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Background and introduction: Federated learning (FL) has been widely employed

for medical image analysis to facilitate multi-client collaborative learning without

sharing raw data. Despite great success, FL’s applications remain suboptimal

in neuroimage analysis tasks such as lesion segmentation in multiple sclerosis

(MS), due to variance in lesion characteristics imparted by di�erent scanners and

acquisition parameters.

Methods: In this work, we propose the first FL MS lesion segmentation framework

via two e�ective re-weighting mechanisms. Specifically, a learnable weight is

assigned to each local node during the aggregation process, based on its

segmentation performance. In addition, the segmentation loss function in each

client is also re-weighted according to the lesion volume for the data during

training.

Results: The proposed method has been validated on two FL MS segmentation

scenarios using public and clinical datasets. Specifically, the case-wise and voxel-

wise Dice score of the proposedmethod under the first public dataset is 65.20 and

74.30, respectively. On the second in-house dataset, the case-wise and voxel-wise

Dice score is 53.66, and 62.31, respectively.

Discussions and conclusions: The Comparison experiments on two FL MS

segmentation scenarios using public and clinical datasets have demonstrated the

e�ectiveness of the proposed method by significantly outperforming other FL

methods. Furthermore, the segmentation performance of FL incorporating our

proposed aggregation mechanism can achieve comparable performance to that

from centralized training with all the raw data.

KEYWORDS

deep learning, federated learning, multiple sclerosis, segmentation, MRI

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central
nervous system, characterized by the appearance of focal lesions in the white and gray
matter that topographically correlate with an individual patient’s neurological symptoms
and disability. Globally there are an estimated 2.3 million people with MS and, besides
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trauma, the disease constitutes the most common cause of
neurological disability in young adults (Prinster et al., 2006;
Coles et al., 2008; Plantone et al., 2015; Mills et al., 2018).
Lesion characteristics, such as number and volume, are principal
imaging metrics for both MS clinical trials and monitoring of
the disease in clinical practice (Carass et al., 2017; Filippi et al.,
2019; Schwenkenbecher et al., 2019; Pontillo et al., 2021). To this
end, automatic, robust, and accurate MS lesion segmentation with
Magnetic Resonance (MR) imaging is crucial to both MS research
and patient management (Zijdenbos et al., 2002; Lladó et al., 2012;
Brosch et al., 2016; Aslani et al., 2019; Cerri et al., 2021).

In classical MS lesion segmentation methods, the brain tissues
types, such as white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF), are firstly segmented based on the
raw MR images via statistical methods, e.g., the Expectation-
Maximization (EM) algorithm (Catanese et al., 2015; Beaumont
et al., 2016) or Gaussian Mixture Modeling (Doyle et al., 2016;
Knight and Khademi, 2016). Then, lesions are detected as outliers
based on the tissue masks (Catanese et al., 2015; Beaumont et al.,
2016; Doyle et al., 2016; Knight and Khademi, 2016). With the
advent of deep learning-based medical data computing (Plis et al.,
2014; Livne et al., 2019; Sun et al., 2019), deep learning models that
learn representative features via convolutional modules have been
widely employed for automatic MS lesion segmentation, achieving
competitive performance (Brosch et al., 2016; Ghafoorian et al.,
2017; Valverde et al., 2017; Wang et al., 2018; Zhang et al., 2018;
Aslani et al., 2019; McKinley et al., 2020; Nair et al., 2020; Isensee
et al., 2021; Ma et al., 2022).

Despite this, there remain significant challenges in the current
methods (Danelakis et al., 2018; Ma et al., 2022). In clinical practice,
the data quality of brain MRI varies across MRI scanners due
to variance in image geometry, resolution, tissue intensity, and
contrast conferred by differences in hardware (scanner and coil)
and acquisition protocols (Kamnitsas et al., 2017; Dewey et al.,
2019; Valverde et al., 2019; Ackaouy et al., 2020). These domain
differences limit the performance of supervised learning methods
when applied to images from new scanners (Kamnitsas et al.,
2017; Ackaouy et al., 2020; Ma et al., 2022). Such phenomenon
is referred to as the domain shift issue, which exists in various
medical image analyses applications for multiple datasets from
different resources (e.g, modalities, sites) (Valverde et al., 2019;
Chen et al., 2020; Liu et al., 2020). Recently, cross-domain
MS lesion segmentation methods have been further explored
to enhance the models’ generalization ability. In particular, the
domain differences are alleviated by inducing the model to generate
scanner-invariant features (Kamnitsas et al., 2017; Ackaouy et al.,
2020), learning from synthetic images that follow the distribution
of the target scanners (Palladino et al., 2020), and cross-scanner
data harmonization (Dewey et al., 2019). A crucial prerequisite of
these methods is that all the data from multiple scanners should be
fed into the framework simultaneously. However, sharing clinical
data across sites invokes privacy issues, which limit the practical
applications of thesemethods in large collaborative studies (Li et al.,
2020b; Guo et al., 2021).

Federated learning (FL) techniques where training is
decentralized were proposed for multi-center computer vision
while preserving data privacy and security (McMahan et al., 2017;
Li et al., 2020a, 2021). Briefly, at the beginning of the FL process,

each participating client is firstly assigned an initialized model.
Note that throughout the paper, we use the notion “client” to
represent the data in each distinct scanner or clinical center. Next,
these models are trained using the local data in each client. After
several training iterations, each client is required to share their
private model weights with a central server, which aggregates these
local weights and distributes them back to each client. Initialized
by the updated weights from the server, the model in each client
continues their local training for another round of FL process.
By enriching the knowledge learned in each local model without
sharing the raw data, the server side can eventually obtain a
model for each client which can achieve a good performance
simultaneously. FL methods have also been widely employed for
multi-client medical image analysis (Li et al., 2020b; Guo et al.,
2021; Liu et al., 2021a; Shen et al., 2021). In Li et al. (2020b)
and Guo et al. (2021), each local model is incorporated with
an adversarial domain discriminator to alleviate the inter-client
distribution bias. However, the intermediate features in each
local client are required to be shared across clients. Despite these
privacy-preserving strategies, distributing features still incur the
risk of data leakage. To solve this problem, FedBN (Li et al., 2021)
has been proposed for domain adaptive FL by only processing the
parameters outside the batch normalization layers of each local
model.

Although FL methods are effective to address these concerns
in many medical imaging scenarios, their applicability is limited
to MS lesion segmentation. Particularly, they have not considered
the weighting strategies for the global aggregation and local
training, which is crucial for FL MS segmentation. First, during
aggregation, the central server averages the model parameters from
all the local clients, assuming each local model has the same
importance and performance. For MS lesion segmentation, the
datasets frommultiple clients, their data distribution and the lesion
morphology and signal characteristics can vary greatly (Kamnitsas
et al., 2017; Ackaouy et al., 2020), which can lead to divergence of
the private local models, thereby conferring distinct segmentation
characteristics when they are aggregated in the central server. By
fusing a model with inferior segmentation performance to others
with superior ability, the segmentation performance for the entire
updated model may be compromised (Shen et al., 2021). Second,
differences in the clinical distribution of patients can impact lesion
burden, size, andmorphology at a client level, generating significant
inter-site variance in multi-client studies, as shown in Figure 1. As
explored in Nichyporuk et al. (2021); Shirokikh et al. (2020), a
model trained on a dataset with smaller lesions will usually present
a lower performance due to the lack of lesion samples for training.
However, the task loss functions in each client are optimized with
the same importance in previous FL methods (McMahan et al.,
2017; Li et al., 2020b, 2021), which would induce the inferior
performance of the central model on the clients with smaller lesion
sizes, and further influence the overall FL segmentation accuracy.

To solve the aforementioned issues, we propose a Federated
MS lesion segmentation framework based on two dynamic Re-
Weighting mechanisms (FedMSRW). Our FedMSRW method can
alleviate the cross-client data distinctions caused by both image
distributions and label variance. Specifically, we first alleviate
the negative influence from the domain shift on the MRI data
from different clients, by employing aggregation mechanisms from
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FIGURE 1

Evidence of the variance on appearance and lesion volume in multi-client studies in scenario 2 of this work, where cases are from clinical trials. The

top images are examples of 2D slices from each client in the study. The bottom graphs are the violin and box plots for the lesion volume to brain

volume ratio distributions per client for all the subjects in this FL study.

FedBN (Li et al., 2021). Second, during the model aggregation
process, the model parameters from each client are assigned a
weight based on their segmentation abilities during local training,
including the segmentation performance and confidence. Models
with higher abilities are assigned a higher weight and vice versa.
To solve the lesion volume imbalance across different clients, we
further propose to re-weight the task loss function in each client
based on the average case-wise lesion volume ratio, i.e., the ratio
of lesion volume to the brain volume, of the training data for that
client. Motivated by Shirokikh et al. (2020), where more attention
should be paid to smaller lesion objects during model training, the
weights for the overall loss functions in clients with a smaller lesion
volume are enlarged, and vice versa.

The major contributions of this work are summarized as
follows:

• To the best of our knowledge, this work is the first application
of privacy-preserving FL methods to the task of MS lesion
segmentation and, in particular, to multi-client MS datasets
featured with different data characteristics.

• We propose uncertainty-aware re-weighting mechanisms
during the central model aggregation process to prevent the
negative influence of the inferior local models.

• We further propose to re-weight the segmentation
loss functions in each local client/center based on
its local lesion volume ratio, addressing the impact
of client-specific lesion variance in the multi-client
MS datasets.

• Wehave conducted extensive experiments in two FLMS lesion
segmentation scenarios using both public and real-world
clinical MS datasets. Our FedMSRW method outperforms
typical FL methods significantly.

2. Materials and methods

2.1. Datasets description

In this work, we have conducted experiments on two FL MS
lesion segmentation scenarios. We first conduct experiments on
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TABLE 1 Details on the scanners for the datasets used in our experiments.

Client Scanner Site Patients

Scenario 1

C1 Siemens Verio 3T University Hospital of
Rennes

15

C2 GE Discovery 3T University Hospital of
Bordeaux

8

C3 Siemens Aera 1.5T University Hospital of
Lyon

15

C4 Philips Ingenia 3T University Hospital of
Lyon

15

Scenario 2

C1 GE Discovery 3T Brain and Mind Center,
Sydney

54

C2 Philips Ingenia 3T St Vincent’s Hospital
Sydney

21

C3 Siemens Skyra 3T I-MED Radiology
Network Miranda,
Sydney

30

C4 Siemens Magnetom
3T

University Medical
Center Ljubljana

30

a public MS lesion segmentation dataset from multiple clients, in
favor of reproducibility. Second, we conduct experiments using our
own multi-site MS lesion segmentation from different hospitals
labeled following clinical trial standard, to further demonstrate the
effectiveness of our proposed method in clinical practice. The study
is approved by the University of Sydney Human Research and
Ethics Committee.

2.1.1. Scenario 1
First, we conducted experiments on theMSSEG-2016MS lesion

segmentation challenge from MICCAI (Commowick et al., 2018,
2021), containing a totally of 53 cases from 4 different sites, as
illustrated in Table 1. In each case, different MR imaging modalities
are available, including a FLAIR sequence, a T1 weighted sequence
pre and post-Gadolinium injection, a T2 sequence, and a PD
sequence. All sequences are co-registered to FLAIR sequences at
a similar resolution via rigid registration. In addition, the pre-
processing steps are conducted including denoising with the NL-
means algorithm, brain extraction via the volBrain platform, and
the N4 bias correction. In our experiments, we only use the FLAIR
sequence. All experiments were performed in two-fold cross-
validation. At each iteration, 3D patches of size 64 × 64 × 64 were
randomly cropped from the original FLAIR images, with random
flipping and rotation augmentations.

2.1.2. Scenario 2
To further indicate the effectiveness of our proposed framework

on the FL MS lesion segmentation tasks in a practical clinical
scenario, we conducted experiments using in-house and public
multi-scanner MS datasets from 4 different scanners.

Among them, the data from C1, C2, and C3 are obtained from
three different hospitals using different scanners. as indicated in
Table 1. All the cases are acquired from patients with relapsing and
remitting MS, which is diagnosed based on the McDonald 2010
criteria (Polman et al., 2011). Additionally, the disease duration
is less than 10 years, with an expanded disability status scale
(EDSS) score of less than 4. Each case contains 3D MRI sequences
in two modalities, including a T1 sequence without gadolinium
administration and a FLAIR sequence. For all the cases, they are
acquired under several different geometrics and timing protocols.
For the lesion labeling process, the T1 and FLAIR sequences of each
case are resampled to a 3mm slice thickness for accelerated labeling
and to provide a common labeling space). First, the automatic Jim
5.0 (http://www.xinapse.com/home.php) is employed to detect and
delineate the lesions on the FLAIR images in a semi-automatic
manner. For each case, at least two trained neuroimaging analysts
at the Sydney Neuroimaging Analysis Centre (Sydney, Australia)
confirmed all the segmentations based on the T1 and FLAIR
images, to generate final, gold standard reference masks.

To further increase the diversity of the multi-client MS data,
we included a public dataset from a new site acquired with a new
type of scanner (Lesjak et al., 2018), in addition to the private data
from different scanners. This dataset consists of 30 cases imaged
from MS patients under 3 different modalities, consisting of a 2D
T1-weighted sequence, 2D T2-weighted sequence, and a 3D FLAIR
sequence.

For the data usage, we follow the same settings in Scenario
1, where only the FLAIR sequence for each case is employed. To
further simulate the practical multi-client scenario, we use the data
in their original resolutions, without any registration process. Given
the larger scale of the dataset compared with those in Scenario 1,
all experiments under these settings were conducted in a three-
fold cross-validation manner. During training, the 32 × 32 × 32
patches were randomly cropped from the original MRI data, with
the augmentations of flipping and rotations.

2.2. Federated MS lesion segmentation
framework based on two dynamic
re-weighting mechanisms (FedMSRW)

The framework of our proposed FedMSRW method is shown
in Figure 2. We denote Di = {Xi,Yi}i=1,2,...,N as the set of MS lesion
segmentation datasets from N different clients, where X and Y

represent theMR images and the corresponding lesion annotations.
In the i th client, the local model Mi with the parameters θi is
optimized via:

Li = min
θi

Ldice
(

Mi(Xi),Yi

)

, (1)

where Ldice is the soft Dice loss function for probabilistic binary
segmentations (Milletari et al., 2016):

Ldice = 1−
2
∑

Mi(Xi)Yi
∑

Mi(Xi)2 +
∑

Y2
i

. (2)

Due to the data distribution differences in multi-client MR
images, we establish our proposed FedMSRW on FedBN (Li et al.,
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FIGURE 2

Detailed framework of our FedMSRW method. The f(.) for calculating the weighting factors during model aggregation can be referred to Equation (4).

The details of g(.) for the segmentation task re-weighting are in Equation (6).

2021), which tackles the domain bias issues in FL processes that
only require sharing of the model parameters. Based on the
assumption that the parameters of the normalization layers in deep
learningmodels represent the domain-specific information (Huang
et al., 2018; Chang et al., 2019), FedBN prevents the central
model from domain shift by aggregating the parameters in
the convolutional layers, while ignoring those in the batch
normalization layers. Specifically, each θi can be represented as:
θi = {θbni , θ ri }, where θ

bn
i are the parameters for all the batch

normalization layers, and θ
r
i are those for the rest layers. After

collecting the local weights, the central server aggregates model
through:

θ̂
r =

1

N

N
∑

i

θ
r
i . (3)

Then the central server distributes the updated weights to each local
client. At the beginning of the next round of local segmentation
training, eachMi is then initialized as θ̂i = {θbni , θ̂ r}.

2.3. Central aggregation re-weighting
based on the models’ segmentation

Due to distinct, client-specific characteristics of both the MRI
data and the MS lesions, the difficulty of lesion segmentation
tasks differs across clients. To this end, the segmentation ability
for the various Mi is different after each round of local training.
According to Equation (3), both the low-performance and high-
performance models are assigned equal importance during the
aggregation process at the central server. This is suboptimal since
the local models with inferior segmentation ability influence the
updated model from the server and further limit collaborative
knowledge learning in FL. A trivial solution to this problem is to
adjust the number of training samples for each client, as indicated

in McMahan et al. (2017). However, there is no simple, non-
biased sample selection mechanism to alleviate the negative effects
of the models with inferior performance. Additionally, selecting
auxiliary hyperparameters manually in FL would limit the model’s
robustness.

To this end, we propose an aggregation re-weighting
mechanism based on the segmentation performance of each Mi

during the training process in the local clients. For each training
iteration in client i, we define the input data and corresponding
labels as x and y, respectively. The segmentation ability for
probabilistic lesion segmentationMi is measured as:

Pi =

∑

Mi(x) ∗ y
∑

y
∗ (1− Ldice

(

Mi(x), y
)

). (4)

As indicated in Equation (4), the first item represents the
models’ confidence in the predicted lesion segmentation. Since
the MS lesion region of interest occupies only a tiny fraction
(around 1% on average) of the whole brain volume, the confidence
value within the true positive lesion regions better reflects the
models’ lesion prediction certainty relative to traditional methods
that measure the models’ confidence based on the entropy of the
whole prediction map. For the second part (1 − Ldice

(

Mi(x), y
)

)
in Equation (4), the model’s segmentation performance is further
considered for re-weighting. If the model has a better segmentation
accuracy, its attribute during aggregation is upgraded, and vice
versa. Finally, the average Pi for all the local training iterations is
able to indicate the segmentation ability for theMi. Considering Pi,
the central aggregation process in Equation (3) is re-formulated as:

θ̂
r
rw =

1
∑

Pi

N
∑

i

θ
r
i ∗ Pi. (5)
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2.4. Local optimization re-weighting based
on the lesion volume

Another challenge in FL MS lesion segmentation tasks is the
heterogeneity of lesion size across different clients. As indicated
in Nichyporuk et al. (2021); Shirokikh et al. (2020), lesions
with smaller sizes should be assigned a larger weight during
model training. To this end, we further propose to re-weight the
segmentation loss functions in each client defined in Equation (1)
based on the lesion volume.

For the k th round of local training in client i, we first calculate
the average lesion volume ratio vrKi of all the data samples for
training. Specifically, the lesion ratio in each training patch is the
ratio of the lesion volume to the brain volume. Compared with
only counting the voxel number of lesions, the lesion volume ratio
can avoid inaccurate estimations when the proportions of the brain
volume in some specific training patches are small. Next, the vrKi is
accumulated with the average lesion volume ratio from the previous
k−1 round, denoted as vri. With the increase of k, the accumulated
vri can represent the true lesion volume ratio for the data used
during the model training process in each client. In the K + 1 th

round of local training, the segmentation loss in Equation (1) is
then reformulated as:

Lrwi =

∑N
i vri

N ∗ vri
∗ Li. (6)

2.5. Model training and inference details

The overall training algorithm of our proposed FedMSRW
method is indicated in Algorithm 1. In each local client, the lesion
segmentation task is trained with a 3D U-Net (Çiçek et al., 2016).
During training, we employ the SGD optimizer with a momentum
of 0.9, a weight decay of 0.0005, and a learning rate of 0.0002. After
every 800 training iteration, the local models are sent to the central
server for aggregation. During inference, the model in each client
is constructed by the central aggregated convolutional weights and
the client-private batch normalization weights.

Regarding the data splits, N-fold cross-validation has been
conducted on all the experiments to ensure all the cases are
evaluated. First, all the images in each client are randomly split
into N-folds. For the experiments on each fold, the (N-1) folds
are used for training and validation, while the rest fold of the data
is employed only for testing. Such a process has been repeated N
times and the average segmentation performance of all cases is
reported as the final results for each method. During testing, each
case is first cropped into patches of the same size as the training
inputs. The segmentation results of the patches of each case are
then constructed together to form the final segmentation prediction
of this case. Our experiment is implemented with PyTorch (Paszke
et al., 2017) on 4 RTX 6000 GPU devices with 24 GB memory. The
CPU device is an AMDEPYC 7302 16-Core Processor, and the total
memory for the RAM is 256 GB.

Require: D1, ...,DN: MS lesion segmentation from N

clients.

In each Di, Mi is the CNN model with the

parameters θi.

P: the number of FL rounds.

Q: the number of local training iterations in each

round.

1: for p ∈ [1, P] do

2: for i ∈ [1,N] do

3: Initialize the Mi with the updated global

model.

4: Obtain the accumulated lesion volume ratio for

i.

5: Optimize the Mi via Equation (6) in Q

iterations.

6: Obtain the Pi which measures the segmentation

ability for Mi by Equation (4).

7: end for

Aggregate local models in the central servers

via Equation (5). Calculate the re-weighting

factors in Equation (6).

8: end for

9: return θ1, ..., θN

Algorithm1. Pseudo-code Algorithm for the proposed FedMSRWmethod.

2.6. Evaluation methods for MS lesion
segmentation

To evaluate the segmentation performance of our proposed
method, we first employed the case-level and voxel-level Dice
coefficient, defined as:

Dice =
2TP

FN + 2TP + FP
, (7)

where TP, FP, and FN indicate the number of true positive, false
positive, and false negative voxel predictions, respectively. The
case-wise Dice score (C-Dice) was obtained by the average Dice
score for all cases. For the voxel-level Dice score (V-Dice), we first
calculate the total voxel numbers of the TP, FN, and FP predictions
for all the testing cases. Next, the V-Dice score is obtained using
these accumulated metrics. Additionally, we also evaluated the
performance based on the true positive rate (TPR) and false positive
rate (FPR) at the voxel level via the accumulated TP, FN, and FP,
defined as:

TPR =
TP

TP + FN
, FPR =

FP

TP + FP
. (8)

3. Experimental results

3.1. FL MS lesion segmentation
performance

In this section, we present the detailed MS lesion segmentation
performance under two FL scenarios. Following typical FL
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TABLE 2 Details of the FL MS lesion segmentation results on Scenario 1.

Metrics Methods C1 C2 C3 C4 Avg

C-Dice ↑ FedMSRW 68.25 67.32 55.76 69.48 65.20

Single 68.58 48.92 62.52 61.58 60.40

Central 70.25 71.07 60.02 70.94 68.07

V-Dice ↑ FedMSRW 75.83 81.44 64.13 75.81 74.30

Single 78.39 69.70 62.50 63.06 68.41

Central 78.94 83.82 70.77 77.36 77.72

V-TPR ↑ FedMSRW 67.45 81.35 64.69 70.41 70.98

Single 70.10 60.60 55.62 49.29 58.90

Central 75.90 77.97 68.15 75.37 74.35

V-FPR ↓ FedMSRW 13.42 18.47 36.42 17.90 21.55

Single 11.09 17.98 28.67 12.51 17.56

Central 17.76 9.37 26.41 20.54 18.52

The direction arrows in the first row indicate the direction of metric improvement.

methods (Li et al., 2021; Liu et al., 2021a), we also present two
common multi-center learning settings as references, including
single-client training, and the centralized training. Specifically,
the single-client training indicates each client train and test their
models locally, without any cross-client communications (Single),
and the centralized training indicates the model is optimized
directly on all the data from all clients (Central). For a fair
comparison, the Single and Central methods are implemented via
the N-fold cross-validation settings as our proposed FedMSRW
under the same data split. The experimental results are shown in
Tables 2, 3. Compared with the single client training, our proposed
FedMSRW method can achieve stable performance gain under the
majority of metrics in both scenarios. Specifically, our FedMSRW
method outperformed the single-client training under the case-wise
and voxel-wise dice scores, and the voxel-wise true positive rate.
In addition, we notice our proposed FedMSRW method can even
outperform the centralized training method in the second scenario,
without sharing the data across clients.

3.2. In comparison with other FL methods

To demonstrate the superiority of our proposed FedMSRW
method over other FL methods on FL MS lesion segmentation
tasks, we present the experimental results in comparison with
typical FL methods, including (1) FedAvg (McMahan et al., 2017),
a fundamental FL method by central aggregation via averaging of
model weights; (2) FedProx (Li et al., 2020a), a FL framework
introducing an auxiliary regularization mechanism in each client
to stabilize learning, (3) FedBN (Li et al., 2021), an FL framework
which can alleviate the cross-site data distribution bias by ignoring
parameters in the normalization layers during aggregation, and
(4) DWA (Shen et al., 2021), a dynamic re-weighting mechanism
for the central model aggregation process based on the changes
of the loss functions in each client. For a fair comparison, we re-
implement the DWA on the same FL baseline as our proposed

TABLE 3 Details of the FL MS lesion segmentation results on Scenario 2.

Metrics Methods C1 C2 C3 C4 Avg

C-Dice ↑ FedMSRW 52.42 58.90 50.90 52.41 53.66

Single 55.20 45.69 41.92 58.22 50.26

Central 55.33 57.63 48.84 48.83 52.66

V-Dice ↑ FedMSRW 64.22 69.48 56.90 58.61 62.31

Single 63.33 40.28 43.86 69.35 54.21

Central 64.31 65.99 48.00 55.47 58.44

V-TPR ↑ FedMSRW 64.17 66.02 54.32 45.14 57.41

Single 58.27 52.53 52.49 62.37 56.41

Central 56.08 59.74 53.89 40.74 52.62

V-FPR ↓ FedMSRW 35.73 26.67 40.25 16.46 29.78

Single 30.64 67.33 62.33 21.91 45.55

Central 24.64 26.29 56.73 13.12 30.20

The direction arrows in the first row indicate the direction of metric improvement.

FedMSRW method, i.e., FedBN. We also report the results by
training within each local client (Single), and joint training with
the raw data from all clients (Central). We maintained the same
data split on the N-fold cross-validation for all methods. The
experimental results under two FL MS segmentation scenarios are
shown in Table 4 and Figure 3.

3.3. E�ectiveness on the proposed
re-weighting modules

To indicate the effectiveness of our proposed weighting
mechanism for the central aggregation (CA) process and local
training (LT) process, we present ablation experiments and the
results are shown in Table 5. For both two scenarios, we notice that
solely employing the CA or LT mechanism can sometimes incur
performance drop. However, by jointly incorporating the two re-
weighting mechanisms, we can consistently improves the baseline
(FedBN) method by a large margin, indicating the effectiveness and
robustness of our method on the FL MS segmentation tasks.

3.4. Di�erent model design strategies

For deep learning-based medical image analysis models, there
can bemultiple design selections even under the similarmotivation.
In this section, we investigate different design choices of our
FedMSRW method on the two scenarios. These experiments were
conducted on both scenarios and the results are shown in Table 6.

First, we replace the model’s segmentation confidence in
Equation (4) with the entropy map of the whole segmentation
predictions (“Ours-ent” in Table 6), following typical uncertainty
learning methods in medical image segmentation (Yu et al., 2019;
Liu et al., 2021b). Equation (4) is then re-formulated as:

Pei = −Mi(x) ∗ log
(

Mi(x)
)

∗ (1− Ldice
(

Mi(x), y
)

). (9)
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TABLE 4 Details of the comparison experiments.

Scenario 1 Scenario 2

C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓ C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓

Single 60.40 68.41 58.90 17.56 50.26 54.21 56.41 45.55

Central 68.07 77.72 74.35 18.52 52.66 58.44 52.62 30.20

FedAVG 57.16 56.56 65.59 32.79 47.06 47.78 54.23 41.07

FedProx 59.26 60.72 66.57 29.73 44.06 49.60 55.99 51.03

DWA 63.63 71.56 64.32 19.07 41.68 42.43 57.70 59.23

FedBN 64.00 72.87 64.86 15.87 49.55 57.47 55.28 35.52

FedMSRW 65.20 74.30 70.98 21.55 53.66 62.31 57.41 29.78

Average values for each metric. Bold values indicate best performance for each case.

TABLE 5 Details of the ablation studies in our experiments.

Scenario 1 Scenario 2

CA LT C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓ C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓

✗ ✗ 64.00 72.87 64.86 15.87 49.55 57.47 55.28 35.52

✓ ✗ 63.95 73.54 68.64 20.61 51.96 61.08 57.70 30.35

✗ ✓ 64.55 72.29 66.45 20.17 42.39 45.46 58.74 61.32

✓ ✓ 65.20 74.30 70.98 21.55 53.66 62.31 57.41 29.78

The bold values indicate the best performance.

“+ CA” and “+ LT” indicates the FedBN baseline constructed with the proposed central aggregation and local training mechanism, respectively.

TABLE 6 Results on the e�ectiveness of our proposed FedMSRW under di�erent model designs.

Scenario 1 Scenario 2

C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓ C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓

Baseline 64.00 72.87 64.86 15.87 49.55 57.47 55.28 35.52

Ours-ent 64.14 74.60 69.20 18.77 41.39 46.91 57.36 59.39

Ours-vol 65.38 73.66 66.18 16.74 46.90 53.03 62.26 52.21

FedMSRW 65.20 74.30 70.98 21.55 53.66 62.31 57.41 29.78

The bold values indicate the best performance.

Finally, each local model in the central aggregation process in
Equation (5) is assigned a weight of Pei . In addition, we conducted
experiments in which lesion volume was employed for local-level
re-weighting on the task learning, referred to as the “Ours-vol”
method in Table 6. Specifically, the volume ratio vri in Equation (6)
is replaced by the total number of lesion voxels vi. The results in
Table 6 indicate the “Ours-ent” and “Ours-vol” are less robust than
the FedMSRWmethod, since their performance drops on Scenario
2, while our FedMSRW can improve the baseline on both two
scenarios.

3.5. Results using di�erent data modalities

For typical deep learning MS lesion segmentation
methods (Brosch et al., 2016; Ghafoorian et al., 2017; Valverde et al.,
2017; Zhang et al., 2018; Aslani et al., 2019; McKinley et al., 2020;
Nair et al., 2020; Isensee et al., 2021; Ma et al., 2022), MR sequences

under different modalities are jointly employed to achieve an
outstanding segmentation performance. In this section, we have
explored whether such implementations are still effective under
the FL scenarios. Specifically, we have evaluated the performance
of our methods using different MRI modalities. Our experiments
are conducted on the MSSEG-2016 challenge, where each subject
has five imaging modalities (T1, FLAIR, T2, DP, and GADO). The
results are shown in Table 7, where we have presented the results
using T1 and FLAIR, and all five modalities. This tables shows that
the FL method trained on FLAIR MRI cases can achieve a better
performance than on more modalities.

4. Discussion

We have presented here an FL MS lesion segmentation
framework, FedMSRW, which includes two innovative re-
weighting mechanisms for improved performance of the FL
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FIGURE 3

Qualitative results on the comparison FL methods. Lesion masks are overlaid on the original images. The top four rows are the visualization for the

Scenario 1, and the bottom four rows are for the Scenario 2. The examples in all rows are from di�erent patients.
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TABLE 7 Details of the experimental results on using di�erent imaging modalities on the MSSEG-2016 dataset.

FedMSRW FedBN

C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓ C-Dice
↑

V-Dice
↑

V-TPR ↑ V-FPR ↓

FLAIR 65.20 74.30 70.98 21.55 64.00 72.87 64.86 15.87

FLAIR &
T1

61.77 71.97 65.89 19.49 63.00 72.12 65.02 18.45

ALL 60.83 71.35 63.57 16.11 62.54 72.60 68.78 22.08

The bold values indicate the best performance.

aggregated model. Specifically, a learnable weight is assigned to
each local node during the aggregation process, based on its
segmentation performance. In addition, the segmentation loss
function in each client is also re-weighted according to the lesion
volume for the data during training.

In contrast to typical FL benchmark tasks, which assume
the disease burden/lesion loads for each client are in the same
distribution space (Li et al., 2021), the MS lesion segmentation
task is confounded by substantial inter-client lesion heterogeneity
/ distinctions. For the multi-client MS lesion segmentation dataset,
the data distributions for each client are distinct, reflecting variance
in hardware and image acquisition protocols. This results in
domain bias issues when optimizing the aggregated model on
each local client. For MS lesion segmentation task, the foreground
objects (i.e., lesions) are almost always small and numerous, with
a heterogenous spatial distribution. For specific clients whose MR
images generally contain smaller lesions with more noise, it is
more challenging for a 3D U-Net to segment lesions accurately.
In the first scenario of our work, the MS lesion segmentation
experiments were conducted on images the MSSEG-2016 dataset.
As shown in Table 4, the performance of the typical FedAvg and
FedProx methods is worse than the models solely trained with the
data in each specific client, which did not demonstrate the benefit
of inclusion of additional dataset through federated learning.
Subsequently, the domain shifts incur inaccurate segmentation
performance for the FedAvg and FedProx methods. By preserving
the domain-specific batch normalization in each client, FedBN can
alleviate the issue and improve the locally trained models. With
the two proposed re-weighting mechanisms at the global and local
levels, our FedMSRWmethod can further outperforms FedBN.

In the second scenario, FL methods were conducted on the in-
house and data and a public dataset, where the data differences
across the clients aremore distinct, and therefore an overall reduced
performance is expected. The experimental results are presented
in Table 4. We observed a similar phenomenon as the first
scenario, namely that cross-client distribution bias in multi-client
MS datasets degrades the collaborative performance of the FedAvg
and FedProx, while FedBN achieves much better performance by
alleviating the domain bias. However, incorporating the DWA
with the FedBN baseline has incurred a severe performance drop.
The relatively larger dataset used from each client in the second
scenario, which exaggerates client-specific differences in data
distribution, may explain this observation. Compared to the limited
performance of other comparison FL methods in scenario 2, our
FedMSRW can improve FedBN by a large margin, which further
indicates the robustness of our proposed method. In addition, Shen
et al. (2021) recently proposed an FL method with re-weighting

schemes for each local model’s training based on the loss value
changes. However, its dynamic weighting strategy is sensitive to
hyperparameter selections, which lacks robustness. Rather, our
proposed re-weighting mechanisms at the global and local levels
are effective and simple, without auxiliary hyperparameters. On the
other hand, the superiority of our proposed FedMSRWmethod also
indicates its effectiveness.

According to Table 4, FedBN can improve the segmentation
performance since it alleviates the distinctions for the cross-client
MR images. However, its performance is still limited by ignoring
the bias of labeling space on MS lesion segmentation tasks. To
solve this problem, we propose a re-evaluation of the weighting
mechanism for the central aggregation (CA) process and local
training (LT) process. As shown in Table 5, solely employing
the CA or LT mechanism incurs an unstable performance gain.
In Scenario 1, the LT module marginally degrades the Dice
score, and incurs an even larger performance drop in the second
scenario. A similar phenomenon has been observed in Shen
et al. (2021), namely that re-weighting the training loss functions
in each client generates unstable FL performance. For the CA
module, this introduces a slight performance gain under all the
segmentation metrics. Conversely, in the proposed FedMSRW
framework, jointly incorporating the two re-weightingmechanisms
consistently improves the baseline (FedBN) method by a large
margin, indicating the effectiveness and robustness of our method
on the FL MS segmentation tasks. Moreover, our proposed even
outperformed centralized training on the voxel- and case-wise dice
scores in Scenario 2. This is an important finding to emphasize the
superiority and data privacy preserving capability of our proposed
FedMSRW method on the MS lesion segmentation data from
clinical trials and with large cross-client data distinctions. Figure 3
illustrates a visual comparison of FedMSRW with other methods,
which indicates the outstanding segmentation performance of our
method from the qualitative perspective.

We further conduct experiments to investigate whether
different model design strategy can introduce performance
variance, as indicated in Table 5. Due to the severe imbalance of MS
lesions in the brainMRI from the clinical practice, utilizing entropy
maps incurs inaccurate representations of themodel’s segmentation
confidence, and further degrades the FL segmentation performance
in both two scenarios. Therefore, we select the global-level re-
weighting mechanism based on the mask probability as defined
in Equation (5), due to the consistent performance gain. For the
local level re-weighting based on true lesion volume, the “Ours-vol”
method degrades the segmentation accuracies under all metrics
in the two FL scenarios. It is potentially because the inaccurate
estimation of the true MS lesion distributions in brain MRI patches
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for model training. For both the “Ours-ent” and “Ours-vol”
selections, we notice although they can improve the FedBN baseline
in the Scenario 1, a severe performance drop has been incurred
in the Scenario 2. The potential reasons for this phenomenon are
two-folds: (1) each client of the Scenario 2 has more data than
those in Scenario 1; (2) the multi-client MS dataset in Scenario 2
is constructed by various datasets from in-house scanners and the
public resources, which bringsmore distinctions for the cross-client
data distributions.

Furthermore, as illustrated in Table 7, we have evaluated the
performance of our framework using different MRI modalities. We
notice that although introducing auxiliary modalities can bring
more imaging contrast information for segmentation learning,
the models actually suffer from performance drop under the FL
settings. A potential reason is that, during the FL process, the
data distributions across different clients are heavily distinct, which
limits the models’ segmentation performance on these clients.
In addition, including auxiliary data in multiple modalities also
introduce more noise and variences from data processing and
registration processes. To this end, the FLAIR only approach in our
experiments remains the most effective input imaging modality for
FL MS lesion segmentation.

We have conducted a computational complexity study on the
aggregation process of the proposed FL methods. Specifically, each
aggregation process of our proposed FedMSRW method costs 73
ms, while the baseline FedBN costs 72 ms. Since our proposed
method has not included auxiliary trainable modules, no extra
parameters are introduced. Given the superior performance of our
method indicated in Table 4, we think the auxiliary computational
cost of our FedMSRW method is negligible, and our proposed
aggregation mechanisms at the global and local levels are effective
and efficient.

One limitation of this work is the potential bias for the MS
lesion masks. In our experiments, the labeling was done with
trained Neuroimaging analysts and tested in simulated FL settings.
In real-world FL application scenarios, labeling from different sites
can have more variance. In addition, the segmentation models for
each client in practical FL might also be different, which limits the
usage of the model aggregation mechanisms in our work, as well as
the typical FL methods. One of the future directions of this work
is to implement our FL method on broad computer vision studies
and beyond MS applications, to further explore the utility and
generalization ability of the two adaptive aggregating mechanisms.
The second future direction is to implement the algorithm on
the practical computational platform with multiple servers, since
existing FL research studies (e.g., our method, FedAVG, and
FedBN) are implemented on a single server for the simulated FL
setting. This might overlook some issues due to the distinctions
among local servers in real-world scenarios. For example, the
performance of each local hardware device varies in practical
applications. This brings auxiliary communication costs, although
does not affect the segmentation accuracies, since the central server
has to wait for every client to finish their local training before
aggregation. To address this problem, our third future potential
is to facilitate the computational efficiency of the FL framework
in practical applications, such as introducing lightweight deep
learning models for each local client.

5. Conclusion

In this work, we proposed a novel FedMSRW method
for MS lesions segmentation under the federated learning
settings. Our FedMSRW is featured with global and local
reweighting mechanisms to adjust the variance of the MR
data and annotations across clients. Extensive experiments
in two FL MS lesion segmentation scenarios indicated the
superiority of our proposed re-weighting mechanism compared
with typical FL methods. The demand for privacy-preserving
FL in clinical scenarios heightens the imperative to refine
existing approaches. FedMSRW is an important methodological
advance for analyzing heterogenous multi-client imaging datasets
with FL.
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