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Spatiotemporal cortical dynamics 
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The human visual system rapidly recognizes the categories and global properties 
of complex natural scenes. The present study investigated the spatiotemporal 
dynamics of neural signals involved in visual scene processing using 
electroencephalography (EEG) decoding. We recorded visual evoked potentials 
from 11 human observers for 232 natural scenes, each of which belonged to 
one of 13 natural scene categories (e.g., a bedroom or open country) and had 
three global properties (naturalness, openness, and roughness). We  trained 
a deep convolutional classification model of the natural scene categories and 
global properties using EEGNet. Having confirmed that the model successfully 
classified natural scene categories and the three global properties, we  applied 
Grad-CAM to the EEGNet model to visualize the EEG channels and time points 
that contributed to the classification. The analysis showed that EEG signals in the 
occipital electrodes at short latencies (approximately 80  ~  ms) contributed to the 
classifications, whereas those in the frontal electrodes at relatively long latencies 
(200  ~  ms) contributed to the classification of naturalness and the individual scene 
category. These results suggest that different global properties are encoded in 
different cortical areas and with different timings, and that the combination of 
the EEGNet model and Grad-CAM can be a tool to investigate both temporal and 
spatial distribution of natural scene processing in the human brain.
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1. Introduction

It is widely known that the human visual system rapidly discriminates complex natural 
scenes (Thorpe et al., 1996; Fabre-Thorpe et al., 2001; Oliva and Torralba, 2001; VanRullen and 
Thorpe, 2001), perceives the content of visual scene even with a short time presentation (Potter, 
1975; Intraub, 1981; Greene and Oliva, 2009; Peelen et  al., 2009) and utilizes perceived 
information to judge the surrounding environment and for spatial navigation. This rapid 
perception is thought to be based on information obtained by a glance at a natural scene, which 
precedes the perception of individual objects or detailed features within the scene. Such 
information is often referred to as gist, which has been successfully formulated as a relatively 
global image feature such as the spatial envelope (Oliva and Torralba, 2001; Torralba and Oliva, 
2003; Groen et al., 2012). Specifically, the spatial envelope is a low-order feature designed to 
provide a good estimate of the degrees of important indicators to characterize a class of natural 
scenes, such as naturalness, openness, roughness, expansion, and ruggedness (Oliva and 
Torralba, 2001). According to the previous studies that investigated behavioral responses to 
natural scene images, some of these indicators and natural scene categories can be discriminated 
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with high accuracy and short reaction time even when the visual 
stimuli are briefly presented (Joubert et al., 2007) followed by mask 
patterns (Bacon-Macé et al., 2005; Greene and Oliva, 2009; Peelen 
et  al., 2009). However, these behavioral data have various factors 
beyond visual processing of the target scene itself, such as the 
properties of the backward masking effect (Breitmeyer et al., 2006) 
and the decision process for response selection (Shadlen and Kiani, 
2013; Ratcliff et al., 2016). Analyzing the brain activities for natural 
scene images may enable us to understand the dynamics of scene 
processing in humans more directly.

Neural mechanisms of scene perception in the human brain have 
been most extensively investigated through functional magnetic 
resonance imaging (fMRI) (Groen et al., 2017). Comparisons of blood 
oxygenation level dependent signals between visual stimuli having 
specific characteristics, such as scenes and faces, have revealed scene-
selective regions that are important for the perception of natural 
scenes. The parahippocampal place area is located from the posterior 
part of the parahippocampal gyrus to the anterior part of the spindle 
gyrus and has been identified as a region that shows preference for 
buildings (e.g., Aguirre et al., 1998; Epstein and Kanwisher, 1998). The 
retrosplenial complex, which is active against mental images of  
the scene, and the occipital place area, which shows preference for the 
boundaries of the environment in navigation, have also been identified 
as scene-selective regions (Nakamura et  al., 2000; O'Craven and 
Kanwisher, 2000; Groen et al., 2016; Julian et al., 2016; Bonner and 
Epstein, 2018; Epstein and Baker, 2019). These findings suggest that 
multiple areas in the human brain process different types of 
information from natural scene images. However, because of the low 
temporal resolution of fMRI, the cited work could not specify the early 
neural activities corresponding to rapid natural scene processing, 
which is probably based on image features as suggested by a number 
of psychophysical and computational studies (Schyns and Oliva, 1994; 
Baddeley, 1997; Oliva et al., 1999; Oliva and Torralba, 2001; Gaspar 
and Rousselet, 2009).

Meanwhile, the temporal dynamics of neural processing 
underlying natural scene recognition have been investigated through 
electroencephalography (EEG). A recent study showed that differences 
in the global information of natural scenes evoked different visual 
evoked potentials (VEPs) (Harel et al., 2016; Hansen et al., 2018). 
Another line of research has focused on the hierarchical neural 
processing of image features that are important for scene recognition. 
Focusing on a lower-order feature called contrast energy and a higher-
order feature called the spatial coherence of natural scene images, 
Groen et al. (2013) showed that the modulation of EEG by contrast 
energy terminated in 100–150 ms, whereas the modulation by spatial 
coherence lasted up to 250 ms. Greene and Hansen (2020) investigated 
the relationship between event related potentials (ERPs) and a wide 
range of features from lower to higher order (i.e., features ranging 
from simple texture statistics of natural scenes to convolutional neural 
network (CNN) features) and found differences in the encoding 
process for each feature. Referring to a large body of evidence 
suggesting that the important features for the instantaneous 
perception of natural scenes are relatively global (Oliva and Torralba, 
2001; Greene and Oliva, 2009; Groen et al., 2013; Kauffmann et al., 
2014; Ramkumar et al., 2016), it has been suggested that the natural 
scene encoding process at an early stage can be investigated using EEG 
(Ghebreab et al., 2009; Scholte et al., 2009; Võ and Wolfe, 2013; Groen 
et al., 2016). However, these studies did not mainly step into the spatial 

distribution of the scene-related neural activity over the cortex maybe 
because of the low spatial resolution of EEG.

Although various psychophysical and neurophysiological 
approaches have been adopted to examine the perception of natural 
scenes, it remains unclear, both spatially and temporally, what part of 
the brain activity at short latencies contributes to the classification of 
natural scene categories and global properties. As described in the 
previous studies, this perception is partially supported by the global 
information, which may be reflected in the VEPs. If it is the case, the 
VEPs for natural scene images can classify natural scene categories 
and global properties of the corresponding images, and we  can 
investigate what part of the brain and what times of the EEG signal 
contribute to the classification. To test this hypothesis, in the present 
study, we conducted experiments to investigate the spatiotemporal 
development of neural information related to scene categories (e.g., a 
bedroom and forest) and fundamental global properties (i.e., the 
degrees of naturalness, openness, and roughness) using VEPs. 
We trained the EEGNet model (Lawhern et al., 2018), which was a 
CNN model that predicted the natural scene categories and global 
properties (degrees of naturalness, openness, and roughness) of 
corresponding natural scene images to inputting VEPs, and visualized 
the VEP time points and EEG channels that contributed to the 
classification using Grad-CAM (Selvaraju et al., 2017). These analyses 
showed that the corresponding natural scene categories and global 
properties could be  classified from simple VEPs at a statistically 
significant level, and they visually revealed that the different time 
points and EEG channels contributed to different classification classes. 
In particular, we  found that early-latency (approximately 80 ~ ms) 
VEPs contributed to the openness classifications, and that both frontal 
and occipital electrodes contributed to the natural scene category and 
naturalness classification. These results suggest that different global 
properties, which have been considered to be important for natural 
scene recognition, are processed in different cortical areas, and that 
their localization has already occurred within a short latency of 
~100 ms. In addition, these findings further support the idea that the 
combination of the EEGNet and Grad-CAM can carve out the 
dynamic neural processing of complex natural images even by using 
EEG with poor spatial resolution.

2. Materials and methods

We measured VEPs for various natural scene images and 
constructed an EEGNet model using the VEPs as input. We examined 
how accurately the model classified the natural scene categories and 
global properties of corresponding images. We  then applied 
Grad-CAM to the EEGNet models to visualize the time points and 
EEG channels of the VEPs that contributed to the classification.

2.1. Observers

Twelve naïve students participated in the experiment. All 
participants had normal or corrected-to-normal vision. All 
experiments were conducted in accordance with the guidelines of the 
Ethics Committee for experiments on humans at the Graduate School 
of Arts and Sciences, The University of Tokyo. All experiments were 
conducted in accordance with the Declaration of Helsinki. All 
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participants provided written informed consent. One participant was 
excluded from the following analyses because their EEG data were 
deficient, that is, the number of recorded triggers were smaller than 
expected due to a machinery problem.

2.2. Apparatus

Visual stimuli were generated by a personal computer (HP Z2 
Mini G4 Workstation) and presented on a 24-inch gamma-corrected 
liquid-crystal display (BenQ XL2420T) with a refresh rate of 60 Hz 
and a spatial resolution of 1.34 min/pixel at a viewing distance 
of 100 cm.

2.3. Stimuli

The visual stimuli were 232 natural scene images, which were 
comprised of 5.7 deg × 5.7 deg (256 × 256 pixels; Figure 1). All images 
were collected via the Internet from the SUN and Places 365 
databases (Xiao et al., 2010; Zhou et al., 2014). We assumed these 
natural images were taken with the gamma of 2.0, and loaded with 
the gamma of 0.5. All images were classified into one of 13 natural 
scene categories identified as important in previous studies: offices, 
kitchens, living rooms, bedrooms, industrial scenes, tall buildings, 
city scenes, streets, highways, coasts, open country, mountains, and 

forests (Oliva and Torralba, 2001; Lazebnik et  al., 2006; Alameer 
et al., 2016).

2.4. EEG recording procedures

EEG experiments were conducted in a shielded dark room. In 
each session, 232 natural scene images were presented once in random 
order. Each image was presented for 500 ms, after which a uniform 
background blank of 27 cd/m2 was presented for approximately 
750 ms, which was necessary for brain responses to settle down in the 
preliminary experiment. Participants observed the stimuli foveally 
through steady fixation on a small black dot that appeared at the 
center of the screen. EEG recordings were made while the participants 
observed the visual stimuli. Participants’ eye movements were 
controlled by pre-experiment instruction (c.f., Orima and Motoyoshi, 
2021). Seventeen sessions were conducted in the experiment, and each 
image was presented 17 times in total for each participant.

2.5. EEG data preprocessing

EEG data were acquired from 19 electrodes (Fp1, Fp2, F3, F4, C3, 
C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, and Pz) in accordance 
with the international 10–20 system at a sampling rate of 1,000 Hz 
(BrainVision Recorder, BrainAmp amplifier, EasyCap; Brain Products 

FIGURE 1

(A) Examples of stimuli used in the experiment; i.e., one image from each of the 13 natural scene categories. (B) The distribution of naturalness, 
openness 0/1 values of all the visual stimulus. (C) The distribution of roughness values of all the visual stimulus.
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GmbH). The impedance of each electrode was kept below 5 kΩ. An 
additional electrode, located between Fz and AFz, was used as the 
ground. In addition, all electrodes were referenced to another electrode 
located between Fz and Cz, and all electrode data were re-referenced 
offline using the average of all electrodes. The recorded EEG data were 
filtered by a 0.5–40 Hz bandpass filter and divided into epochs of 
−0.4–0.8 s from the stimulus onset. Baseline correction was performed 
using the data for −100–0 ms from the stimulus onset as a baseline. The 
eye movements were removed through independent component analysis 
and the epochs including abnormal amplitude (exceeding the range from 
−75 to 75 μV) were rejected to remove epochs with eye blinks.

2.6. Training the EEGNet model

EEGNet is a CNN model that treats EEG data as two-dimensional 
data of time points × EEG channels as input (Lawhern et al., 2018; 
Lotte et al., 2018). Previous studies have shown that EEGNet performs 
well in EEG decoding, and because it convolves both in time and in 
space, it is said to be able to capture the spatiotemporal properties of 
EEG data (Wakita et al., 2021). Grad-CAM has been used to visualize 
the portion of inputs that contribute to classification in deep neural 
network models for object recognition (Selvaraju et al., 2017). In the 
present study, not only to classify the characteristics of visual stimuli 
from VEPs but to understand the spatiotemporal portions that 
contributed to the classification, we  trained an EEGNet model to 
classify corresponding natural scene categories and global properties, 

and applied Grad-CAM to the EEGNet model to visualize 
the classification.

Figure  2A is an overview of the EEGNet model. Following a 
previous study (Lawhern et  al., 2018), EEG data were input as 
two-dimensional data of time points × EEG channels and trained to 
classify 13 natural scene categories of the corresponding visual stimuli 
to the input VEPs. The 232 images were split into training and testing 
data such that they were almost equally divided within each natural 
scene category. We  performed 5-fold cross validation to secure 
generalizability of the EEGNet models.

The preprocessed EEG data from 1 to 500 ms of the stimulus 
onset for 17 electrodes (F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, 
T8, P7, P8, Fz, Cz, and Pz) in the international 10–20 system were 
treated as 17 × 500 matrix data. From ~187 samples (11 observers × 
17 repetition, some of them were rejected by the preprocess), 30 to 
35 samples of EEG data corresponding to a single visual stimulus 
were picked up in random combinations for input to the model and 
then averaged. Note that each sample for each image, EEG channel 
and repetition were z-scored to eliminate the effect of the absolute 
value of each channel. The number of training epochs was set at 361, 
at which we confirmed that the classification accuracy in the cross-
validation set 1 was highest (Figure 2B). The number of averaged 
VEP used for training per epoch was 3,000. Table 1 shows the detailed 
architecture of the EEGNet model. The loss for each iteration was 
calculated using PyTorch’s torch.nn.CrossEntropyLoss.

Besides training the EEGNet model to classify the VEPs into 
corresponding 13 natural scene categories, we also trained the EEGNet 

FIGURE 2

(A) Model overview. EEG data were input as a two-dimensional array comprising 17 EEG channels × 500 time points to the convolutional layers. The 
convolutional layers were followed by a fully connected layer and then a softmax layer to classify natural scene categories and global properties. 
(B) The test accuracy transition of the classification in the cross-validation set 1.
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model to classify the VEPs according to global properties that 
characterize natural scenes, namely the degrees of naturalness, 
openness, and roughness (Oliva and Torralba, 2001). Naturalness 
(natural/man-made) had a predefined 0/1 value indicating whether 
each natural scene was mainly composed of natural or man-made 
objects. Openness (open/closed) also had a predetermined 0/1 value, 
indicating whether each natural scene was open or closed. Roughness 
(simple/complex) was considered to correspond to the ‘complexity’ of 
the scene (Oliva and Torralba, 2001). In the present study, the slope of 
the power spectrum of each image, which is related to roughness, was 
calculated and binarized around its median value to give the roughness 
of each image (Oliva and Torralba, 2001). The degrees of expansion 
and ruggedness were excluded from the present study because they are 
mainly applied only to man-made and natural scenes, respectively.

The architecture of the EEGNet models is the same as that shown 
in Table 1, except for the size of the final fully-connected and softmax 
layer. The number of training epochs was set at 221, 341, 301 for the 
naturalness, openness, roughness classification, respectively, based on 
the classification accuracy in the cross-validation set 1 (Figure 2B), 
and the number of samples used for training in one epoch was set 
at 3000.

2.7. Application of Grad-CAM to the 
EEGNet models

After the training of the EEGNet models, Grad-CAM was adopted 
to visualize the contribution to the classification. The average VEPs of 
each participant’s testing data were input to the trained EEGNet 
model, and the predicted natural scene category or global property 
were obtained from each VEP. We then applied Grad-CAM to the 
trained EEGNet model following a previous study (Selvaraju et al., 
2017). The output of the convolutional layer in ConvBlock2 was used 
as the feature map. Next, the gradient of the score for predicted natural 

scene category or global property with respect to the feature map 
activations was computed, and the global average pooling of the 
feature maps was calculated. A localization map was obtained as the 
multiplicative product of the feature maps and global average pooling. 
To adopt only the points that contributed positively to the 
classification, the localization map was finally passed through a ReLU 
layer. The localization maps that were obtained for each participant 
were normalized to relative values according to the minimum and 
maximum values, and averaged across participants and projected onto 
a topographical map to visualize the time points and EEG channels 
that contributed to the classification.

2.8. Support vector machine settings

Support vector machines (SVMs) were used for the additional 
analyses in the discussion. We used the Matlab function ‘fitcecoc’ for 
the natural scene category classification and ‘fitcsvm’ for the others 
with default settings to train SVMs, and 5-fold cross validation was 
performed in the same way as the training of the EEGNet models.

3. Results

3.1. VEPs

Figure  3A shows the electrode position that we  used, and 
Figure 3B shows the grand-average VEPs for all images from 50 to 
500 ms after the stimulus onset. Red indicates positive amplitudes and 
blue indicates negative amplitudes. VEPs were particularly large for 
the occipital electrodes (O1, O2). VEPs of the occipital electrodes (O1, 
O2) began to rise at approximately 100 ms after the stimulus onset. 
The amplitudes of the VEPs of the occipital electrodes increased again, 
peaked at approximately 250 ms, and then decreased.

TABLE 1 Details of the EEGNet architecture.

Block Layer # Filters size Activation Options

Input (17, 500) Replicate padding: (0, 32)

ConvBlock1
Conv2d 8 (1, 64)

BatchNorm2d

ConvBlock2

Conv2d 16 (1, 1)

BatchNorm2d

Activation ELU

AvgPool2d (1, 4)

Dropout p = 0.5

ConvBlock3

Conv2d 16 (1, 16) Replicate padding: (0, 8)

Conv2d 16 (1, 1)

BatchNorm2d

Activation ELU

AvgPool2d (1, 8)

Dropout p = 0.5

Fully connected nn.Linear: 4,080 → N

Softmax N: number of classes
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3.2. Classification of natural scene 
categories and global properties using 
EEGNet models

Figure 4 shows the classification accuracy of the natural scene 
categories using the EEGNet model. In each cross-validation set, the 
VEPs that were assigned to the testing data were averaged within 
participants and input to the trained EEGNet model, and we obtained 
the classification accuracy for each participant and cross-validation 
set. The obtained values of classification accuracy were averaged 
within participants to obtain a representative classification accuracy 
for each participant. Finally, these representative values were averaged 
across participants. The statistical analysis was performed using 
sample size of 11, which was equal to the number of participants. To 
address the multiple comparisons, we  adopted the Benjamini-
Hochberg (BH) false discovery rate (FDR)-correction method 
(Benjamini and Hochberg, 1995).

The classification accuracy for the 13 natural scene categories was 
16.0% (chance level: 1/13 (7.7%); t(10) = 5.92; p = 1.5 × 10−4, two-tailed 
one-sample t-test) and that within the top two categories was 28.1% 
(chance level: 2/13 (15.4%); t(10) = 8.28; p = 8.7 × 10−6, two-tailed 

one-sample t-test), with both results being statistically significant 
(p < 0.01, FDR-corrected).

Meanwhile, because the train/test split was performed as equally 
as possible within the natural scene categories, a 0/1 balance in the 
testing data was not ensured under the naturalness, openness, and 
roughness conditions. Therefore, to fairly examine the accuracy of the 
models that classified these global properties, the balanced accuracy 
calculated using equation (1) was adopted to calculate the classification 
accuracy for those conditions. Note that tp, fn, fp, and tn denote the 
numbers of true positives, false negatives, false positives, and true 
negatives, respectively.

 
balanced accuracy tp

tp fn
tn

tn fp
 =

+
+

+








…( )1

2
1

The classification accuracies of naturalness, openness, and 
roughness were 65.5, 64.9, and 54.4%, respectively (chance level: 1/2 
(50%); t(10) = 9.57, 10.7, 4.31; p = 2.4 × 10−6, 8.8 × 10−7, 1.5 × 10−3 
respectively, two-tailed one-sample t-test), all of which were 
statistically significant (p < 0.01, FDR-corrected). These results indicate 

FIGURE 3

(A) The distribution of EEG channels in the present study. Nineteen electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, and 
Pz) in accordance with the international 10–20 system were adopted. (B) Topography of grand-average VEPs. Red indicates positive values and blue 
indicates negative values. A large rise in VEPs was observed after 100  ms from the stimulus onset, mainly in the occipital cortex.

FIGURE 4

Classification results obtained using the EEGNet models. The green, red, yellow, and blue bars indicate the classification accuracies for the natural 
scene categories, naturalness, openness, and roughness, respectively, all of which were statistically significant (**p  <  0.01, FDR-corrected). In the 
classification of the natural scene categories, the Top-n classification accuracy is the rate that the correct category was included in the top-n 
prediction. The dotted lines denote the chance levels. The error bars indicate ± 1 s.e.m. across observers.
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that natural scene categories and global properties can be significantly 
classified using simple VEPs.

3.3. Spatiotemporal maps of VEP 
components contributing to the 
classification based on Grad-CAM

Figure 5A shows the topography of the EEG channels and time 
points that contributed to the classification visualized using Grad-
CAM. The degree of contribution is converted to relative values 
according to the minimum and maximum values as described in the 
method section, and we  set the minimum values as zero to plot. 
Statistical analysis was performed by the two-tailed one-sample t-test 
using the first peak of contribution (the maximum degree of inter-
participant averaged contribution within the first 12 time points at all 
electrodes) in each classification class as a baseline. The multiple 
comparisons among time points and electrodes were resolved by the 
BH FDR-correction method with a threshold of p = 0.05. Red indicates 
the maximum contribution to the classification, and blue indicates the 
minimum. Fp1 and Fp2, which were excluded from the classification, 

are plotted as making the minimum contributions to the classification. 
In Figure 5B, the data from the occipital (O1, O2), parietal (P7, P8), 
and frontal (F3, F4, F7, F8, Fz, Cz) lobes are graphically presented. The 
data in each panel were averaged across electrodes for visualization.

The occipital and parietal electrodes (O1, O2, P7, P8) at 
approximately 68–144 and 172–216 ms after the stimulus onset and 
the frontoparietal electrodes (F3, F4, F7, F8, Fz, Cz) at approximately 
244–340 ms contributed to the classification of the natural 
scene categories.

The frontoparietal electrodes (F3, F4, F7, F8, Fz, Cz) at 120–124 
and 196–208 ms after the stimulus onset contributed to the 
classification of naturalness, and the occipitoparietal electrodes (O1, 
O2, P7, P8) at earlier and later latencies such as 96–212 ms after the 
stimulus onset also contributed to the naturalness classification. The 
occipitoparietal electrodes (O1, O2, P7, P8) at approximately 
80–296 ms after the stimulus onset contributed to the classification of 
openness. Furthermore, occipitoparietal electrodes (O1, O2, P7, P8) 
at approximately 92–236 ms and occipital electrodes (O1, O2) at 
approximately ~284 ms after the stimulus onset contributed to the 
classification of roughness, whereas the other channels did not 
largely contribute.

FIGURE 5

(A) Topography of grand average VEPs and VEPs contributing to the classification visualized by Grad-CAM. From the top, the grand average VEPs, the 
EEG channels that contributed to the classification of the natural scene categories, naturalness, openness, and roughness are shown. (B) Re-plot of 
(A) on a plane with the vertical axis representing the degree of contribution and the horizontal axis representing the time from the stimulus onset. The 
data were averaged for the occipital (O1, O2), parietal (P7, P8), and frontal (F3, F4, F7, F8, Fz, Cz) lobe channels, respectively. The bars on top of each 
panel indicate the statistically significant periods.
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These results indicate that the occipital lobe contributed to the 
classification generally. However, there were certain differences 
according to the classification classes. As examples, the frontal lobe 
contributed to the natural scene category and naturalness 
classification, and the occipital lobe at earlier latencies (approximately 
80 ~ ms) contributed to the natural scene category and 
openness classification.

4. Discussion

To investigate the spatiotemporal development of natural scene 
perception in the human brain, the present study introduced a deep 
classification model (EEGNet) that classified natural scene categories 
and global properties by inputting VEPs for natural scene images. As 
a result, we found that natural scene categories and global properties 
can be classified at a statistically significant level even using VEPs with 
low spatial resolution. We also found that the time points and EEG 
channels that contributed to the classification differed largely 
depending on the classes of classification. For example, for natural 
scene category and openness, VEPs in the occipital electrodes at early 
latencies (approximately 80 ~ ms) contributed to the classification, 
whereas VEPs in the occipital electrodes at approximately 92 ~ ms 
mainly contributed to the classification of naturalness and roughness. 
In addition, VEPs in the frontal and parietal electrodes contributed to 
the classification of natural scene category, whereas VEPs in the 
occipital electrodes mainly contributed to the classification of the 
other classes. These results suggest that the natural scene category is 
processed in human visual cortex differently from the global 
properties, and different global properties of natural scenes are 
processed at different latencies and in different areas of the 
human brain.

The classification of the 13 individual natural scene categories 
was supported by the VEPs of the occipitoparietal electrodes at 
approximately 68–144 and 172–216 ms, and the frontal lobe at 
approximately 244–340 ms. The contribution of the occipital lobe 
to the classification of natural scene categories further supports the 
results of previous studies that revealed the encoding process of 
natural scenes by VEPs (Scholte et al., 2009; Hansen et al., 2011; 
Groen et al., 2013; Greene and Hansen, 2020) and is consistent with 
the idea that scene selective regions such as the occipital place area 
and retrosplenial complex are distributed in or around the occipital 
and parietal lobes (Aguirre et al., 1998; Epstein and Kanwisher, 
1998; Ishai et al., 1999; O'Craven and Kanwisher, 2000; Julian et al., 
2016). In addition, the frontal lobe has been suggested to 
be associated with natural scene perception, which is consistent 
with the results of previous studies using fMRI (Peyrin et al., 2004, 
2010; Walther et al., 2009). The results also indicate a possibility that 
natural scene category is processed inter-regionally, from the 
occipital to frontal lobes.

In terms of naturalness, the classification accuracy was higher 
than the other classification classes. In addition, the occipital VEPs at 
relatively early latencies (approximately 96 ~ ms) contributed to the 
classification. This is not inconsistent with the psychophysical finding 
that the naturalness of natural scenes can be perceived even with a 
particularly short presentation time such as 20 ms (Joubert et al., 2007; 
Greene and Oliva, 2009; Loschky and Larson, 2010). The reason why 
naturalness is encoded at relatively early latency and accurately 

classified using the VEPs may be that naturalness can be predicted to 
some extent by lower-order image features. In fact, another analysis 
showed that naturalness was predicted with 85.2% accuracy (chance 
level: 50%; t(4) = 11.5; p = 3.3 × 10−4, two-tailed one-sample t-test) by 
the spatial envelope (Oliva and Torralba, 2001; Torralba and Oliva, 
2003) using an SVM, which corresponds to the energy of subbands in 
spatial blocks.

Furthermore, the fact that the VEPs in the frontal electrodes 
contributed slightly to naturalness classification supports the results 
of previous studies using fMRI (Peyrin et al., 2004). This study showed 
that low-spatial-frequency information was vital for the natural scene 
perception and conveyed to the right anterior parahippocampal and 
temporal cortex. In fact, man-made scenes contain many linear 
contours, whereas natural scenes do not necessarily do so. These 
differences can also be  observed even for low-spatial-frequency 
information, that is, naturalness can be discriminated by low-spatial-
frequency information. Therefore, together with the findings of the 
previous studies, it is reasonable that the VEPs in the frontal electrodes 
at approximately 200 ms slightly contributed to the 
naturalness classification.

The openness classification was supported by the occipital VEPs 
at early latencies (approximately 80 ~ ms), which is consistent with the 
previous finding that natural scene openness modulates the P1 
component of the ERP (Hansen et al., 2018). This is also consistent 
with the fact that less than 50 ms presentation of natural scene images 
allowed openness to be discriminated with high accuracy (Greene and 
Oliva, 2009). The early encoding of openness may relate to the fact 
that natural scene openness can be  discriminated by lower-order 
features. In fact, the openness of the visual stimuli was classified with 
an accuracy of 78.5% (chance level: 50%; t(4) = 8.34; p = 1.1×10−3, 
two-tailed one-sample t-test) by the SD of the spatial frequency 
subbands (seven scales, one-octave step) of each image using an 
SVM. The subband SD corresponds to a subset of image statistics 
known to be important in texture perception in the early visual cortex 
(Bergen and Adelson, 1988; Heeger and Bergen, 1995; Zipser et al., 
1996; Portilla and Simoncelli, 2000; Baker and Mareschal, 2001; 
Motoyoshi et al., 2007; Freeman and Simoncelli, 2011; Freeman et al., 
2013; Ziemba et al., 2019). This image statistic has also been revealed 
to be strongly correlated with VEPs at as early as 88 ~ ms after the 
stimulus onset (Orima and Motoyoshi, 2021).

Meanwhile, the classification accuracy of roughness was lower 
than the other classification classes, and the occipitoparietal VEPs 
from early to late latency (approximately 92–236 ms) contributed to 
the classification of roughness. These results support the idea that the 
roughness is correlated with both lower and higher-order information 
because roughness started to be encoded early but the classification 
accuracy was low compared with naturalness and openness. Our 
analysis showed that the roughness of natural scenes was classified 
with an accuracy of 61.6% (chance level: 50%; t(4) = 4.72; p = 9.2×10−3, 
two-tailed one-sample t-test) by the cross-spatial-frequency 
correlation of energy subbands of each image using an SVM. Cross-
subband correlations are known as a higher-order image statistic, 
mainly encoded in V2 (Freeman et al., 2013; Ziemba et al., 2019). 
Cross-subband correlations have also been revealed to be strongly 
correlated with VEPs at later latency (150 ~ ms) (Orima and 
Motoyoshi, 2021), and also correlated with lower-order image 
statistics such as subband SD. The results in the present study were 
consistent with these findings.
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The method we proposed in the present study have a limitation. 
Figure 6 shows the classification results using SVMs under the same 
condition as the present study. In fact, the classification accuracy values 
of the EEGNet models were not higher than those of the traditional 
SVMs, that is, the EEGNet model did not performed well as a 
classification model. However, in the present study, we adopted the 
EEGNet models to visualize the contributing portions of the inputting 
VEPs by combining with the Grad-CAM. To confirm that the EEGNet 
model classified global property properly, we  trained the EEGNet 
model to classify roughness, which was originally calculated as 
continuous values, by using 143 data that had certainly deviated values 
from the boundary of binarization. As a result, the classification 
accuracy was 57.6% (t(10) = 4.61; p = 9.7 × 10−4, two-tailed one-sample 
t-test), which was significantly higher than the classification result 
(54.4%) using all the data (t(10) = −2.82; p = 1.8 × 10−2, two-tailed paired 
t-test). Therefore, the EEGNet model was confirmed to classify 
roughness correctly. Certainly, we have to mention that there are the 
other ways to achieve similar goals to the present study such as the 
sensitivity analysis of the model (Cortez and Embrechts, 2013), the 
algorithm that interprets the SVMs (Rätsch et al., 2006), and data-
driven feature selection methods (Haufe et al., 2014; Kerr et al., 2014). 
However, the combination of EEGNet models and Grad-CAM enabled 
us to easily visualize the contribution of input data without repetition 
of classification analyses for limited EEG channels or latencies, and 
we can legitimately avoid complicated interpretation of coefficients 
computed by classification models. In this sense, it is possible that the 
method in the present study still has certain advantages.

Additionally, there are issues that should be addressed in future 
studies. First, the EEG preprocess that we applied in the present 
study could be not the best for the classification by the EEGNet. EEG 
preprocess consists of which filter to apply to eliminate noises in 
EEG signals, whether to remove components using ICA or not, and 
whether to re-reference EEG signals or not, etc. In the present study, 
we applied typical settings for each of those preprocess steps, but 
they are desirable to be optimized for the classification if one pursues 
the highest classification accuracy. In addition, the Grad-CAM 
results may be changed by the modification of input VEPs because 

the saliency method can be affected by the slight modification of the 
input, even if it was a constant vector shift (Kindermans et al., 2019). 
EEG preprocess definitely involves modification of EEG signals, and 
there are huge number of variations of EEG preprocessing. In future 
investigations, it may be desirable to choose optimal parameters for 
preprocess of EEG signals, taking the shortcomings of saliency 
methods into account. Second, the architecture of our EEGNet 
model were the same as those used in the original EEGNet model 
(Lawhern et al., 2018), but maybe it should be reconsidered using 
nested-cross validation method to choose appropriate 
hyperparameters for the EEGNet model. In fact, although our 
EEGNet models achieved statistically significant classification 
accuracy for the natural scene categories and global properties, 
we cannot deny the possibility that the result from the present study, 
such as the approximate time obtained by Grad-CAM is affected by 
the EEGNet hyperparameters. For example, in the present study, 
we used a filter with a kernel size of 64 on the time axis for the first 
convolutional layer. If a filter with a smaller size were used, the 
spread of the contribution to the classification shown in Figure 5 
might be  smaller, and the timing of the maximum contribution 
might be different. As long as the input EEG data is the same, it is 
difficult to imagine that the modulation of the hyperparameters, 
including the filter size, would significantly change the trend of the 
results. However, in the future studies, it would be preferable to find 
better hyperparameters for EEGNet models. Third, as a baseline of 
the classification accuracy, it may be more appropriate to find out 
chance level by using permutation test (Ojala and Garriga, 2010). 
The permutation test is performed by the models trained by 
randomly shuffled labels, which are supposed to fail to acquire the 
correct relationship between inputs and ground truth labels. This 
method can also be applied to the sanity check of the Grad-CAM 
outputs (Adebayo et al., 2018; Farahani et al., 2022).

We have to note that the Grad-CAM itself has certain limitations. 
According to the previous study that considered the gradient-based 
attribution methods (Ancona et  al., 2019), visualization by the 
gradient-based methods is strongly affected by high spatial frequency 
components of input images. For example, edges in input images tend 
to be regarded as contributing component to classification even if they 
did not actually. In the present study, inputting VEPs were smooth 
with respect to the time axis, but not necessarily with respect to 
channel axis. Therefore, to address shortcomings of the gradient-based 
methods, it may be desirable to input VEPs that retain the actual 
channel locations, which are supposed to be  spatially smooth. In 
addition, it is possible that the explanation methods are tricked by the 
‘adversarial’ modulation of input images and yield apparently wrong 
attribution (Dombrowski et  al., 2019; Kindermans et  al., 2019; 
Baniecki and Biecek, 2023) as described in the previous paragraph. 
Absolutely, we  did not modify inputting VEPs intentionally, but 
we cannot deny completely that the results in the present study would 
change by only a slight modification of the input. Also, we have to 
mention the baseline of the Grad-CAM. The appropriate baseline are 
images that has no information such as black images (Ancona et al., 
2019) for image classification models. In the present study, we set the 
baseline, taking the biological validity (VEPs at 0–50 ms after the 
stimulus onset do not mainly reflect the visual process) into 
consideration, because we adopted the EEGNet models, whose input 
was EEG data. However, there are no fixed method for setting baseline 
and it may be improved in the future studies.

FIGURE 6

Classification results obtained using the SVM. The green, red, yellow, 
and blue bars indicate the classification accuracies for the natural 
scene categories, naturalness, openness, and roughness, 
respectively, all of which were statistically significant (**p <  0.01, 
FDR-corrected). The dotted lines denote the chance levels. The error 
bars indicate ± 1 s.e.m. across observers.
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Both psychophysical and physiological studies on scene 
perception, including the present study, basically use visual stimuli of 
small size displayed on a conventional computer monitor (e.g., 
Hansen et al., 2011; Groen et al., 2013). However, given that a goal of 
scene perception research is to explain our natural scene perception 
in daily lives, one should ideally use visual stimuli with a sufficiently 
wide field of view to immerse observers in the scene and allow a high 
mobility of the observers. It would be  difficult to apply such an 
experimental setting to fMRI experiments that require observers to 
view stimuli of a limited viewing angle with the head rigidly fixed. In 
contrast, it may be easier to establish such a free viewing condition 
with EEG. We expect that the decoding techniques introduced in the 
present study will also be useful in revealing the cortical dynamics of 
scene processing in such a natural situation.
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