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Background: Brain computer interface (BCI) technology may provide a new 
way of communication for some patients with disorder of consciousness (DOC), 
which can directly connect the brain and external devices. However, the DOC 
patients’ EEG differ significantly from that of the normal person and are difficult 
to collected, the decoding algorithm currently only is trained based on a small 
amount of the patient’s own data and performs poorly. 

Methods: In this study, a decoding algorithm called WD-ADSTCN based on domain 
adaptation is proposed to improve the DOC patients’ P300 signal detection. We 
used the Wasserstein distance to filter the normal population data to increase 
the training data. Furthermore, an adversarial approach is adopted to resolve the 
differences between the normal and patient data.

Results: The results showed that in the cross-subject P300 detection of DOC 
patients, 7 of 11 patients achieved an average accuracy of over 70%. Furthermore, 
their clinical diagnosis changed and CRS-R scores improved three months after 
the experiment.

Conclusion: These results demonstrated that the proposed method could be 
employed in the P300 BCI system for the DOC patients, which has important 
implications for the clinical diagnosis and prognosis of these patients.

KEYWORDS

brain computer interface, P300, disorder of consciousness, cross-subject, EEG

1. Introduction

Coma, unresponsive wakefulness syndrome (UWS), also known as vegetative state (VS), 
minimally conscious state (MCS), and emergence from MCS are all considered disorders of 
consciousness (DOC) (Xiao et al., 2016). The patients with DOC are usually assessed clinically 
by a doctor based on a behavior scale [e.g., the Glasgow Coma Scale (GCS), the Coma Recovery 
Scale-Revised (CRS-R)], which is based on the doctor’s empirical judgment and highly subjective 
(Sternbach, 2000; Kalmar and Giacino, 2005). In addition, the patients lack adequate and stable 
behavioral responsiveness, which leads to an extremely high percentage of vegetative state 
misdiagnoses by the scale’s behavioral-based approach (Van Erp et  al., 2014; Johnson and 
Lazaridis, 2018). In previous research in 2020, the researchers analyzed 137 patients with long-
term DOC by using the CRS-R scale. The results showed a misdiagnosis rate of 24.7% in patients 
with MCS assessed by a single CRS-R scale and over 38% in patients with MCS assessed by 
repeated CRS-R assessments (Wang et al., 2020). Therefore, accurate clinical diagnosis of people 
with DOC is challenging.

OPEN ACCESS

EDITED BY

Yang Bai,  
The First Affiliated Hospital of Nanchang 
University, China

REVIEWED BY

Marina Raguz,  
Dubrava Clinical Hospital, Croatia
Fang Peng,  
University of Electronic Science and 
Technology of China, China

*CORRESPONDENCE

Jingcong Li  
 lijingcong@hotmail.com

†These authors have contributed equally to this 
work and share first authorship

RECEIVED 16 February 2023
ACCEPTED 19 June 2023
PUBLISHED 20 July 2023

CITATION

Wang F, Wan Y, Li Z, Qi F and Li J (2023) A 
cross-subject decoding algorithm for patients 
with disorder of consciousness based on P300 
brain computer interface.
Front. Neurosci. 17:1167125.
doi: 10.3389/fnins.2023.1167125

COPYRIGHT

© 2023 Wang, Wan, Li, Qi and Li. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 20 July 2023
DOI 10.3389/fnins.2023.1167125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1167125﻿&domain=pdf&date_stamp=2023-07-20
https://www.frontiersin.org/articles/10.3389/fnins.2023.1167125/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1167125/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1167125/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1167125/full
mailto:lijingcong@hotmail.com
https://doi.org/10.3389/fnins.2023.1167125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1167125


Wang et al. 10.3389/fnins.2023.1167125

Frontiers in Neuroscience 02 frontiersin.org

To resolve these issues, several researchers have considered 
utilizing brain-computer interfaces (BCI) to assess the DOC patients’ 
state. This approach can directly detect the brain’s response to an 
external stimulus without requiring behavioral or verbal expression 
from the patients. In an early study (Cruse et al., 2011), a novel EEG 
experiment incorporating motor imagery was developed to identify 
command-following in the absence of obvious behavior. While 
assessing 16 VS patients, 3 of them could reliably and repeatedly 
produce suitable EEG responses to two different commands. This 
indicated that EEG technique can detect awareness in some VS 
patients. In recent years, researchers have worked more on the BCI 
system based on P300 and steady-state evoked potential (SSVEP) 
compared to other paradigms. These systems primarily utilize external 
stimuli to generate P300 signals or SSVEP signals from DOC patients, 
and then decode the signals to accomplish the assessment or 
communication with the patients. A visual hybrid BCI system 
incorporating P300 and SSVEP responses was developed to assess 
awareness in severely brain injured individuals by Pan et al. (2014). It 
could determine which photo the patient focuses on. Among 7 
patients (4 VS and 3 MCS patients), 2 (one VS and one MCS patients) 
were able to selectively attend to their own or unfamiliar photos. 
Huang et al. (2021) applied a hybrid asynchronous BCI system that 
presents DOC patients with a new way to communicate. The patients 
were directed to pay attention to the squares bearing the words “Yes” 
and “No.” Three (MCS patients) of 7 patients (3 VS and 4 MCS 
patients) could utilize their hybrid asynchronous BCI system to 
communicate, which demonstrates that both the P300-only and 
SSVEP-only systems underperformed the hybrid asynchronous BCI 
system. Xiao et al. (2022) developed an innovative audiovisual BCI 
system to model the evaluation of sound localization in CRS-R. Among 
18 patients, 11 patients showed sound localization in the BCI system 
and 4 in CRS-R assessment. More and more efficient BCI systems 
begin to be applied to the auxiliary diagnosis and evaluation of the 
DOC patients.

While P300 is easier to stimulate compared to SSVEP, P300 signal 
can be stimulated in many ways, including using visual and auditory 
(Li et al., 2019). These make it more widely used in DOC patients. 
Therefore, a decoding algorithm that can accurately detect the patient’s 
P300 signal may improve the diagnostic accuracy of the patient’s 
current status. However, compared to healthy individuals, DOC 
patients have less pronounced P300 features and greater differences (Li 
et al., 2022). Meanwhile, DOC patients are easily fatigued, which makes 
data collection challenging (Wang F. et al., 2019). Most current systems 
basically adopt the intra-subject decoding (Murovec et al., 2020). These 
approaches require users to first undergo a period of calibration to 
train a reliable model, which largely affects the widespread adoption of 
BCI systems. Therefore, it would be beneficial to design an excellent 
cross-subject decoding algorithm for BCI on DOC patients.

In current researches, the cross-subject P300 decoding algorithms 
are based on healthy human data for analyzing, and convolutional 
neural network (CNN) is one of the most efficient decoding 
algorithms (Mijani et al., 2020). In 2010, Cecotti and Graser (2010) 
proposed a CNN-based P300 detection method, which won the 3rd 
BCI competition. The approach sequentially extracted channel 
features and temporal features using a four-layer CNN architecture, 
which showed CNNs could capture spatial features and potential 
sequence dependencies from EEG signals. However, while CNNs have 
increased detection precision to previously unheard-of levels, there 

are still obstacles to this approach. Its network accuracy depends on 
the training data’s quantity and quality (Wang et  al., 2021). 
Furthermore, due to the high cost of time and labor, the P300 task 
commonly has a little amount of high-quality data. EEGNet (Lawhern 
et al., 2018) was proposed as a generalized deep network, which was 
implemented by deeply separable convolution, and it produced 
satisfactory results in various EEG detections. By using original EEG 
information, the network can perform sequence learning directly and 
then generalize the acquired dependencies in the spatial domain. 
Abibullaev et al. (2022) used the leave-one-subject cross-validation 
method to test the cross-subject capability of several CNNs on four 
publicly available datasets. Their results indicated that EEGNet and 
ShallowConvNet (Schirrmeister et al., 2017) had better performance. 
Alvarado-Gonzalez et  al. (2021) proposed a simple network, 
SepConv1D, which consists of a depth-separable one-dimensional 
convolutional layer and a fully connected Sigmoid classification 
neuron. And only four filters and a minimal set of parameters make 
up SepConv1D’s convolutional layer, but its performance is 
competitive. Although the current P300 detection methods have 
achieved good results in normal individuals, these may be not suitable 
for DOC patients. DOC patients may not be  able to process 
information effectively, or their level of consciousness may be reduced, 
resulting in delayed or weakened P300 signals and decreased 
occurrence rates (Zhang et  al., 2017). Furthermore, as there are 
differences in the P300 signal between different DOC patients, it is 
difficult to achieve good results when training with other patients’ 
data. Due to the difficulty of collecting a large amount of data from 
DOC patients who are easily fatigued and difficult to control, studying 
cross-subject algorithms for DOC patients can be  beneficial for 
clinical application.

In this study, we  proposed a domain adaptation-based cross-
subject P300 decoding algorithm for DOC patients. This method used 
healthy subjects’ data to train the model, and then used an adversarial 
approach to adapt the network. The experiment results show our 
approach achieved the same level of cross-subject accuracy in DOC 
patients as the traditional intra-subject approach.

2. Materials and methods

2.1. Subjects

This study involved data from 19 subjects (including 11 DOC 
patients and 8 healthy subjects). Prior to the experiment, all subjects 
(or patients’ relatives) provided written informed consent that they all 
signed. All data were acquired with 36-conductor Greentech electrode 
caps and a SynAmps2 amplifier from Neuroscan. The sampling rate of 
the amplifier was set at 250 Hz. 10 channels of EEG data (O1, Oz, O2, 
P7, P3, Pz, P4, P8, Fz, and Cz) were acquired from each subject 
wearing electrode caps according to the Extended International 10–20 
System standard. To ensure signal quality during collecting data, all 
electrodes’ scalp contact impedances were kept below 5 kΩ. Healthy 
subjects need to be between 18–55 years old, right-handed, and have 
normal or corrected-to-normal vision. Eight healthy subjects were 
males between the ages of 23 and 33 (mean 26.38 years). For patients, 
they are between 18 and 70 years old, with a disease course of no more 
than 1 year, right-handed, and have no history of diseases that cause 
perceptual impairments such as visual or auditory impairments. They 
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also have no history of neurological or psychiatric diseases, or severe 
psychiatric symptoms. In this experiment, the diagnosis of each 
patient was evaluated using the CRS-R, which is the gold standard for 
clinical behavioral diagnosis, to assess various aspects such as auditory, 
visual, motor, language, response, and level of consciousness. Each 
patient’s CRS-R score was evaluated by the same doctor. In this study, 
a total of two CRS-R assessment results were obtained: one before the 
start of the experiment and the other 3 months after the end of the 
experiment. When evaluating the patient’s CRS-R score, the doctor 
observed the patient’s best state and chose one day to score multiple 
times, taking the best score as the final result. Table  1 shows the 
patients’ details.

2.2. Experimental paradigm

The data in this study were collected through a P300-based 
audio-visual BCI system (Wang et  al., 2015; Pan et  al., 2020). 
Based on the patient’s condition, data collection was conducted 
for 1–2 days each week, with 1–2 blocks collected per day. The 
BCI experiment for each patient lasted for approximately 2 weeks. 
As shown in Figure 1, two random numbers ranging from 0–9 
(e.g., 6, 8) appear on each side of the screen. Two speakers are 
placed at the side and rear of each side of the display. First, the 
user was introduced to his task through a 6s Chinese audiovisual 
instruction. And then, the two digital buttons flash alternately 
between black and green. At the same time, the speaker on the 
same side as the flashing digit presents the corresponding voice 
digit. Finally, the results are displayed on the monitor and voice 
feedback is given. At the end of the experiment, healthy subjects 
are given a 2s rest period. In contrast, for DOC patients, there is 
at least a 10s rest period. Since the patients are easily fatigued and 
unable to persist in acquiring data from multiple blocks 
consecutively, the acquisition of patient data needs to be done in 
multiple sessions based on their physical and mental conditions, 
as suggested by the medical staff.

2.3. Algorithm description

The experiments were performed on a single PC with Linux 
Ubuntu 20.04.3 LTS, an Intel(R) Core (TM) i9-12900 K CPU @ 
5.20 GHz, 96 GB in RAM, and an NVIDIA GeForce RTX 3090 
GPU and 24  GB of RAM. The networks were implemented in 
Pytorch 1.12.0 (Paszke et al., 2019) as backend. Figure 2 reports 
the Deep Learning algorithm pipeline. The raw EEGs of patients 
and healthy subjects are collected after data preprocessing, and 
then the data of healthy subjects are selected by Wasserstein 
distance (WD) (Vallender, 1974) for training. And then based on 
the Adversarial Discriminative Domain Adaptation (ADDA) 
(Tzeng et al., 2017) algorithm, we proposed an WD-Adversarial 
Discriminative Spatio-Temporal Convolution Network 
(WD-ADSTCN) to adapt the feature extractor and classifier to 
obtain the final results.

2.3.1. Preprocessing
In this study, all channel EEG data within 1000ms after the subject 

was stimulated were extracted as samples, and baseline correction was 
performed using the 100ms EEG data before stimulation, followed by 
0.1–20 Hz band-pass filtering to filter out signal noise that was not in 
this frequency interval.

2.3.2. Subject selection
Since the P300 signal of DOC patients is significantly different 

from that of healthy people, the P300 wave of patients is smaller and 
difficult to identify (Li et al., 2015). Therefore, the inclusion of some 
healthy subjects in the training may have side effects on 0the results. 
The subject selection method adopted in this study centers on the 
difference between the two distributions by metrics. In the current 
research, WD is somewhat superior to other metrics such as Jensen-
Shannon Divergence (Menéndez et  al., 1997), which are defined 
as follows:

 W p p inf x ys t p p x ys t
, , ,( ) = −[ ]∈ ( ) ( )∈γ γΠ   

TABLE 1 The information and CRS-R scores for all DOC patients.

Patient Age 
(years)

Gender Etiology Time since 
injury 

(months)

Before experiment After 3 months

CRS-R score 
(subscores)

Diagnosis CRS-R score 
(subscores)

Diagnosis

P1 29 M ABI 8.5 4 (1-0-1-0-0-2) UWS 4 (1-0-1-0-0-2) UWS

P2 37 M ABI 2 5 (0-0-2-1-0-2) UWS 5 (0-0-2-1-0-2) UWS

P3 38 M TBI 1 7 (1-1-2-1-0-2) UWS 7 (1-1-2-1-0-2) UWS

P4 33 M TBI 2 7 (1-0-2-2-0-2) UWS 7 (1-0-2-2-0-2) UWS

P5 48 M ABI 4 7 (1-1-2-1-0-2) UWS 18 (4-5-5-1-1-2) MCS+

P6 19 M CVD 2 7 (1-1-2-1-0-2) UWS 15 (4-5-2-2-0-2) MCS+

P7 38 M TBI 2 10 (1-3-3-1-0-2) MCS- 19 (3-5-6-1-1-3) MCS+

P8 44 M CVD 2.5 9 (1-3-2-1-0-2) MCS- 20 (4-5-6-2-1-2) MCS+

P9 17 M TBI 2 8 (1-1-3-1-0-2) MCS- 18 (4-5-3-1-2-3) MCS+

P10 46 F TBI 1.5 7 (1-0-3-1-0-2) MCS- 19 (3-5-6-2-1-2) MCS+

P11 46 M CVD 2 9 (1-1-4-1-0-2) MCS- 20 (4-5-6-2-1-2) MCS+

ABI, anoxic brain injury; TBI, traumatic brain injury; CVD, cerebrovascular disease.
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where ps represents the source domain data distribution (healthy 
subjects data distribution) and pt  represents the target domain data 
distribution (DOC patients’ data distribution). ∏( )p ps t,  denotes a 
set of joint distributions, which is the collection of all the possible joint 
probability distributions between ps  and pt .

2.3.3. Domain adaptation and classification
As an integral part in transfer learning, domain adaptation is 

commonly applied to eliminate the differences in the feature 
distributions between different domains (Ren et al., 2022). The aim is 
to map the data into a feature space with distinct distributions for the 
source and target domains such that they are as close to one another 
as possible (Wang Z. et al., 2019). As shown in Figure 3, the source 
domain and the target domain with the same label space, but because 
of their different distributions, we cannot take the trained classifier in 
the source domain and utilize it to the classification of the target 
domain samples directly. After the domain adaptation, the trained 
classifier by source domain can also be employed to target domain and 
obtain the desired results.

The ADSTN algorithm will be adopted in this study. Its main 
structure is shown in Figure 4, which is mainly divided into three 
parts: pre-training, adversarial, and testing.

As in Figure 4A, in the pre-training phase, the feature extractor 
and classifier are trained by the source domain data. The loss of the 
network (cross-entropy loss) at this time can be noted as:

 
min log
,

~
M C

cls s s x y X Y
k

K

k y s s
s

s s s s s
L X Y E C M x, , ,( ) = − ( )( ) ( )

=
=[ ]∑

1

1 (( )

where Xs is the set of all samples in source domain, Ys is the set of 
all labels in source domain, M xs s( ) is the extracted features from 
source domain feature extractor, and C x( ) is the output of 
the classifier.

Figure 4B, before adversarial, the feature extractor weights in the 
target domain are initialized to be the same as the source domain 
feature extractor after pre-training, and then the target domain data 
distribution after mapping is gradually approximated to the source 
mapping data distribution by loss gradient transfer, so that the source 
domain and the target domain cannot be distinguished by the domain 
discriminator. The loss in the discriminator can be written as:

 

min log

log

~

~

D
adv s t s t x X s s

x X

L X X M M E D M x

E

D s s

t t

, , ,( ) = − ( )( ) 

− −1 DD M xt t( )( )( )





where Xt is the set of all target domain samples, Mt  is the set of 
target domain features, and D x( ) is the output of the domain 
discriminator. The prediction loss of the target domain after domain 
adaptation can be written as:

FIGURE 1

The P300-based audio-visual BCI system.
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min log
,

~
M M

cls s t x X t t
s t

t t
L X X E D M x, ,D( ) = − ( )( ) 

Figure 4C, testing the target domain feature extractor with the 
source domain classifier by using the target domain data.

In order to improve the extraction of temporal and spatial features 
from the P300 signal, we designed a CNN network named STCNN 
with a simple structure in this study. Its detailed structure of feature 
extractor is shown in Figure 5, the network includes 4 layers, labeled 
L1–L4.

L1——Input Layer: This layer was applied to load the P300 signal 
(1 × 150 × 10).

L2——Spatial Convolution Layer: It consists of a convolution 
kernel of size 10, equal to the number of electrodes. This processing 
technique uses common space filtering and weighted superposition 
averaging. The S/N of the signal can be enhanced effectively while the 
spatial information of redundancy is further removed (Wang et al., 
2021). The calculation process is as follows:

 
x f I k b2 2 2= ∗ +( )

where I  is the input data, b is the additive bias, k  is the second 
layer convolution kernel function, and f  is the activation function 
(here is tanh).

L3——Temporal Convolution Layer: It consists of a convolutional 
kernel of size 4, which can effectively extract the temporal features 
from the P300 signal. The whole process can be expressed as:

 
x f x k b3 2 3 3= ∗ +( )

As same as L2, Tanh is also applied as the activation function here.
L4——Feature Pooling Layer: Filter the superior features from 

the features obtained from L3 by the pooling operation. The pooling 
filter size used in this study is (2, 1). It contributes to reduce the 
computational complexity and to prevent overfitting with a small 
number of training samples.

In order to reduce network training time and model complexity, the 
label classifier of STCNN and the domain discriminator in this study both 
use the fully connected network, which can also obtain better classification 
results under the condition of matching with the feature extractor.

3. Results

3.1. The results in healthy subjects

To verify the validity of the healthy subjects’ data, the most 
commonly used algorithm (SVM) as well as 3 CNN algorithms 

FIGURE 2

The framework of the proposed WD-ADSTCN.
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(EEGNet, SepConv1D, STCNN) were employed to compare with the 
proposed WD-ADSTCN for the P300 cross-subject detection in 8 
healthy subjects. As shown in Table 2, SVM is difficult to achieve 
effective results on cross-subject, with an average accuracy of only 
64%. In contrast, the deep learning methods have an accuracy of over 
70% except for individual subjects. The highest average accuracy of 
75% was achieved by STCNN. The average accuracy of EEGNet was 
73%. And the average accuracy of SepConv1D was only 72%, which 
was slightly lower than the other two deep learning methods. The 
cross-subject average accuracy of WD-ADSTCN on healthy subjects 
can reach 78%. A one-way repeated measures ANOVA showed that 
these classification algorithms had significant different results 
(p F< ( ) =−10 4 35 20 426, ., ). Furthermore, the post-hoc ANOVA 
(Bonferroni-corrected) indicated that the average accuracy was 
significantly higher for the WD-ADSTCN than that for all other 
methods except STCNN (p < 0.05 corrected).

3.2. The results in DOC patients

Patients were divided into two groups according to their 
improvement in CRS-R scores before and after the trial for 3 
months: Group A were patients who did not improve significantly 
(P1, P2, P3, P4); group B were patients who improved significantly 
(P5, P6, P7, P8, P9, P10, P11). As shown in Tables 3, 4, the proposed 
algorithm was compared with the traditional SVM (within-subject 

and cross-subject) and other two cross-subject deep learning 
algorithms (EEGNet and SepConv1D). For patients in the group A, 
the accuracy in each algorithm was below 60% in each algorithm. 
For patients in the group B, the proposed algorithm and 
SVM-within achieved an average accuracy higher than 70%, while 
the accuracies in other algorithms were below 60%. We conducted 
a one-way repeated measures ANOVA on groups A and B separately, 
and found that there was no significant difference in results of the 
classification algorithms within group A (p F> ( ) =0 05 416 0 66. , ., ), 
while a significant difference in that within group B 
(p F< ( ) =−10 4 30 50 516, ., ). Furthermore, the post-hoc ANOVA 
(Bonferroni-corrected) indicated that the average accuracy was 
significantly higher for the WD-ADSTCN in group B than for all 
other methods except SVM-within (p < 0.05 corrected).

To further validate the relationship between P300 detection 
results and the detection of consciousness in patients with DOC, 
we  compared the accuracy in Table  3 with the CRS-R scores 
(Table  1) in Figure  6. The accuracy curve of the proposed 
WD-ADSTCN algorithm is similar to the patients’ CRS-R scores 
after the experiment. The proposed cross-subject WD-ADSTCN 
algorithm has achieved similar detection results with that of the 
within-subject algorithm. Also, the improvement in CRS-R scores 
of patients (P5, P10) was greater, when WD-ADSTCN accuracy was 
slightly higher than SVM-within. The results of other three cross-
subject methods are different from those of CRS-R after 
the experiment.

FIGURE 3

The main idea of domain adaptation.
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3.2.1. The effect of domain adaptation
To verify the effect of domain adaptation in this study, 

we designed the following 3 experiments. STCNN_patient: Validate 
the effect of training STCNN on DOC patient data using a leave-
one-out cross-validation; STCNN_healthy_subject: Training STCNN 
with healthy subjects and testing directly on DOC patients; 
ADSTCN_patient: Validate the effect of training ADSTCN on DOC 
patient data using leave-one-out cross-validation.

As shown in Figure  7, The results of STCNN_patient and 
STCNN_healthy_subject were extremely unsatisfactory and failed to 
achieve classification at all (below 64%). Although the average 
accuracy in ADSTCN_patient was lower than 64%, there were three 
subjects with good results (P5, P9, P11). The results show that 
ADSTCN can improve the cross-subject detection accuracy of P300 
to some extent, but its enhancement effect is limited under the 
condition that the subject features are not obvious. Meanwhile, due to 

the large difference in P300 features between healthy subjects and the 
DOC patients, the patients could not directly apply the trained model 
from healthy subjects.

3.2.2. The effect of source domain
To investigate the effect of the source domain on the experimental 

results, we designed an additional set of experiments to compare with 
ADSTCN_patient (ADSTCN_healthy_subject: Transfer the healthy 
subjects training model to DOC patients by using ADSTCN). The 
source domain in ADSTCN_patient is other DOC patients, while 
ADSTCN_healthy_subject is healthy subjects.

The results are shown in Figure 8. The accuracy of using healthy 
subjects as the source domain was higher than using the other patients 
as the source domain on all patients. When using healthy subjects as 
the source domain, multiple patients (P8, P10, P11) had an accuracy 
rate of over 70%, with an average accuracy of 69.5%.

FIGURE 4

The steps of the ADSTCN network. (A) Pre-training. (B) Adversarial. (C) Testing.
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3.2.3. The effect of subject selection
To confirm the contribution of WD subject selection, we compare 

the results of ADSTCN_healthy_subject (Without subject selection) 
with those in Table  3 (WD-ADSTCN). As shown in Figure  9, 
WD-ADSTCN had an average accuracy of 71.5%, which is better than 
ADSTCN_healthy_subject. The accuracy of the subjects fluctuated 
less after using WD, with an improvement in the otherwise poorer 
subjects (e.g., P5, P6, P7, P11), but a slight decrease in the better 
subjects (P8, P10). This indicates that WD does remove some of the 
subjects with side effects, but it may also remove useful ones when the 
overall effect is better. In this specific condition of DOC patients, WD 
subject selection has a certain effect.

4. Discussion

The BCI-based approach can directly evaluate DOC patients 
based on brain signals, and this approach may become a clinical tool 

to assist in the clinical setting. Currently, the researchers are mainly 
focused on the detection of EEG in DOC patients by using traditional 
SVM algorithms from intra-subject. This method requires the 
collection of patients’ data to calibrate the system, which is rather 
inconvenient in clinical applications. In this regard, this study 
proposed a method based on a transfer model from healthy subjects 
to overcome the cross-subject problem of P300 detection in DOC 
patients. The results of our study show that all 7 patients whose 
prognosis improved had an accuracy of over 66%. This demonstrates 
the effectiveness of our algorithm on cross-subject of DOC patients 
and its possibilities for awareness detection and communication.

Before applicating in the patients, we first verified in the healthy 
subjects’ data. We compared the proposed WD-ADSTCN algorithm 
with traditional SVM algorithm and some excellent deep learning 
networks (EEGNet, SepConv1D) on cross-subject (as shown in 
Table 2). The results show that the proposed algorithm has indeed 
some advantages, and demonstrate that the feature extractor of 
STCNN can extract suitable temporal and spatial features from the 
P300 signal. Under the condition of simplifying the structure as much 
as possible, STCNN still has excellent performance.

The experimental results show that other cross-subject methods 
(e.g., EEGNet and SepConv1D) performed poor, as shown in 
Tables 2, 3. Furthermore, the analysis of domain adaptation in 
Section 3.2.1 found that it is difficult to achieve results either 
directly in cross-subject on DOC patients or by using the model 
obtained from healthy subjects on DOC patients. These 
demonstrated a large difference in the P300 data between DOC 
patients and healthy subjects, and a similarly large difference 
between DOC patients. It may be  due to the difference in the 

TABLE 3 The accuracy comparison of P300 detection in group A.

Method P1 P2 P3 P4 Mean

SVM-within 0.46 0.56 0.58 0.54 0.54

SVM-cross 0.51 0.48 0.52 0.53 0.51

EEGNet 0.45 0.50 0.56 0.48 0.50

SepConv1D 0.55 0.49 0.50 0.47 0.50

WD-ADSTCN 0.52 0.53 0.53 0.50 0.52

TABLE 2 The cross-subject accuracy comparison in healthy subjects.

Method H1 H2 H3 H4 H5 H6 H7 H8 Mean p-value (corrected)

SVM 0.67 0.58 0.65 0.61 0.66 0.61 0.67 0.69 0.64 3.58 Χ 10–9

EEGNet 0.72 0.70 0.72 0.71 0.71 0.76 0.75 0.78 0.73 0.04

SepConv1D 0.70 0.67 0.70 0.70 0.76 0.74 0.74 0.76 0.72 0.01

STCNN 0.73 0.70 0.76 0.72 0.77 0.75 0.76 0.80 0.75 0.51

WD-ADSTCN 0.79 0.75 0.76 0.74 0.78 0.80 0.82 0.81 0.78 –

FIGURE 5

The structure of the feature extractor in the STCNN.
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shifting of the wave peak and amplitude of P300. As shown in 
Figure 10, for healthy subjects H1, a clear P300 signal typically 
appears around 300ms after hearing or seeing an unexpected 
stimulus, with a clear difference in responses between target and 
non-target stimuli. In contrast, DOC patients do not show so 
obvious difference in responses as that of healthy subjects. The 
responses of patient P9  in group B are close to those of healthy 
subjects, while the target and non-target responses of patient P2 in 
group A are difficult to distinguish. These results may indicate DOC 
patients have different abilities to perform selective attention. 
Patients in group B could selectively pay attention to the target 
stimuli, but were still unable to completely ignore the non-target 
stimuli, resulting in some strong non-target responses. This 
difference may be due to impaired brain function in some DOC 
patients, leading to a decline in their cognitive ability [3]. In 
addition, the occurrence rate of P300 in some DOC patients may 

also decrease. Apart from impaired brain function, this may be due 
to the loss of consciousness and autonomy, making them unable to 
consciously respond to external stimuli.

In this study, 7 of 11 patients achieved P300 detection accuracy 
significantly higher than the chance level (i.e., 64% in Kübler and 
Birbaumer, 2008), using the proposed WD-ADSTCN algorithm. 
Furthermore, all the 7 patients showed the improved CRS-R scores 
after the experiment. These means that the classification accuracy of 
ADSTCN can be used as a prognostic judgment for DOC patients. 
Although, the SVM within subject got similar performance. 
Compared to SVM, ADSTCN can obtain similar results by utilizing 
easily collected healthy subject’s data with unlabeled patient data. The 
problem of insufficient DOC patient data is solved to a certain extent.

In the Figure  8, we  directly used ADSTCN within patients 
(other patients as source domain). However, the results have a 
significant gap compared with from healthy subjects to patients, 

TABLE 4 The accuracy comparison of P300 detection in group B.

Method P5 P6 P7 P8 P9 P10 P11 Mean Value of p 
(corrected)

SVM-within 0.66 0.70 0.66 0.66 0.78 0.78 0.74 0.71 1.00

SVM-cross 0.50 0.47 0.52 0.56 0.48 0.52 0.54 0.51
4 06 10 10. × −

EEGNet 0.55 0.51 0.56 0.58 0.51 0.49 0.57 0.54
8 91 10 9. × −

SepConv1D 0.49 0.53 0.57 0.56 0.54 0.56 0.52 0.54
8 91 10 9. × −

WD-ADSTCN 0.72 0.68 0.67 0.73 0.71 0.76 0.73 0.71 -

FIGURE 6

The accuracy and the CRS-R scores in each patient.
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which may be due to the fact that in the pre-training phase, the 
mixing of multiple patient data would not be able to get a better 
classifier, thus making the classifier ineffective even though the 

features obtained by the feature extractor in the adversarial phase 
are in the same feature space. And after we joined WD to select 
subjects, the patients’ overall effect of P300 did improve, but there 

FIGURE 7

The accuracy of ADSTCN and STCNN for DOC patients in the group B.

FIGURE 8

The accuracy of ADSTCN using different source domains for DOC patients in the group B.
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is a decrease in individual subjects (as shown in Figure 9). Because 
the calculation of WD is more complicated, it is difficult to use it 
for selecting individual samples, and we will continue to work on 
more appropriate sample selection methods from relational 
networks and distance metric networks.

5. Conclusion

The current clinical approach to diagnosing patients with DOC by 
means of scales has a high rate of misdiagnosis. Although a P300-based 
BCI system can assist in diagnosis, there is no decoding algorithm that 
can detect P300 in DOC patients cross-subject. In this study, our proposed 

ADSTCN algorithm based on domain adaptation can train the initial 
model using data from the healthy subjects after selection by WD, and 
then adjusting it to achieve cross-subject effects by using patient data. The 
results showed that ADSTCN outperformed other methods in cross-
subject testing of DOC patients, with the results approaching that of SVM 
in intra-subject. However, the subject selection module of ADSTCN may 
filter out useful subjects when the differences between subjects are small 
which could cause a slight decrease in accuracy. Moreover, the accuracy 
and stability of BCI technology are still limited due to issues such as signal 
noise and interference. At the same time, The CRS-R and other assessment 
scales remain the primary methods for evaluating DOC. Currently, BCI 
technology can be only served as an auxiliary diagnostic tool (Schnakers, 
2020). In the future, we will further improve the subject selection and try 

FIGURE 9

The accuracy of ADSTCN and WD-ADSTCN for DOC patients in the group B.

FIGURE 10

The P300 waveforms from patient P2, patient P9 and healthy subject H1.

https://doi.org/10.3389/fnins.2023.1167125
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1167125

Frontiers in Neuroscience 12 frontiersin.org

to eliminate the differences between healthy subjects and DOC patient 
groups to obtain a generalized P300 classifier for DOC patients.
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