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Spiking neural network with
working memory can integrate
and rectify spatiotemporal
features

Yi Chen, Hanwen Liu, Kexin Shi, Malu Zhang and Hong Qu*

School of Computer Science and Engineering, University of Electronic Science and Technology of

China, Chengdu, China

In the real world, information is often correlated with each other in the time

domain. Whether it can e�ectively make a decision according to the global

information is the key indicator of information processing ability. Due to the

discrete characteristics of spike trains and unique temporal dynamics, spiking

neural networks (SNNs) show great potential in applications in ultra-low-power

platforms and various temporal-related real-life tasks. However, the current SNNs

can only focus on the information a short time before the current moment, its

sensitivity in the time domain is limited. This problem a�ects the processing ability

of SNN in di�erent kinds of data, including static data and time-variant data, and

reduces the application scenarios and scalability of SNN. In this work, we analyze

the impact of such information loss and then integrate SNNwith working memory

inspired by recent neuroscience research. Specifically, we propose Spiking Neural

Networks with Working Memory (SNNWM) to handle input spike trains segment

by segment. On the one hand, this model can e�ectively increase SNN’s ability

to obtain global information. On the other hand, it can e�ectively reduce the

information redundancy between adjacent time steps. Then, we provide simple

methods to implement the proposed network architecture from the perspectives

of biological plausibility and neuromorphic hardware friendly. Finally, we test

the proposed method on static and sequential data sets, and the experimental

results show that the proposed model can better process the whole spike train,

and achieve state-of-the-art results in short time steps. This work investigates

the contribution of introducing biologically inspired mechanisms, e.g., working

memory, and multiple delayed synapses to SNNs, and provides a new perspective

to design future SNNs.

KEYWORDS

spiking neural network, working memory, convolutional neural network, CIFAR10, multi-

dendrite

1. Introduction

Artificial Neural Networks (ANNs) learned from biological neural networks achieved

huge success in these years. Spiking Neural Networks (SNNs) as a step forward to biological

neural networks caught up with their ANNs counterparts and even outperform in computer

vision (Meng et al., 2022; Zhu et al., 2022), sound recognition (Pan et al., 2020, 2021), and

so on (Lobo et al., 2020; Li et al., 2022). Theoretically, SNNs, which are more similar to

biological neural networks, should have more advantages in dealing with real tasks. On the
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contrary, there is still a certain gap between SNN and ANN in

terms of the scope of application and performance in general.

The reason is that ANN’s synchronicity in processing simulated

information allows it to fully consider every detail. In contrast,

SNN’s asynchronous processing of discrete information makes

it better in power consumption performance, but it cannot

comprehensively consider the complete information. In fact, SNNs’

advantages in complex temporal dependence have not been fully

discovered. A classic spiking neuron can only accumulate the

most recent spike train it has received and fails to integrate

comprehensive spatiotemporal features, as shown in Figure 1. For

the static image with rate-based coding, the one-way aggregation of

SNN itself makes it unable to judge based on valid information. The

effect of this problem is evenmore pronouncedwith latency coding,

where neurons see only a small part of the picture. The same is true

for dynamic sequential data. For example, if a video of a long jump

contains two consecutive actions, namely a run-up, and a jump, the

traditional SNN structure may make a judgment during the run-up

and ignore the subsequent jump.

Previously, researchers have tried to increase the temporal

receiver domain of SNNs in various ways to improve the ability of

SNNs to process spatiotemporal data. According to the different

ideas of their methods, they can be divided into two categories:

training more parameters of neurons and changing the structure

of neural networks.

In addition to the weights that can be trained as in ANN,

spiking neurons have many different parameters that determine the

dynamic characteristics of neurons. In Luo et al. (2022), by training

synaptic delay, the neuron obtains the ability to rearrange and

integrate the spike train, which further increases the ability of SNN

to process timing data based on the original learning algorithm. In

Fang et al. (2021b), by training the time constant of the neuron, the

spike response function of the neuron is changed, and the spiking

neuron can obtain the time receiving field length and attenuation

coefficient more suitable for the current task through learning. In

Rathi and Roy (2023), the threshold is changed into a trainable

parameter. However, the above algorithm is only optimized at the

neuron level, and a single neuron can still only obtain limited

information and cannot obtain a global perspective.

In order to expand spiking neurons’ temporal receptive fields,

researchers have made various works according to specific tasks by

referring to various ANN structures that already exist. In Zhang

and Li (2021), the author added circular connections to SNN, but

the weight of phantom connections was manually set. Zhang and Li

(2019), the author also changed the network into a loop structure

and proposed an effective training method. El-Assal et al. (2022),

the author takes the 3D convolution kernel as the input weight.

However, this method will extract a large amount of redundant

information between adjacent time periods, so compared with the

2D convolution method commonly used in SNN, the improvement

is limited. In Yao et al. (2021), the author introduced the attention

structure into SNN and proposed the SNN network based on

temporal attention. This kind of network is a hybrid network of

ANN and SNN. In the forward inference stage, in addition to the

original SNN operation, the network also needs to pass a fully

connected network with a multi-layer sigmoid function as the

activation function, which increases the computation amount.

In the biological brain, cortical neurons process information

on multiple timescales, and areas important for working memory

contain neurons capable of integrating information over a long

timescale (Kim and Sejnowski, 2021). In terms of vision, working

memory is already involved in the early part of the whole

visual pathway. The distinct visual stimuli (oriented gratings and

moving dots) are flexibly recorded into the same working memory

format in visual and parietal cortices when that representation

is useful for memory-guided behavior (Kwak and Curtis, 2022).

Therefore, working memory is very important for the extraction of

temporal information. Introducing working memory into SNN can

effectively improve the processing ability of SNN on spatiotemporal

data. Although the specific structure of working memory in the

brain has not been determined, we can still combine the properties

of SNN to propose a working memory block suitable for SNN.

Based on this, we integrate multiple delayed synapses in spiking

neural networks and propose a simple but effective structure

Spiking Neural Network with Working Memory (SNNWM).

Compared with traditional SNN, SNNWM adds multiple groups of

dendrites with different delays. These dendrites effectively increase

SNN’s receptive field in the time domain, enabling SNN to gradually

acquire global vision with the deepening of network layers. After

that, we provide a simple method to implement the proposed

network architecture in both software and hardware. Among

them, we analyze the differences between SNNWM and traditional

SNN in hardware implementation and draw the conclusion

that SNNWM can increase a small number of storage resource

access operations without increasing the extra consumption in

computation. Finally, we test our method on two different data:

static image, and dynamic event sequence. Experimental results

show that working memory increases SNN’s power dealing with

spike trains and reaches the state of the art with low latency.

In summary, our main contributions are as follows:

1) We propose the spiking neural network with working memory

by introducing multiple delayed synapses and offer a simple

method to reduce the number of parameter increases.

2) For the model proposed in this paper, we give the

implementation methods of software and hardware and

further demonstrate that the proposed model will not generate

excessive resource consumption when implemented by

hardware.

3) We further validated the effectiveness of adding working

memory to SNN by testing the effectiveness of the proposed

model on static and dynamic data, respectively.

2. Materials and methods

In this section, we first introduce the spiking neuron model and

later propose our spiking neural network with working memory

based on this neuron model. After that, we propose a practical

implementation of SNNWM for neuromorphic hardware as well as

FPGAs (Field Programmable Gate Arrays). Subsequently, to further

enhance the temporal aggregation ability of the model and simplify

the computational burden, we propose a temporal fusion layer.

Finally, we introduce the training algorithm used in this paper.
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FIGURE 1

Information loss with di�erent coding methods. (A) Original image. The pixel value of the image will be directly input into ANNs, so the ANNs see the

full image. (B) Latency coding. At 3 ms, the neurons “see” only part of the background grass in the picture, not the horse, and the color was distorted.

(C) Rate coding. At 3 ms, the neurons “see” the shape of the horse, but the color was distorted.

2.1. Spiking neuron models

The Leaky Integrate and Fire (LIF) model and Integrate and

Fire (I&F) model are the two most commonly used spiking neuron

model at present, which is more optimized for neuromorphic

hardware design due to their lower complexity and iterative

representation. In general, the I&F model can be regarded as the

LIFmodel with the leaky term set to 1. Therefore, for simplicity and

generality, we adopt the discrete representation LIF model in Wu

et al. (2018). In LIF model, the membrane potential Vj of neuron j

at time t is updated as follow:

Vj(t) = e−
1
τ Vj(t − 1)+

Ni
∑

i=1

wijK(si(t)), (1)

where wij is the synaptic weight between neuron i and j, K(s) is the

spike response function and here we chose K(s) = s for simplicity,

si(t) ∈ {0, 1} is the spike train from presynaptic neuron i and

s(t) = 1 means neuron i fires a spike at time t. When the membrane

potential exceeds the threshold θ from below, the spiking neuron j

fires a spike sj(t) at this time t, and its membrane potential is set to

resting potential Vrest . This procedure can be described as:

sj(t) = H(Vj(t)− θ), (2)

Vj(t) = Vj(t)(1− sj(t))+ Vrestsj(t), (3)

where H is the Heaviside step function:

H(x) =

{

1, x ≥ 0

0, else
. (4)

It can be found by Equation (1) that SNN can process simple

time-series information naturally, and its temporal reception field

is closely related to constant τ , namely leaky term. Specifically, the

previous spikes can affect the membrane potential at that moment,

dotted arrows from layer l to layer l + 1 in Figure 2A, and then

indirectly affect the membrane potential at the current moment by

leaky term, the solid arrows on the bottom in Figure 2A. Moreover,

this indirect effect may be eliminated by firing a spike that causes

the membrane potential to reset. Spiking neurons themselves have

limited temporal information processing ability, so it is necessary to

make some changes in the network structure to improve the ability

of SNN.

2.2. Spiking neural network with working
memory

Working memory is defined as a processing resource of

limited capacity, involved in the preservation of information while

simultaneously processing the same or other information. There

are a variety of theories about the formation mechanism and

storage structure of workingmemory. Still, here we only focus on its

main function, which is to store a piece of related information for

other modules to use. Here, we expect the spiking neuron to change

its membrane potential mainly based on the spikes over a period of

time, rather than on the spikes at the present moment. This means

that we need to modify the spike train over a period of time so that

it can reach the neuron at the same time.

In the biological brain, there are multiple synapses between

neurons, and these diverse synapses increase the brain’s ability

to process complex spatial-temporal signals. In ANNs, there is

only one synaptic connection between two neurons to simplify the

model and facilitate calculation. Even if there are multiple synapses,

because of the way ANN works synchronously, multiple synapses

can be equivalent to one synaptic connection. On the contrary,

in SNN, the spiking neurons’ temporal dynamics enable multiple

delayed synapses effectively increasing the ability of SNN to process

complex spatial-temporal data.

Inspired by multiple delayed synapses in Bohte et al. (2000), we

integrate multiple groups of dendrites with different delays based

on the original LIF model and proposed a multi-dendrite spiking

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1167134
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1167134

FIGURE 2

Temporal dependence of the spiking neuron. (A) The classic spiking neuron model. The output spike train is directly a�ected by the current input and

indirectly by the previous input. (B) Spiking neuron with overlapping working memory. The output spike train is directly a�ected by both the current

and the previous input. (C) Spiking neuron with individual working memory. The output spike train in the same working memory window is rectified.

neural network with delay. Equation (1) becomes:

Vj(t) = e−
1
τ Vj(t − 1)+

Nk
∑

k=1

Ni
∑

i=1

wijksi(t − dk), (5)

where wijk and dk is the weight and transmission delay of dendrite

group k, respectively. Multiple groups of dendrites with different

delays effectively increase the time domain exploration of the

neuron’s input spikes at the same synapse. As shown in Figures 2B,

C, Multiple dendrites help spiking neurons explore many different

combinations of spike trains simultaneously, without having to wait

for all inputs to proceed to the next layer of computation as in

ANN-SNN hybrid networks that introduce the attention.

This multi-dendrite structure would increase the number of

SNNs’ parameters and further reduce usage in resource-restricted

edging platforms. Inspired by spatial factorization in Inception-

V2 (Szegedy et al., 2016), we split the weight matrix wijk of size

Ni×Nj×Nk in Equation (5) into twomatrices of sizeNi×Nj×1 and

1×Nk, respectively. In this way, the number of network parameters

is reduced from the original Ni×Nj×Nk to Ni×Nj+Nk and only

increased byNk compared with classical SNN. In this way, Equation

(5) becomes:

Vj(t) = e−
1
τ Vj(t − 1)+

Nk
∑

k=1

wk

Ni
∑

i=1

wijsi(t − dk), (6)

To further enhance the global processing capability of SNN, we

introduce an additional memory mechanism to rectify spike train

through working memory to increase synchronization, as shown in

Figure 2C. The rectified output spike train can effectively increase

the stability of the neural network and improve the ability to handle

static data, and Equation (6) becomes:

Vj(t) = e−
1
τ Vj(t − 1)+

Nk
∑

k=1

wk

Ni
∑

i=1

wijsi(t − dk −m), (7)

m = ⌊t/mem_len⌋, (8)

FIGURE 3

Temporal fusion layer. Instead of using the dynamic processes inside

the SNN, the temporal fusion layer combines pulses at all times to

give the SNN a global view.

where mem_len is the length of working memory. The working

memory that operates in this way takes into account all the spikes

within mem_len and continuously feeds them into the spiking

neuron for mem_len. This method can effectively alleviate the

information loss caused by uneven spike distribution in the time

domain for data that do not need fast time-varying information.

2.3. Temporal fusion layer

At present, most SNNs take the spike frequency or average

membrane potential of the last layer as output when processing

tasks. We designed the final layer based on the proposed SNNWM.

For spike sequences with fixed input length T, we set the

dendrite groups’ transmission delay of neurons at the last layer as
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{0, 1, 2...,T}, as shown in Figure 3 and only the mode potential of

the Tth time step is used as the output. According to Equation (4),

the decoding scheme can be expressed as:

oj =

T
∑

k=1

wk

Ni
∑

i=1

wijsi(T − dk). (9)

In this way, on the one hand, the neurons in the last layer obtain

spike information at all times at the time step T, thus enhancing

the performance of SNN; on the other hand, the computation at

the previous T − 1 time step is reduced, effectively reducing the

computation cost.

2.4. Implementation in software and
hardware

Our goal is to make the most of the SNN’s low-power,

high-dynamic processing capabilities, without having to be the

same as biological neurons. Therefore, in the process of practical

application, the {0, 1} sequence is often used to encode the spike

sequence. A 0 or 1 in each bit represents whether there is a spike

event, and each position represents a small period. For example,

a spike train 010110 can represent a spike train with a simulation

duration of 6 ms and each period of 1 ms.

To further simplify the model, we use an arithmetic sequence as

the delay in SNNWM. That is, the synaptic delay between the two

neurons is {0, 1, 2, 3...L}, where L represents the length of working

memory. And the synaptic delay between the two adjacent layers

of neurons was the same. In this way, SNNWM with overlapping

working memories can be achieved by a simple one-dimensional

convolution operation with an additional convolution kernel W1,

or wk in Equation (6), in the time dimension.

The implementation method of SNNWM without overlap is

shown in the pseudo-code of Algorithm 1. Firstly, the input spike

train Sin is divided into N segments of length L in the time

dimension. These segments can be processed in parallel with each

other before calculating changes in membrane potential V . The

change in membrane potential Iseg from the input is obtained by

multiplying the spike segments with the synaptic weights of sizes

Ni × Nj and Nk, respectively. The change in membrane potential

from the input is obtained by multiplying the spike segment with

the synaptic weightW1 of size Ni ×Nj × 1 and the synaptic weight

W2 of size 1× Nk.

The method of SNNWM’s hardware implementation,

specifically FPGA, is shown in Figure 4. The traditional SNN

will input the spike train at each moment (the sequence in the

green box) into the LIF unit, and extract the weight matrix and

the membrane potential at the last moment from BRAM. After

completing the calculation of the membrane potential at the

current moment, the obtained spike train at the current moment

will be output, and then the new neuron membrane potential will

be stored in V_BRAM.

The total input spike data size remains the same, and the

output spike train data size remains the same. It is worth noting

that since the introduction of working memory will simultaneously

participate in the calculation of spikes within eachworkingmemory

Input: Input spike train: Sin, Synaptic weights:

W1,W2, Working memory length: L, Constant:

τ, Threshold: Vth, Resting potential: Vrest

Output: Output spike train: Sout

1 Initialization: Sout ← []

2 Split Sin into N segments of length L;

3 Sseg = split(Sin)

4 foreach n← 0 to N do

5 Iseg [n] = Sseg [n]×W1×W2

6 end

7 for n← 0 to N do

8 for t← 0 to L do

9 if n is 0 AND t is 0 then

10 V = Iseg [n]

11 else

12 V = V · e−
1
τ + Iseg [n]

13 end

14 if V ≥ Vth then

15 V = Vrest;

16 spike = 1;

17 else

18 V = V;

19 spike = 0;

20 end

21 Concat spike into output spike train Sout;

22 Sout = concat(Sout , spike)

23 end

24 end

Algorithm 1. Pseudo code of SNNWM.

window size, the fetch operation of V_BRAM only occurs at the

beginning of this window time, and the save operation only occurs

at the end of this window time. Compared with the previous SNN,

the number of V_BRAM accesses is saved.

2.5. Training

For the optimization of network parameters, we choose the

STBP (Spatio-Temporal BackPropagation) (Wu et al., 2018) in

the surrogate gradient learning method. At present, there are

many opinions about the selection of approximate functions. Wu

et al. (2018) believes that the parameters of the function are

more important than the selection of the function, while Fang

et al. (2021a) believes that the approximate function with different

shapes can bring better results. In this work, we chose the surrogate

function:

∂H(x)

∂x
= e−2x

2
(10)

for gradient learning. Compared with the triangular or rectangular

surrogate function, the exponential surrogate function can ensure

that some gradient information can be transmitted even when

the membrane potential is far from the threshold, rather than no

gradient at all. At the same time, we found in the experiment
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FIGURE 4

Implementation of working memory in hardware. Compared with classical methods, this method does not consume too much in global data

transmission and processing. The computation cost by the input spike train and the change of neuron state remains unchanged.

that using hard Tan as an approximation function would slightly

increase the training time and have no effect on the final result.

3. Results

To verify the ability of our proposed model to extract temporal

and spatial features, we designed a variety of different experiments

on two different data types: images and event streams. We

compared the proposed method with other different methods

with the same or similar network structure and scale. These

networks include conventional network structures or are optimized

according to the characteristics of SNNs, introducing particular

neurons or layer structures. The training methods adopted by

them include transform-based methods and BP-based methods.

The details of the implemented methodology and the experimental

setup are presented below. After that, we carried out experiments

for different types of data sets and comprehensively tested the

influence of preprocessing methods and network working memory

size on the model’s performance.

3.1. Implementation details

In the following experiments, we implemented the proposed

model on two NVIDIA RTX 3090s using the Pytorch training

framework. For CIFAR10 (Krizhevsky et al., 2017) and

CIFAR100 (Krizhevsky et al., 2017), we utilize the SGD optimizer

with the momentum of 1e−4 to accelerate the training process,

and for DVS128 Gesture (Amir et al., 2017) and CIFAR10-DVS (Li

et al., 2017), we utilize the Adam optimizer. The hyperparameters

used for training are shown in Table 1 for different data sets.

Compared with some other SNN-related works, we adopt the

conventional training parameter setting here, and all experimental

results are the average values obtained after 5 repetitions with

different random seeds.

To ensure the fairness of the comparison, we choose different

network structures for different tasks to test, as shown in Table 2.

In this table, C represents the convolutional layer, MP represents

the max pooling layer, AP represents the average pooling layer,

GAP represents the global average pooling layer, and pure numbers

represent the fully connected layer. The number before all symbols

represents the number of output channels or neurons, and the

number after symbols represents the size of the kernel. Among

them, for the task of image class, spatial information is more

important than temporal information, and we adopt the residual

structure of Fang et al. (2021a). In the training process of the

SNN network, compared with the layer-by-layer stacked VGG

structure, the gradient information of the residual structure can be

transmitted through shortcuts, which can effectively alleviate the

gradient error caused by the surrogate gradient function. For the

event stream data, time characteristics and spatial characteristics

are equally important, we use the VGG structure network to avoid

the time characteristics in the event stream being disrupted.

3.2. Static data

As previously analyzed, SNNs are limited in their ability to

process even static data if they cannot make valid judgments based

on the entire spike train. Here, we select the benchmark of two

static image classification tasks: CIFAR10 and CIFAR100 to verify

that the proposed model is simple and effective. For the still image

data, we did not adopt additional data augmentation methods for

pulse sequences according to the time-dependent characteristics of

SNN and only used data augmentation methods for the original

image data. Specifically, we use Autoaugment (Cubuk et al., 2019)

as an augmentation to improve the accuracy of image classification

models. Compared to the classical crop adopted in most previous

works, With random horizontal flipping and normalization, using

auto augmentation improves the final classification result on

CIFAR10 by about 0.4%.

3.2.1. Comparison with prior works
For image-type data, the main factor affecting the classification

results is the spatial feature extraction ability of the model.

Therefore, most of the work in this area focuses on ensuring

the accuracy of the information represented by the spike train

during the forward propagation or the accuracy of the gradient
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TABLE 1 Hyper parameters.

Hyper parameter CIFAR10 CIFAR100 DVS128 Gesture CIFAR10-DVS

Training epoch 200 300 300 300

Batch size 128 128 16 32

Learning rate 1e−1 1e−1 1e−3 1e−3

Time steps 6 6 16 10

TABLE 2 Network structures.

Dataset Architecture Detail

CIFAR10 SEW ResNet18 64C3-MP2-64SEWblock*2-128SEWblock*2 - 256SEWblock*2-512SEWblock*2-GAP-10

CIFAR100 SEW ResNet18 64C3-MP2-64SEWblock*2-128SEWblock*2 - 256SEWblock*2-512SEWblock*2-GAP-100

DVS128 gesture VGG-small 128C3-MP2-128C3-MP2-128C3-MP2- 128C3-MP2-512-11

DVSCIFAR10 VGG 16C3-AP2-32C3-AP2-64C3-64C3-AP2-128C3- 128C3-AP2-128C3-128C3-AP2-256-10

TABLE 3 Classification accuracy on static data.

Dataset Proposals Architecture Timesteps Accuracy(%)

CIFAR10 Rathi and Roy, 2023 VGG16 10 93.44

Rathi and Roy, 2023 ResNet20 10 92.54

Wu J. et al., 2021 CifarNet 8 90.98

Fang et al., 2021a VGG 8 93.50

Zheng et al., 2021 ResNet19 6 93.16

Deng et al., 2022 ResNet19 256 94.50

This work SEW-ResNet18 6 95.41

CIFAR100 Rathi et al., 2020 VGG11 125 67.87

Rathi and Roy, 2023 ResNet20 5 64.09

Deng et al., 2022 ResNet19 6 74.72

This work SEW-ResNet18 6 78.77

information in the backward propagation. As shown in Table 3,

compared with other methods, our method only needs 6 timesteps

to achieve the classification accuracy of 95.41% on CIFAR10 and

78.77% on CIFAR100.

3.2.2. E�ects of di�erent encoding methods
The commonly used static data coding methods include direct

coding, rate coding, and latency coding. To be specific: (1) Direct

coding is to input the pre-processed data directly into SNN as the

current at every moment. (2) The commonly used method in rate

coding is to encode the preprocessed data into the pulse train of

Poisson distribution, where the expectation of Poisson distribution

is related to the data value. (3) Latency coding is to map the pre-

processed data size directly to the specific pulse firing moment,

in which case the neuron fires only once. As mentioned before in

this paper, different coding schemes have a significant impact on

the classification results of the model in the classical SNN model,

here, we test the effect of different coding methods on the CIFAR10

dataset as shown in Figure 5.

FIGURE 5

E�ects of encoding methods in CIFAR10.

It can be found that, on the one hand, the direct encoding

approach achieves the best results. The direct encoding scheme is

more biologically interpretable. The photoreceptor neurons used

to convert light signals into spike trains already have preliminary

feature extraction capabilities in biological retinas. On the other
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FIGURE 6

E�ects of working memory length in CIFAR100.

hand, the proposed model achieves better classification results with

different coding schemes. In particular, when latency coding is

used, there is less drop in accuracy relative to direct encoding. This

is attributed to the fact that the working memory in the proposed

method integrates the input information at multiple time steps,

allowing the model to obtain a larger field of view.

3.2.3. E�ects of working memory length
The length of the working memory will affect the number of

parameters that the model has, as well as its ability to integrate

temporal information. We tested different working memory

lengths separately on CIFAR100 with direct codingmethod, and the

results are shown in Figure 6. It can be seen that the classification

accuracy (solid black line) increases with memory length. For

static data, longer working memory can give the model more time

integration ability, which is also beneficial to the stability of the

model. Therefore, the best classification results were obtained for

networks with memory lengths up to 6 timesteps of the simulation

duration. On the other hand, the reasoning time for a single batch

(blue dashed line) increases with memory length.

3.3. Sequence data

Furthermore, we verify the effect of the proposed model

on sequential data where time correlation is more important.

Here, we choose two datasets, DVS128 Gesture and CIFAR10-

DVS, for testing. In the CIFAR10-DVS dataset, the information of

the original picture in the CIFAR10 dataset is obtained through

motion, and the short-term information is more critical.

3.3.1. DVS data encoding
A variety of coding schemes exist for event streams, including

time-surface (Lagorce et al., 2017), timestamp (Huang, 2021), and

so on (Sabater et al., 2022; Wang et al., 2022). Here we use the

more common approach in SNNs. Specifically, we use the encoding

method in SpikingJelly (Fang et al., 2020) to convert the event

stream data intomultiple consecutive pictures. After that, the direct

input coding method was used, that is, the image pixels were

normalized and directly fed into the SNN as the input current.

The data augmentation method’s impact on the results of event

stream data is important. In this paper, to reduce the training cost

and save time, we convert the event stream data into image data and

then use the data augmentation method. In this article, we will use

a data augmentation approach similar to that commonly used for

still images. Specifically, for the DVS128 Gesture dataset, we used

a random crop. For the CIFAR10-DVS data set, random crop and

random horizontal flipping were used.

3.3.2. Comparison with prior works
For sequential event stream data, local and global temporal

information is equally important. Local temporal information can

be captured by using the time-varying property of spiking neurons,

but the long-term information may disappear due to discrete

neuron firing. Therefore, most works enhance the ability of SNN

to process event streams by changing the neuron model or adding

modules that can obtain long-term information, such as recurrent

structures or attention modules.

It can be seen from Table 4 that our proposed method achieves

a classification accuracy of 98.26% on the DVS128 Gesture data set

and 80.1% on the CIFAR10-DVS data set.

3.3.3. E�ects of working memory length
Event stream data is different from static images in that in

addition to spatial features, temporal features are also always

required, so the model’s ability to extract temporal features has a

significant impact on the final classification results. The working

memory size affects the model’s ability to extract temporal features.

We tested it on the DVS128 Gesture dataset and the results are

shown in Figure 7. It can be seen that with the increase in working

memory size, the classification accuracy (solid black line) of the

model shows a trend of decreasing now and then increasing. This is

partly because the size of the working memory matches the length

of key features of the data itself. When the working memory size is

small, the model mainly classifies by spatial features. As working

memory size grows, models tend to make judgments based on

certain key short-term features, ignoring global information. As the

working memory grows, the model acquires a global view and can

classify actions based on the sequence. This is also in line with the

example given at the beginning of the article. On the other hand, the

inference time for a single batch (blue dashed line) increases with

memory length.

4. Discussion

In this paper, we first analyze the key problems that affect

SNN network processing spatiotemporal data, namely, SNN can

only aggregate information in one direction, and the temporal

receiver field is limited. To solve this problem, we introduce

working memory into SNN, propose a new network structure

by combining multi-delay synapses, and give an effective method

to reduce the number of parameters. Then, we provide the

implementation method of the proposed model in software and

hardware. Finally, we test the performance of the proposed model

on several static and dynamic datasets. Experimental results show
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TABLE 4 Classification accuracy on sequence data.

Dataset Proposals Architecture Timesteps Accuracy (%)

DVS128 gesture Zheng et al., 2021 CifarNet 40 96.87

Wu Z. et al., 2021 VGG 60 97.56

Fang et al., 2021b ResNet19 20 97.57

Fang et al., 2021a ResNet19 16 97.92

This work VGG-small 16 98.26

CIFAR10-DVS Wu Z. et al., 2021 VGG 10 70.4

Fang et al., 2021b VGG 20 74.8

Yao et al., 2021 VGG 10 72.0

Fang et al., 2021a Wide-7B-Net 16 74.4

This work VGG 10 80.1

FIGURE 7

E�ects of working memory length in DVS128 Gesture.

that SNN with working memory can effectively aggregate and

rectify spatiotemporal features, thus improving the ability of SNN

to process spatiotemporal data. Next, we discuss the effects of

different encoding schemes on SNNWM, the effects of working

memory length on SNNWM’s inference speed and storage, and

potential improvements for future SNNWM.

First, for static data, we analyzed the effects of three different

coding schemes on SNNWM and found that direct coding had

the best effect, while delayed coding had the worst effect, which

was consistent with the results of most SNN-related studies. For

direct coding, SNNWMachieved the highest classification accuracy

because the same full precision value is stably entered at every

moment. For rate coding and latency coding, since the input is

a binary spike train and the simulation length determines the

precision of the data received by SNNWM, so there will be certain

performance degradation. The performance gap between the two is

mainly due to the fact that rate coding has more input spikes than

latency coding and the randomness in coding. For example, the

Poisson distribution-based method used in this paper is equivalent

to an augmentation of the training data and reduces overfitting.

Secondly, the length of Memory has a certain influence on

the SNNWM’s inference speed and storage. The introduction

of working memory adds additional data slice and matrix

multiplication operations and the storage grows as memory length

increases. In particular, the additional memory consumption

caused by working memory is approximately the same as adding

an additional matrix multiplication of the size related to memory

length to the original spiking neuron. Therefore, there is a trade-

off between performance and resource consumption. At the same

time, it can be found in the experiment on sequence data that the

influence of memory length on model performance is not linear, so

it is important to choose the appropriate memory length according

to specific tasks.

Finally, SNNWM, as a neuron-level model refinement, can

be used in various SNN network structures, such as the latest

transformer-based model. At the same time, the learning algorithm

used in this paper is based on BPTT (Back-Propagation Through

Time) method, and the gradient needs to be transmitted step

by step in time. Since SNNWM can be regarded as processing

the spike train segment by segment, it is possible to try the

gradient feedback at a segment level to reduce the training time

and cost. Besides, this work is only a preliminary attempt at the

visual classification, which can be extended to other types of data,

such as speech, natural language processing, automatic driving,

etc.
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