary 
for the persistence of circadian activity rhythms. Moreover, these data 
add to the evidence that Cry1 and Cry2 likely have different modes of 
action within the negative feedback loop of individual cells (Kume 
et al., 1999; Lee et al., 2001; Van Gelder et al., 2002).

Developmental Cry1 overexpression 
establishes period length in adulthood

We next asked whether the sustained lengthening of period in the 
DTg Cry1 mice in the absence of transgene expression (i.e., on 
doxycycline) was due to an effect from constitutive Cry1 expression 
during development. DTg Cry1 mice, along with single-transgenic 
and WT controls, were reared on 10 μg/mL doxycycline (silencing the 
transgene throughout development); and their locomotor activity 
rhythms were monitored as adults (Figure 2A). DTg Cry1 mice reared 
and kept on doxycycline exhibited a period in DD that was 
significantly shorter than that of water-reared DTg Cry1 mice and 
similar to that of WT and single-transgenic mice (Figures  2B,C). 
Interestingly, when the doxycycline was removed to allow 
overexpression of Cry1 in adulthood, doxycycline reared, DTg Cry1 
mice maintained a period similar to WT (Figures 2B,C). These results 
suggest that it is the constitutive overexpression of Cry1 during 
development that permanently alters the free running period in 
adult mice.

Cry1 expression is required for the 
postnatal establishment of circadian 
free-running period

Next, we sought to define the critical period of the developmental 
effects of silencing Cry1. DTg Cry1 mice were reared on either water 
or doxycycline and then were converted to the opposite condition at 
various times during development. This experimental paradigm 
allowed for either the inactivation (water to doxycycline) or activation 
(doxycycline to water) of the Cry1 transgene during various 
developmental stages. Circadian locomotor rhythms were then 
assayed to determine the free running period of the mice in adulthood. 
DTg mice with the transgene inactivated (water to doxycycline) before 
birth (PN0) displayed a phenotype similar to that of the doxycycline-
reared animals (normal WT phenotype). Conversely, animals for 
which the transgene was inactivated after PN40 displayed a period 
similar to the water reared DTg Cry1 mice (long period phenotype; 
Figure 3A). In the opposite experiment, DTg mice with the transgene 
activated (doxycycline to water) before birth (PN0) up until PN45 
displayed a period similar to the water reared DTg Cry1 mice (long 
period phenotype), whereas DTg mice with the transgene activated 
after PN45 displayed a phenotype similar to that of the doxycycline-
reared animals (normal WT phenotype; Figure  3B). In both the 
activation and inactivation paradigms, when the switch occurred 
between PN0 and PN45, a gradient of phenotypes was seen: when 
Cry1 expression was higher for longer, the free running period was 
longer. Thus, combining the data from these two experiments, we can 
define a critical period from PN0 to PN45 during which the free 
running period in the adult animal appears to be established.

Cry1 overexpression in the brain partially 
rescues circadian rhythms in arhythmic 
mice

Because the transgenes we  utilized overexpress Cry1 or Cry2, 
we assumed that the normal rhythmic expression of these genes is 
disrupted. Thus, to better understand whether rhythmicity of Cry1 
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(and not just expression) is required to establish circadian rhythms, 
Cry1 was constitutively expressed (tg(tetO:Cry1) driven by 
tg(Scg2:tTA)) on a Cry1/Cry2 double null background as well as on 
individual Cry1−/− and Cry2−/− background; and locomotor activity 
rhythms were assessed. Constitutive Cry1 expression was found to 
partially rescue circadian locomotor activity rhythms on both the 
Cry1/Cry2 double null and individual Cry1−/− mice, with period 
lengths comparable to WT mice (Figure 4A; Supplementary Figure 2). 
However, the amplitude of these rhythms never returned to WT levels 
(Figure  4B). Surprisingly, when constitutive Cry1 expression was 
silenced with 10 μg/mL doxycycline mice on a Cry1/Cry2 double null 
background, these mice showed lengthening of period in a manner 

similar to that seen in the DTg Cry1 mice on a WT background 
(Figure 4A). A loss of circadian rhythmicity (as would be expected in 
single-transgenic and Cry1/Cry2 double null mice) was never seen. 
Together with our other results, these findings strongly suggest that 
rhythmicity in Cry1 expression is not necessary, but rather the overall 
level of Cry1 expression is what drives period length.

Discussion

In this study, Cry1 and Cry2 were constitutively overexpressed in 
the brain leading to animals that were rhythmic, but with altered 

FIGURE 1

Overexpression of Cry1 and Cry2 in the brain alters circadian behavioral rhythms in mice. (A) Representative actograms for double-transgenic (DTg) 
Cry1 and Cry2 mice with controls. The pink bar denotes the time of doxycycline administration in constant darkness (DD) and constant light (LL). (B) In 
DD, DTg Cry1 mice have a clear lengthening in period. Once treated with doxycycline, the period continues to lengthen in DTg Cry1 mice. DTg Cry1, 
n = 13; tetO Cry1, n = 18; tTA Cry1, n = 12; WT, n = 15; (*p < 0.05). (C) In LL, the DTg Cry1 mice are similar to WT. DTg Cry1, n = 10; tetO Cry1, n = 10; tTA Cry1, 
n = 12; WT, n = 15; (* p < 0.05). (D) In DD, DTg Cry2 mice display a significantly shorter period. Once treated with doxycycline, the period is returned to WT 
levels in DTg Cry2 mice. DTg Cry2, n = 10; tetO Cry2, n = 4; tTA Cry2, n = 6; WT, n = 15; (*p < 0.05). (E) In LL, DTg Cry2 mice exhibited periods shorter than 
those seen in WT, while Doxycycline restores the period of DTg Cry2 mice to levels equivalent with the tetO single-transgenic controls. DTg Cry2, n = 4; 
tetO Cry2, n = 5; tTA Cry2, n = 12; WT, n = 15; (*p < 0.05). Double-transgenic (DTg); Operator only Control (tetO); Transactivator only control (tTA); Wild 
type (WT).
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periods. The constitutive overexpression of Cry1 led to a lengthening 
of free running period, while constitutive overexpression of Cry2 led 
to a shortening of free running period. These results make sense in 
light of the opposite phenotypes seen in Cry1 and Cry2 knockout mice 
(van der Horst et al., 1999; Vitaterna et al., 1999), but are none-the-less 
surprising, since the overexpression of these genes precludes the 
normal cycling of Cry1 or Cry2 gene expression. Interestingly, when 
Cry2 overexpression was silenced with treatment of 10 μg/mL of 
doxycycline, the mice exhibited a period comparable to WT, while this 
same treatment in Cry1 DTg mice continued to lengthen the free 
running period, suggesting a developmental role for Cry1 in the 
establishment of circadian period. To test this hypothesis, we reared 
DTg Cry1 mice from conception on doxycycline, and found that the 
constitutive overexpression of Cry1 during development led to 
permanent alterations in free running period. Subsequently, 
we defined a critical period from birth to postnatal day 45 where the 
expression of Cry1 permanently altered circadian period in adult mice.

There are several mechanisms that could explain how and why 
this developmental change is occurring. First, it possible that inactivity 
of the tetO transgene during development can lead to their functional 
silencing (Zhu et al., 2007). However, we show that activation as well 

FIGURE 2

Cry1 overexpression during development is necessary for 
lengthening of period. (A) Schematic of experimental protocol. For 
the Dox Reared group, Doxycycline (10 μg/mL) was administered in 
drinking water when mice were placed into breeding cages and was 
continued through conception, gestation, birth, and postnatal 
development of pups. Pups were weaned from their mothers at 
approximately 21 days of age and were maintained on doxycycline 
up until the 28th day of behavioral testing, when they were switched 
to water for an additional 25 days. Water reared mice were also 
administered Doxycycline on days 0–35 of behavioral testing, then 
switched back to water for the remainder of the experiment. 
(B) Representative actograms of double-transgenic (DTg) Cry1 mice 
and controls reared with or without 10 μg/mL doxycycline. The pink 
bar denotes the time of doxycycline administration during behavioral 
testing as adults. (C) Mean (± SEM) free running period in constant 
darkness (DD) on and off of doxycycline. The free running period 
was analyzed for days 10–25 (Dox) and 45–60 (H2O). Doxycycline-
reared (Dox Reared) DTg Cry1 mice had a period similar to that of WT 
and single-transgenic control mice even when treated with 
doxycycline as adults, while water-reared (H2O reared) DTg Cry1 
mice had a lengthened period both with water and doxycycline 
treatment (*p < 0.05). Double-transgenic (DTg); Operator only Control 
(tetO); Transactivator only control (tTA); Wild type (WT).

FIGURE 3

There is a postnatal critical period for Cry1 expression in the 
establishment of circadian period. Double-transgenic (DTg), single-
transgenic, and WT controls were reared on water and converted to 
10 μg/mL doxycycline at various developmental time points (A) or 
reared on doxycycline and were converted to water at various 
developmental time points (B). Each point represents the period of a 
single adult animal in DD that was switched at a particular 
developmental time. The x-axis for both graphs is developmental 
time with PN0 being birth. Pink shading represents a 95% confidence 
interval around the average period for water reared DTg mice on 
doxycycline. Gray shading represents the 95% confidence interval 
around the average period for water reared WT and single-
transgenic controls on doxycycline. Points outside of the two 95% 
confidence intervals are significantly different from water reared DTg 
mice and controls. Dotted lines indicate boundaries of the critical 
period for Cry1 expression when considering data from both 
experiments.
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as inactivation of the transgene during development can lead to 
similar phenotypic effects that both fall within the same critical 
period, suggesting that the effects are not due to functional silencing 
or transgene inactivation.

Another possible mechanism could be  through epigenetic 
modifications. Rhythmic changes in histone acetylation at circadian 
clock gene promoters are associated with chromatin modifications 
(Etchegaray et al., 2003; Doi et al., 2006; Ripperger and Schibler, 2006; 
Koike et al., 2012). Interestingly, CRY1 has been found to interact with 
a histone acetyltransferase to alter CLOCK/BMAL1-mediated 
transcription (Etchegaray et al., 2003), potentially providing a direct 
mechanism for long-term CRY1 effects. Future studies using tissues 
derived from these mouse models could help elucidate the molecular 
impacts of developmental Cry1 expression.

Although preliminary data (not shown) suggest that the gross 
morphology of the SCN is normal in our DTg mice, it is also possible 
that the cellular phenotypes in the SCN are altered. In addition, the 
level or oscillation of Cry1 could developmentally alter the synaptic 
connectivity and coupling in the SCN. Heterogeneous cellular 
phenotypes are integrated in the adult SCN, decreasing cycle-to-cycle 
variability in order to determine the generation and expression of 
circadian rhythms (Low-Zeddies and Takahashi, 2001; Herzog et al., 
2004). Moreover, loss of function in clock genes has the ability to 

impact neural firing and synchrony in the SCN (Schwartz et al., 1987; 
Albus et al., 2002; Ono et al., 2013; Shan et al., 2020). Importantly, 
oscillations in fetal SCN neurons are known to be present as early as 
embryonic day 17, before synaptic connections are developed 
(Reppert and Schwartz, 1984; Speh and Moore, 1993; Shimomura 
et al., 2001; Carmona-Alcocer et al., 2018), suggesting they may play 
an important role in synaptic connectivity. Theoretically, alteration of 
Cry1 expression and oscillations in fetal SCN neurons during the 
critical period could alter the firing patterns and therefore change the 
synaptic connectivity and neural representation of period within the 
adult SCN (Sumova et  al., 2012, Ono et  al., 2013). Our data are 
consistent with this theory because the critical developmental period 
matches the peak of synaptogenesis in the maturing SCN (Honma, 
2020). However, these synaptic changes are likely subtle, as we see no 
evidence gross alterations in SCN morphology (data not shown).

In other organisms, the rhythmic requirements of the negative 
elements of the primary feedback loop have been elucidated by 
constitutively expressing these negative elements on a null 
background (Aronson et al., 1994; Edwards et al., 2016). Cry1/Cry2 
double null mice lack circadian rhythmicity in constant darkness, 
while individual Cry1 or Cry2 null mice are rhythmic but have 
abnormal periodicity (van der Horst et al., 1999; Vitaterna et al., 
1999; Bae et al., 2001). The results of our experiments demonstrate 
that constitutive, brain-specific expression of Cry1 can partially 
rescue circadian locomotor rhythms on a Cry1/Cry2 double null 
background and suggest that oscillations in Cry1 are not necessary 
for the maintenance of circadian locomotor period. Although we did 
not examine CRY1 protein expression, our findings are consistent 
with recent experiments which showed that overexpression of CRY1 
protein rescues SCN rhythms in Cry1/Cry2 null mice (McManus 
et al., 2022). There are also similar findings with the constitutive 
expression of CRY1 in Rat-1 fibroblasts (Fan et al., 2007; Yamanaka 
et al., 2007) and in the liver of mice (Chen et al., 2009). Interestingly, 
the amplitude of the rhythms was not rescued back to WT, therefore 
oscillations in Cry1 expression may be necessary for the maintenance 
of circadian amplitude.

Finally, both CRY1 and CRY2 have been shown to repress 
CLOCK/BMAL1 in distinct ways (Kume et al., 1999; Lee et al., 2001; 
Van Gelder et al., 2002). CRY1 is thought to be a potent inhibitor of 
the positive feedback loop by directly interacting with the CLOCK/
BMAL1 complex (Griffin et al., 1999; Kume et al., 1999; Shearman 
et  al., 2000); although, it may require PER to act as a scaffolding 
protein to facilitate this interaction (Chen et al., 2009) as it has been 
shown to impact nuclear shuttling of PER (Smyllie et al., 2022). In 
contrast, CRY2 is thought to associate strongly with the CLOCK 
protein (Griffin et al., 1999). Our results suggest a fine-tuning role of 
Cry2 in the negative feedback loop (Griffin et al., 1999). In particular, 
our finding of an effect of LL in DTg Cry2 mice suggests an alteration 
of the phase response curve, leading to the intriguing possibility that 
Cry2 plays a role in mediating the response to light.

In summary, our data support a novel, developmental role for 
Cry1 expression in the SCN and also call into question the necessity 
of Cry1 rhythmic expression after a critical period in development. 
These findings further our understanding of the mechanisms behind 
the generation of circadian rhythmicity. However, more research is 
needed to further determine how the various molecular feedback 
loops work together to generate rhythmicity, as well as how these 
feedback loops are interacting with rhythm generating components 
such as neural network oscillations.

FIGURE 4

Cry1 Overexpression Rescues Circadian Rhythms in Cry1−/−, Cry2−/−, 
and Cry1−/−/Cry2−/− Mice: (A) Average free running period (Period) and 
(B) FFT power (Amplitude) were calculated for all animals. Period, but 
not amplitude, was rescued in DTg on a Cry1−/− and Cry1−/− / Cry2−/− 
background. Values are presented as mean ± SEM (*p < 0.05); 
NR = non-rhythmic mice (from which we are unable to calculate a 
period). Double-transgenic (DTg); Operator only Control (tetO); 
Transactivator only control (tTA); Wild type (WT). DTg Cry1−/− / 
Cry2−/−, n = 20; tetO Cry1−/− / Cry2−/−, n = 10; tTA Cry1−/− / Cry2−/−, n = 3; 
WT Cry1−/− / Cry2−/−, n = 7; DTg Cry1−/−, n = 4; WT Cry1−/−, n = 4; DTg 
Cry2−/−, n = 5; WT Cry2−/−, n = 3; DTg WT, n = 4; WT WT, n = 4.
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