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Background and objective: The cortico–hippocampal network is an emerging

neural framework with striking evidence that it supports cognition in humans,

especially memory; this network includes the anterior temporal (AT) system,

the posterior medial (PM) system, the anterior hippocampus (aHIPPO), and the

posterior hippocampus (pHIPPO). This study aimed to detect aberrant patterns

of functional connectivity within and between large-scale cortico–hippocampal

networks in first-episode schizophrenia patients compared with a healthy control

group via resting-state functional magnetic resonance imaging (rs-fMRI) and to

explore the correlations of these aberrant patterns with cognition.

Methods: A total of 86 first-episode, drug-naïve schizophrenia patients and

102 healthy controls (HC) were recruited to undergo rs-fMRI examinations

and clinical evaluations. We conducted large-scale edge-based network

analysis to characterize the functional architecture of the cortico–hippocampus

network and investigate between-group di�erences in within/between-network

functional connectivity. Additionally, we explored the associations of functional

connectivity (FC) abnormalities with clinical characteristics, including scores

on the Positive and Negative Syndrome Scale (PANSS) and cognitive scores.
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Results: Compared with the HC group, schizophrenia patients exhibited

widespread alterations to within-network FC of the cortico–hippocampal

network, with decreases in FC involving the precuneus (PREC), amygdala (AMYG),

parahippocampal cortex (PHC), orbitofrontal cortex (OFC), perirhinal cortex

(PRC), retrosplenial cortex (RSC), posterior cingulate cortex (PCC), angular gyrus

(ANG), aHIPPO, and pHIPPO. Schizophrenia patients also showed abnormalities

in large-scale between-network FC of the cortico–hippocampal network, in

the form of significantly decreased FC between the AT and the PM, the AT

and the aHIPPO, the PM and the aHIPPO, and the aHIPPO and the pHIPPO. A

number of these signatures of aberrant FC were correlated with PANSS score

(positive, negative, and total score) and with scores on cognitive test battery

items, including attention/vigilance (AV), working memory (WM), verbal learning

and memory (Verb_Lrng), visual learning and memory (Vis_Lrng), reasoning and

problem-solving (RPS), and social cognition (SC).

Conclusion: Schizophrenia patients show distinct patterns of functional

integration and separation both within and between large-scale

cortico–hippocampal networks, reflecting a network imbalance of the

hippocampal long axis with the AT and PM systems, which regulate cognitive

domains (mainly Vis_Lrng, Verb_Lrng, WM, and RPS), and particularly involving

alterations to FC of the AT system and the aHIPPO. These findings provide new

insights into the neurofunctional markers of schizophrenia.

KEYWORDS

schizophrenia, functional connectivity, magnetic resonance imaging, cognition,

hippocampus

1. Introduction

Schizophrenia is a form of serious mental disorder with

complicated causes, a prolonged course, and a high recurrence

rate, and it can potentially lead to terminal mental disability.

The clinical symptoms of schizophrenia are extremely intractable,

including hallucination, delusion, speech and behavior disorder,

apathy, social withdrawal, and cognitive impairment (Andreasen,

1999). Cognitive impairment is one of the main clinical signs

of schizophrenia, bringing about a long-term detrimental effect

on the social functioning of patients. Consistent deficits across a

multitude of cognitive domains, including basic cognition (such

as perception, attention, memory, spatial function, and executive

function) and advanced cognition (such as emotional cognition,

attribution style, abstract thinking ability, and language), have been

reported in schizophrenia patients in previous studies; these deficits

are considered to be the endophenotype of schizophrenia. A meta-

analysis of cognitive function in schizophrenia has found that

memory may be the most severely impaired cognitive function

(Aleman et al., 1999), including episodic memory and working

memory. The accuracy of memory in schizophrenia patients is

significantly reduced by the impact of mental symptoms and

emotional disorders (Tan et al., 2021), which are characterized by

universality and non-selectivity and occur in approximately 50%

of schizophrenia patients, but the neurobiological source of these

impairments remains unclear.

The medial temporal lobe (MTL), which encompasses the

hippocampus and adjacent cortex areas such as the perirhinal

cortex (PRC) and parahippocampal cortex (PHC), has long been

thought to represent the neurological underpinning of cognition,

especially memory (Eichenbaum et al., 2007), and this can

be reflected in alterations to cortical and subcortical activities

and in the functional connectivity (FC) of large-scale brain

networks (Rugg and Vilberg, 2013; Ross et al., 2018). However,

an accumulation of evidence shows that distinct regions of the

MTL exhibit diverse characteristics, supporting the presence of

various modules of cognition and memory (Ranganath, 2010).

As a pivot, the hippocampus communicates with intra-MTL sub-

cortical regions and extra-MTL cortical regions, and there is also

intimate connectivity among various cortical regions. Considering

the separation between the anterior and posterior MTL (Ranganath

and Ritchey, 2012), Ritchey et al. (2015) proposed a framework

including the anterior temporal (AT) system and posterior medial

(PM) system, namely, the “PMAT” framework. The AT system,

with the perirhinal cortex (PRC) as a core component, includes

the inferior temporal cortex (ITC), orbitofrontal cortex (OFC),

fusiform gyrus (FUS), and amygdala (AMYG), and is related

to project information management and long-term retention of

learning items in the form of concepts. In contrast, the PM

system, with the parahippocampal cortex (PHC) and retrosplenial

cortex (RSC) as its core components, includes the angular gyrus

(ANG), posterior cingulate cortex (PCC), and precuneus (PREC),

and participates in contextual information management and

long-term retention of learning items in the form of scenario

schemas (Cooper and Ritchey, 2019). Moreover, the anterior and

posterior hippocampus are distinctively integrated into the AT
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and PM systems, which contribute to the respective cognitive

processes, including object memory, scene memory, and spatial

memory, considering multiple scales of representation along the

hippocampal anteroposterior axis (Poppenk et al., 2013; Strange

et al., 2014; Collin et al., 2015; Berron et al., 2018; Brunec

et al., 2018). Although Berron et al. have found that the medial

temporal lobe in patients with Alzheimer’s disease shows decreased

functional connectivity with the AT and PM systems and is closely

related to cognition and memory impairment (Berron et al., 2020),

it is not clear how the anterior and posterior hippocampus function

in relation to the PM and AT, respectively, and which functional

connectivity is responsible for specific cognition domains. There

is also no conclusion on how the PMAT framework mediates

cognitive dysfunction in schizophrenia patients, especially memory

impairment, or whether it mediates the positive and negative

symptoms of schizophrenia through aberrant intra- and inter-

network functional connectivity. Therefore, the AT system, the

PM system, and the anterior and posterior hippocampus can

together be considered as a cortico–hippocampal network that

mediates cognitive disorders. Distinct brain regions within the

entire network are considered independent units, with close

connectivity between them. In addition, each subnetwork can also

be considered as a new, larger unit, which may interlink with

other subnetworks.

The functional magnetic resonance imaging (fMRI)

technique can be applied to reliably identify the neurobiological

underpinnings of cognition deficits in schizophrenia, with linked

functional brain regions exhibiting increased or decreased activity

in a resting state; nevertheless, the heterogeneity of brain regions

in various studies undoubtedly makes this approach challenging.

Resting-state fMRI is a relatively novel method that is considered

to have more advantages than task-based research, especially in

the study of schizophrenia, because it is easy to perform, does not

involve any complex tasks, and may overcome the limitations of

task-induced fMRI research. Numerous studies have discovered

that schizophrenia patients exhibit aberrant brain activity across a

variety of paradigms associated with the unique symptom domains

of schizophrenia. With regard to the cognition domain, researchers

have set about associating the internal neural signals acquired by

resting-state fMRI (rs-fMRI) with cognitive behavioral phenotypes;

this approach is believed to offer a richer characterization of

cognitive impairment in clinical populations such as schizophrenia

patients. However, it is laborious to identify specific patterns of

neurological impairment for diverse cognitive-domain defects,

which has naturally become a thorn in the side for researchers, who

expect to recognize specific neurobiological issues by identifying

the associations between particular cognitive-domain hurdles and

fMRI aberrations. Based on this foundation, numerous researchers

have discovered that the activities of certain brain regions are

significantly linked to a variety of cognitive domains. Scholars have

found that executive functioning is strongly related to activities in

the dorsolateral prefrontal cortex (dlPFC) and its connectivity with

subcortical and cerebellar regions (Cole et al., 2011; Repovs et al.,

2011; Su et al., 2013; Tu et al., 2013; Wang et al., 2014). Repovs et al.

(2011) and Unschuld et al. (2014) discovered that dysfunction of

the prefrontal cortex, and especially frontal-parietal connectivity,

affects impairment of working memory. Several researchers have

reported on the correlation between processing speed, attention,

and the interconnectivity of the default mode network (DMN),

despite inconsistent results (Bassett et al., 2012; He et al., 2013;

Moran et al., 2013; Mwansisya et al., 2013; Argyelan et al., 2014).

The neurobiological mechanism of situational memory is poorly

understood, although Camchong et al. (2011) observed using the

Wechsler Memory Scale that the decreased situational memory of

schizophrenia is related to the functional connectivity between the

medial frontal lobe and the entire brain. Employing the method

of graph theory, Lynall et al. (2010) investigated the correlation

between verbal knowledge and the loss of overall integration, as

well as the absence of tight connections in the entire brain network.

Integrating the information summarized above, the specific brain

network corresponding to the cognitive deficits occurring in

schizophrenia and the ways in which diverse target brain regions

mediate cognitive impairment through connectivity alteration

are still poorly understood, despite the fact that the associated

neurobiological research on cognition in schizophrenia has made

significant strides.

Against the backdrop of the description of human brain

networks via fMRI, researchers have gradually become keen

to explore the modes of intra- and inter-network connectivity

for networks composed of various modules and to investigate

whether impairments may occur to the balance between functional

integration and separation of brain network modules (Bertolero

et al., 2015; Sporns and Betzel, 2016). Although several studies have

presented evidence that schizophrenia patients show impairments

to large-scale brain network connectivity, their findings have not

been completely clear on the module integration and separation

of cognition-related networks in schizophrenia. Despite findings

that the functional connectivity of the bilateral hippocampus

with several brain areas related to episodic memory (such as the

posterior cingulate cortex, extrastriate cortex, medial prefrontal

cortex, and parahippocampal gyrus) is reduced in schizophrenia

(Zhou et al., 2008), and structural MRI studies that have found that

the destruction of cortico–hippocampal anatomical connectivity

is strongly associated with schizophrenia (Qiu et al., 2010), there

is no research on the connectivity between the hippocampal

subregion and related cortical networks in the anterior and

posterior MTL, or their correlation with cognition. At present,

there has been no study on the PMAT framework in schizophrenia

patients, although several studies have found that the functional

connectivity of the MTL is related to memory encoding in

schizophrenia (Haut et al., 2015), which indirectly reflects the

possible correlation between schizophrenia and structural and

functional alterations of the PMAT framework. An increase or

decrease of FC between different brain regions within the cortico–

hippocampal network in schizophrenia patients, established via

fMRI, can be taken as a reflection of the integrated activity of

the network and thereby its relevance; this is known as “within-

network FC analysis.” In addition, detecting an increase or

decrease in FC between different subnetworks (the AT system, PM

system, anterior hippocampus, and posterior hippocampus) within

the cortico–hippocampal network may reflect the integration

and separation of distinct modules within this network and

the mediation of different cognitive domains; this is known as

“between-network FC analysis.” Between-network FC of the AT,
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PM, aHIPPO, and pHIPPO may reveal the stability and synergy of

the cortico–hippocampal network, and stronger between-network

FC of the AT and PM would imply that these regions are

more integrated. In addition, differences in FC between the

aHIPPO, pHIPPO, AT, and PM systems, as well as correlations

with distinct cognitive domains, can reveal the functional

separation of the subnetworks. We expect that individuals with

schizophrenia may show poorer network collaboration compared

to normal individuals, which may manifest as decreased FC

between networks.

In this study, we employed the resting-state fMRI method to

characterize FC alterations in the cortico–hippocampal network in

86 first-episode schizophrenia patients and 102 healthy controls.

We calculated edge-based FC in a large-scale network and

examined the integration and separation of cortico–hippocampal

network modules, including the AT system, the PM system,

and anterior and posterior hippocampus. To assess the clinical

relevance of observed functional alterations, we correlated

these with PANSS scores and scores on cognitive test battery

items in schizophrenia. We hypothesized that FC within and

between cortico–hippocampal subsystems in schizophrenia

patients would alter and would thus be correlated with cognition,

especially memory; such associations could assist us in better

comprehending the mechanism underlying cognitive decline in

early schizophrenia.

2. Materials and methods

2.1. Participants

We recruited 86 first-episode drug-naïve schizophrenia

patients and 102 healthy controls; all participants were of

Han Chinese ethnicity and right-handed. In accordance with

the Diagnostic and Statistical Manual of Mental Disorders,

Fourth Edition (DSM-IV), schizophrenia was diagnosed by

two professional clinical psychiatrists. The patients included

in this study had never received treatment or psychological

counseling, and their duration of disease was <3 years. Two

trained researchers assessed the patients using questionnaires and

assessed their symptoms on the Positive and Negative Syndrome

Scale (PANSS). The inclusion criteria for the participants

were as follows: (1) age 13–60 years old, (2) education to

primary school level or above, and (3) Han Chinese ethnicity

and right-handed.

The cognition assessment of schizophrenia patients was

conducted by a professionally trained psychiatrist using the

Chinese version of the MATRICS Consensus Cognitive Battery

(MCCB). The subtests of the MCCB include: (1) the Trail Making

Test (TMT); (2) a symbol-coding test; (3) the Hopkins Verbal

Learning Test (HVLT); (4) a spatial span test; (5) the Mazes test; (6)

the Brief Visuospatial Memory Test (BVMT) of visual learning; (7)

a category fluency test; (8) the Mayer–Salovey–Caruso Emotional

Intelligence Test (MSCEIT); and (9) the Continuous Performance

Test—Identical Pairs (CTP-IP). The cognitive test results were

transformed using cognitive statistics software into scores on

seven domains of cognition and then statistically analyzed.

Specifically, these seven domains were speed of processing

(SOP), attention/vigilance (AV), working memory (WM), verbal

learning and memory (Vrbl_Lrng), visual learning and memory

(Vis_Lrng), reasoning and problem-solving (RPS), and social

cognition (SC).

The present study was approved by the Ethics Committee

of the First Affiliated Hospital of Zhengzhou University. The

exclusion criteria for this study were as follows: (1) head

trauma or severe organic brain disease; (2) drug or alcohol

abuse; (3) organic mental disorder; (4) pregnancy; and (5)

MRI contraindication. Additional exclusion criteria for the HC

group were diseases of the nervous system, mental illness, and

family history of mental illness. After the study had been

explained, all participants were asked to sign an informed

consent sheet.

2.2. Data acquisition

Magnetic resonance imaging (MRI) data were acquired using a

3.0 TMRI scanner (DiscoveryMR750, GE, USA) with an 8-channel

head coil. All subjects were asked to lie quietly with their eyes

closed, and to remain awake and relaxed; foam pads and rubber

earplugs were used to reduce head movement and interference

from noise.

A 3D-T1 BRAVO sequence was applied to obtain high-

resolution structural images with the following parameters:

repetition time (TR)/echo time (TE) = 8.2/3.2ms, slices = 188,

slice thickness = 1mm, slice gap = 0mm, flip angle (FA)

= 12◦, field of view (FOV) = 25.6 × 25.6 cm2, number of

averages = 1, data matrix = 256 × 256, voxel size = 1 × 1

× 1 mm3, and scan time = 4.33min. The functional images

were obtained using a gradient spin echo-planar imaging (EPI)

sequence: TR/TE = 2,000/30ms, slices = 32, slice thickness =

4mm, slice gap = 0.5mm, FA = 90◦, FOV = 22 × 22 cm2,

number of averages = 1, data matrix = 64 × 64, voxel size

= 3.4375 × 3.4375 × 4 mm3, and 180 volumes lasting for

360 s.

2.3. Data preprocessing

Using the MATLAB (MathWorks) platform, the DPABI

toolbox (http://rfmri.org/dpabi, V6.1_220101) was used to

preprocess rs-fMRI data. To allow for magnetic saturation, the

first five volumes of data were disregarded. Next, additional

preprocessing was conducted via the following procedures:

(1) slice timing; (2) realignment, in which subjects with

maximum head motion exceeding 3mm or 3◦ rotation

were removed for the purpose of head motion rectification;

(3) normalization (DARTEL method), in which data on

segmentation of the unified structural images were used to

register individual functional images to the Montreal Neurological

Institute (MNI) coordinate space, resampling to 3 × 3 ×

3 mm3; (4) detrending; (5) temporal band-pass filtering

(0.01–0.08Hz); and (6) regression for nuisance covariates of

the white matter, cerebrospinal fluid, and head movement

profile (Friston-24).
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2.4. Large-scale network calculation

Data were processed using DPABI (Yan et al., 2016), following

the methods published by Li et al. (2021). The DPABINet software

package was used to process network calculations. We defined a

total of 24 anatomical regions of interest (ROIs) according to the

Harvard–Oxford atlas in order to extract the average BOLD signal

of all voxels in each ROI. Additionally, hippocampal masks were

manually adjusted, and regions of interest were separated in the

anterior and posterior sections at the uncal apex (foci at or anterior

to y = 21mm in MNI space may be regarded as falling within the

anterior hippocampus, as this coordinate incorporates the uncal

apex in the MNI152 template and current neuroanatomical atlases)

(Berron et al., 2020). First, we extracted the average time series from

each ROI and calculated the Pearson correlation coefficient for each

ROI, which is taken as a measure of functional connectivity (FC);

subsequently, Fisher’s r-to-z transformation was applied to all FC

values, forming a final 24× 24 FC matrix.

To investigate the interconnections between each large-

scale network, the 24 ROIs were further divided into four

subsystems, namely, the AT (PRC, ITC, OFC, FUS, and

AMYG), the PM (PHC, RSC, ANG, PCC, and PREC), the

anterior hippocampus (Ahippo), and the posterior hippocampus

(Phippo) systems. We took the average FC of all ROIs in

each subsystem network and the average FC z-score of all

connectivity edges between subsystems to represent the FC

between subsystems, normalized by the product of the number

of nodes within each of the four subsystems (Gu et al.,

2015).

2.5. Statistical analysis

Statistical Package for the Social Sciences (SPSS) version 26.0

was employed for the statistical processing of general demographic

and clinical data, which were represented in the form of mean

± standard deviation. Age and education level were compared

between the SCH group and the HC group using two-sample

t-tests, and gender representation was compared using the chi-

square test. Cognitive scores were compared between the SCH

group and the HC group using two-sample t-tests. In all

cases, statistical significance was determined by a threshold of

p < 0.05.

The fMRI data were statistically analyzed using the DPABINet

software package. Two-sample t-tests were used to compare the FC

of every ROI between the SCH and HC groups, with age, gender,

years of education, and head motion as covariates (voxels threshold

of p < 0.001, cluster threshold of p < 0.05, false discovery rate

correction, two-tailed).

Statistically significant values for FC at the ROI level and

subnetwork level were generated individually. Subsequently, using

the SPSS software package, Spearman’s correlation analysis was

conducted to explore the correlation of extracted FC values with

cognitive scores and PANSS scores, with Bonferroni correction and

with age, gender, years of education, and head motion as covariates

(p < 0.05).

TABLE 1 Demographic data for the SCH and HC groups.

Demographic
variable

SCH
(n = 86)

HC
(n = 102)

t/χ2 P

(Mean ± SD) (Mean ± SD)

Age (years) 21.87± 8.36 21.39± 6.95 0.45 0.656

Sex (male/female) 44/42 57/45 0.42 0.518

Education (years) 10.68± 2.71 11.04± 2.90 0.92 0.357

Mean FD (mm) 0.060± 0.044 0.068± 0.035 1.44 0.152

The sex difference between the SCH and HC groups was examined via the chi-square

test. Differences in continuous variables between the SCH and HC groups were examined

via two-sample t-tests. SCH, schizophrenia patients; HC, healthy control; FD, framewise

displacement; SD, standard deviation.

TABLE 2 Clinical data for the SCH and HC groups.

Clinical
variable

SCH
(n = 86)

(Mean ± SD)

HC
(n = 102)

(Mean ± SD)

t P

PANSS

Positive 20.02± 6.54

Negative 21.25± 7.23

General 41.13± 11.02

Total score 82.39± 21.71

MCCB

SOP 26.85± 12.58 40.53± 10.01 −7.50 0.000

AV 29.76± 12.68 46.42± 11.24 −8.70 0.000

WM 38.22± 11.92 44.1± 9.74 −3.22 0.002

Verb_Lrng 36.55± 8.932 42.12± 8.09 −4.10 0.000

Vis_Lrng 36.02± 16.35 42.41± 9.45 −3.07 0.003

RPS 33.12± 9.47 36.74± 7.56 −2.63 0.009

SC 36.33± 15.60 40.53± 7.47 −2.22 0.028

Differences in cognitive scores on the MCCB between the SCH and HC groups were

examined via two-sample t-tests. SCH, schizophrenia group; HC, healthy control group;

PANSS, Positive and Negative Syndrome Scale; MCCB, MATRICS Consensus Cognitive

Battery; SOP, speed of processing; AV, attention/vigilance;WM, workingmemory; Vrbl_Lrng,

verbal learning and memory; Vis_Lrng, visual learning and memory; RPS, reasoning and

problem-solving; SC, social cognition.

3. Results

3.1. Clinical and demographic
characteristics

There were no significant differences in age (t = 0.446, p =

0.656), gender (χ2
= 0.418, p = 0.518), education level (t = 0.923,

p = 0.357), or head motion (t = 1.437, p = 0.152) between the

SCH and HC groups (Table 1). PANSS scores for the SCH group

and cognitive scores for the SCH group and HC groups are shown

in Table 2: the SCH group presented with lower cognitive scores on

SOP, AV, WM, Verb_Lrng, Vis_Lrng, RPS, and SC relative to the

HC group (Table 2).
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FIGURE 1

Results of within-network functional connectivity analyses. (A) Di�erences in within-network functional connectivity between the SCH and HC

groups. (B) Within-network functional connectivity matrix. Pairwise correlations within the cortico–hippocampal network were averaged across

subjects. Cooler colors represent decreased within-network FC in schizophrenia patients compared to healthy controls. PREC, precuneus; AMYG,

amygdala; pHIPPO, posterior hippocampus; aHIPPO, anterior hippocampus; PHC, parahippocampal cortex; OFC, orbitofrontal cortex; PRC,

perirhinal cortex; RSC, retrosplenial cortex; PCC, posterior cingulate cortex; ANG, angular gyrus; ITC, inferior temporal cortex; FUS, fusiform gyrus; L,

left; R, right; PM, posterior medial system; AT, anterior temporal system; HIPPO, hippocampus.

3.2. Large-scale network FC

3.2.1. Group di�erences in FC within networks
Compared to the HC group, SCH patients showed 15

significantly different edges within the cortico–hippocampal

network, representing significantly decreased FC between the

right PCC and the left RSC; the right PCC and the right

RSC; the left aHIPPO and the left pHIPPO; the left OFC

and the left pHIPPO; the left AMYG and the left pHIPPO;

the left ANG and the right aHIPPO; the left PREC and the

right aHIPPO; the right PREC and the right aHIPPO; the right

PHC and the left PREC; the left AMYG and the left PREC;

the right PHC and the right PREC; the left AMYG and the

right PREC; the right AMYG and the right PREC; the right

PRC and the left OFC; and the right PRC and the right OFC

(Figure 1, Table 3). These sites of decreased FC were involved in

the AT system, the PM system, the aHIPPO, and the pHIPPO

(Figure 2).

3.2.2. Group di�erences in FC between networks
Compared to the HC group, SCH patients showed four

significantly different edges in the connections between cortico–

hippocampal networks, representing significantly decreased FC

between the AT and the PM; the AT and the aHIPPO; the PM

and the aHIPPO; and the aHIPPO and the pHIPPO (Figures 3, 4,

Table 4).

TABLE 3 Di�erences in large-scale within-network FC.

ROI-wise FC
(SCH > HC)

t P

PREC (R)–AMYG (R) −4.28 0.000

pHIPPO (L)–AMYG (L) −4.19 0.000

aHIPPO (R)–PREC (R) −4.10 0.000

PREC (R)–PHC (R) −4.00 0.000

aHIPPO (R)–PREC (L) −3.85 0.000

OFC (L)–PRC (R) −3.84 0.000

PREC (R)–AMYG (L) −3.80 0.000

RSC (L)–PCC (R) −3.75 0.000

aHIPPO (L)–pHIPPO (L) −3.73 0.000

RSC (R)–PCC (R) −3.66 0.000

pHIPPO (L)–OFC (L) −3.55 0.000

OFC (R)–PRC (R) −3.47 0.001

PREC (L)–PHC (R) −3.45 0.001

aHIPPO (R)–ANG (L) −3.37 0.001

PREC (L)–AMYG (L) −3.35 0.001

PREC, precuneus; AMYG, amygdala; pHIPPO, posterior hippocampus; aHIPPO, anterior

hippocampus; PHC, parahippocampal cortex; OFC, orbitofrontal cortex; PRC, perirhinal

cortex; RSC, retrosplenial cortex; PCC, posterior cingulate cortex; ANG, angular gyrus; L, left;

R, right; SCH, schizophrenia group; HC, healthy control group; FC, functional connectivity;

ROI, region of interest.
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FIGURE 2

Altered edge-based functional connectivity between the SCH and HC groups. Brain maps show the a�ected edges (lines) and their connecting

nodes (spheres) from several perspectives. The size of a sphere indicates how many a�ected edges are connected to this node: bigger nodes have

more a�ected edges than smaller ones. The color of a node indicates which network it belongs to: red represents the HIPPO, yellow represents the

AT, and green represents the PM. The cold color of the edges indicates decreased FC. Cooler blue edges represent stronger reductions in FC among

the SCH group compared to the HC group. L, left; R, right; PM, posterior medial system; AT, anterior temporal system; HIPPO, hippocampus.

3.3. Spearman correlational analysis

Among the fifteen instances of significantly different within-

network FC and the four instances of significantly different

between-network FC, after controlling for the confounders of sex,

age, education, and mean FD, there were various correlations with

cognitive and PANSS scores. In terms of within-network FC, PHC

(R)–PREC (L) FC was significantly negatively correlated with AV

score and significantly positively correlated with Vis_Lrng score;

PRC (R)–OFC (L), PRC (R)–OFC (R), and OFC (L)–pHIPPO

(L) FC were significantly positively correlated with Verbl_Lrng

score; and OFC (L)–pHIPPO (L) and PRC (R)–OFC (L) FC were

significantly positively correlated with WM score. Additionally,

within-network AMYG (L)–pHIPPO (L), PHC (R)–PREC (L),

and PRC (R)–OFC (L) FC and between-network aHIPPO–

pHIPPO FC were significantly positively correlated with WM

score; within-network ANG (L)–aHIPPO (R), PHC (R)–PREC

(L), PHC (R)–PREC (R), PREC (L)–aHIPPO (R), and PREC

(R)–aHIPPO (R) FC and between-network aHIPPO–pHIPPO

and aHIPPO–PM FC were significantly positively correlated

with SC score; within-network PREC (R)–aHIPPO (R) FC was

significantly negatively correlated with positive PANSS score;

within-network AMYG (L)–pHIPPO (L) FC and between-network

aHIPPO-AT FC were significantly negatively correlated with

negative PANSS score; and within-network PHC (R)–PREC

(L), PHC (R)–PREC (R), and PHC (R)–PREC (R) FC were

significantly positively correlated with total PANSS score (Figure 5,

Table 5).
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FIGURE 3

Network connections showing a significant decrease in large-scale between-network FC in the SCH group compared with the HC group. Arrows

between systems indicate a decrease in FC between networks. L, left; R, right; PM, posterior medial system; AT, anterior temporal system; aHIPPO,

anterior hippocampus; pHIPPO, posterior hippocampus.

4. Discussion

Through comparison of large-scale rs-FC analysis of the

cortico–hippocampal network between first-episode schizophrenia

patients and healthy controls, our study provided a description of

the modular integration and separation patterns of the AT system,

the PM system, the anterior hippocampus, and the posterior

hippocampus. Our results indicated that FC within and between

the cortico–hippocampal network was significantly decreased in

first-episode schizophrenia patients compared with the healthy

control group, affecting 24 brain regions; this strongly validates the

hypothesis of cortico–hippocampal dysconnectivity. Furthermore,

this cortico–hippocampal dysconnectivity was significantly related

to the severity of symptoms and cognition deficits in schizophrenia,

suggesting its pathophysiological relevance. FC values for several

areas of decreased FC were positively correlated with Vis_Lrng,

Verbl Lrn, WM, RPS, and total PANSS scores and negatively

correlated with AV, SC, positive PANSS, and negative PANSS

scores. These findings provide new insights into the potential

neurobiology of schizophrenia from the perspective of network

modularity, as we discuss briefly below.

4.1. Within-network FC abnormalities in
SCH

At the within-network level, we discovered decreased intrinsic

FC in the cortico–hippocampal network, including the AT system,

the PM system, and the anterior and posterior hippocampus,

which is partially consistent with prior reports for schizophrenia

(Benetti et al., 2009; Belujon et al., 2013; Liu et al., 2020; Wang

et al., 2021; Ikeda et al., 2022; Walther et al., 2022). The cortico–

hippocampal network plays a critical role in cognition, especially

memory: AT is mainly involved in recognition and associative

memory, affective processing, semantic processing, and object

perception (Diana et al., 2007), while PM is implicated in episodic

and autobiographical memory for the context of an event, space

and time, scene perception, and social cognition (Johnson and

Rugg, 2007). We identified altered FC for 15 ROI–ROI connections

within the cortico–hippocampal network, with twelve involving

the AT system, seven involving the PM system, four involving

the anterior hippocampus, and three involving the posterior

hippocampus. In addition, four instances of altered FC for ROI–

ROI connections were observed within the AT system, but none
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FIGURE 4

Results of analyses of between-network functional connectivity. (A) Di�erences in between-network functional connectivity between SCH patients

and the HC group. (B) Between-network functional connectivity matrix. Pairwise correlations between cortico–hippocampal networks were

averaged across subjects. Cooler colors represent decreased between-network FC in schizophrenia patients compared to healthy controls. PM,

posterior medial system; AT, anterior temporal system; aHIPPO, anterior hippocampus; pHIPPO, posterior hippocampus.

TABLE 4 Di�erences in large-scale between-network FC.

Between-network connections
(SCH > HC)

t P

aHIPPO–PM −2.84 0.005

aHIPPO–AT −2.68 0.008

aHIPPO–pHIPPO −2.54 0.012

AT–PM −2.32 0.021

aHIPPO, anterior hippocampus; PM, posterior medial system; AT, anterior temporal system;

pHIPPO, posterior hippocampus; SCH, schizophrenia group; HC, healthy control group; FC,

functional connectivity.

occurred within the PM system. Therefore, in summary, the AT

system exhibited more FC alterations than the PM system in

schizophrenia patients, both within the AT system and between

AT and other systems, suggesting that the AT system may play

a more significant role than the PM system in the pathogenesis

of schizophrenia.

Our study found that the precuneus was the brain region

that showed altered FC with the greatest number of other brain

regions, including the amygdala, PHC, and anterior hippocampus;

the most significant decrease in FC was observed between the

precuneus and the amygdala. The precuneus is a critical node

in the default mode network (DMN), which has been found in

numerous studies to be closely related to reflective and self-related

processing, awareness and conscious information processing,

empathy, episodic memory, and visuospatial processing (Dörfel

et al., 2009; Harvey et al., 2013). There is growing evidence that

the precuneus plays a significant role in self-processing, insight,

and empathy deficits in schizophrenia (Faget-Agius et al., 2012).

Multiple alterations to FC of the precuneus with other nodes

in the DMN have been reported in schizophrenia patients (Hu

et al., 2017), as well as altered resting state and task-related

activity/deactivation of the precuneus (Garrity et al., 2007; Kühn

and Gallinat, 2013). Zhang et al. (2020) also identified decreased

network homogeneity of the posterior cingulate cortex/precuneus

in the DMN, which is correlated with neurocognitive deficits in

drug-naive first-episode adolescent-onset schizophrenia. All these

studies indicate that dysfunction of FC in the DMN plays a

key role in cognitive impairment in schizophrenia, especially in

executive function and memory. Gong et al. (2014) found that the

precuneus is closely associated with DISC1 polymorphisms and

negative symptom severity in schizophrenia. Dörfel et al. (2009)

observed that the connectivity between the precuneus and the

hippocampus is involved in the recognition memory network.

The hippocampus, PHC, and amygdala are critical constituents of

the cortical and subcortical limbic system and participate in the

regulation of emotional reactions, learning, memory, and behavior.

In this study, the functional connectivity of the precuneus with

the amygdala, hippocampus, and PHC is weakened, which is

consistent with the findings of a study by Wen et al. (2021),

suggesting that the altered connectivity between the precuneus

and the limbic system lays the neurobiological foundation for

the decline of cognitive function and intensification of negative

symptoms in schizophrenia (Berman et al., 2016; Rebouças et al.,

2018). Our study also identified decreased FC between the RSC

and the PCCR. The RSC and PCC are key components of the

core composition of the DMN and are collectively referred to

as the posterior DMN (pDMN) and posterior cingulate gyrus.

Mounting evidence has indicated the functional segregation of

the PCC and the RSC (Rolls et al., 2022a). Kaboodvand et al.

(2018) reported that the RSC is a crucial gateway to episodic

memory through its connections with subcortical and cortical

subsystems of the DMN, including the PCC. Reduced FC between

the OFC and the PRC is another considerable distinction between

schizophrenia patients and healthy controls. Weaker effective
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FIGURE 5

Correlations between alterations in FC and clinical outcomes in patients with SCH. (A) Alteration of right PRC–left OFC FC was positively correlated

with change in Vis_Lrng score (p = 0.012, r = 0.271). (B) Alteration of right PRC–left OFC FC was positively correlated with change in Vrbl_Lrng score

(p = 0.000, r = 0.506). (C) Alteration of right PRC–right OFC FC was positively correlated with change in Vrbl_Lrng score (p = 0.000, r = 0.409). (D)

Alteration of left OFC–left pHIPPO FC was positively correlated with change in WM score (p = 0.006, r = 0.297). (E) Alteration of right PRC–left OFC

FC was positively correlated with change in WM score (p = 0.009, r = 0.284). (F) Alteration of left AMYG–left pHIPPO FC was positively correlated

with change in RPS score (p = 0.048, r = 0.214). (G) Alteration of right PHC–left PREC FC was positively correlated with change in RPS score (p =

0.020, r = 0.252). (H) Alteration of right PRC–left OFC FC was positively correlated with change in RPS score (p = 0.038, r = 0.225). FC, functional

connectivity; PREC, precuneus; AMYG, amygdala; pHIPPO, posterior hippocampus; aHIPPO, anterior hippocampus; PHC, parahippocampal cortex;

OFC, orbitofrontal cortex; PRC, perirhinal cortex; L, left; R, right; ROI, region of interest; WM, working memory; Vrbl_Lrng, verbal learning and

memory; Vis_Lrng, visual learning and memory; RPS, reasoning and problem-solving.

connectivity was found in the path from the OFC to the entorhinal,

perirhinal, and parahippocampal cortex in a study by Rolls

et al. (2022b); this region is involved in memory and navigation

in humans.

In addition to these findings, we also observed multiple

instances of dysconnectivity between the hippocampus and other

regions within the cortico–hippocampal network, including the

amygdala, PREC, OFC, and ANG. As a crucial hub component

of the limbic system, the hippocampus has been found to support

memory and other behaviors, including learning and integration

of information (Xiu et al., 2021), and is essential for encoding

and retrieval of the context of personal events (Tulving and

Markowitsch, 1998). Schizophrenia has been proven to be closely

associated with structural and functional impairment of the

hippocampus (Xiu et al., 2021), which is regarded as an important

biomarker in the pathophysiology of schizophrenia and is involved

in early detection and intervention (Lieberman et al., 2018). The

amygdala has been proven to be related to recognition of negative

facial emotions and threats, and to the formation of credibility

judgments; this region is a central hub in the social brain network,

and impairment of the amygdala has been found to affect social

judgment in patients with schizophrenia (Mukherjee et al., 2014).

Previous studies have found that aberrant patterns of functional

connectivity in the amygdala and hippocampal neural loop of

the cortical-limbic system are observed in schizophrenia patients

(Comte et al., 2018; Wang et al., 2021). The AG is the core hub

in multiple subsystems of the brain network, affecting memory,

semantic processing, reading, and word comprehension, and has

been reported on frequently in the recent literature on episodic

memory (Benoit and Schacter, 2015; Bellana et al., 2016). Several

studies have discovered that asymmetric deterioration of the AG

and a decrease in the amplitude of low-frequency fluctuations

are associated with auditory hallucinations and confusion in

schizophrenia patients (Niznikiewicz et al., 2000; Gao et al.,

2022). Given the role of the angular gyrus and the hippocampus

in episodic memory, the weakening of the FC between the

angular gyrus and hippocampus observed in this study may

represent the neurobiological mechanism of episodic memory

deficits in schizophrenia.

4.2. Between-network FC abnormalities in
SCH

In the interaction of multiple networks, establishment of the

most suitable equilibrium between synchronization within the

network and coupling between networks is crucial for high-level

emotional and cognitive processes (Berman et al., 2016). There

have been several studies describing alterations in FC networks

in cognitively impaired schizophrenia patients, the majority of

which have focused on whole-brain networks or the DMN (Zhang

et al., 2020); few studies have focused their attention on the

AT and PM networks, which are intensively interconnected with

the MTL. At the between-network level, our study observed

decreased FC between the aHIPPO and PM, the aHIPPO and

AT, the aHIPPO and pHIPPO, and the AT and PM. Altered

FC between the pHIPPO and PM or AT was not observed in

this study.
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TABLE 5 Correlational analysis between altered FCs with PANSS and

cognitive scores.

Clinical
variable

ROI–ROI/
network–network
(∗) connection

r P

PANSS_P PREC (R)–aHIPPO (R) −0.249 0.021

PANSS_N aHIPPO–AT∗
−0.298 0.005

AMYG (L)–pHIPPO (L) −0.231 0.033

PANSS_T PHC (R)–PREC (L) 0.229 0.034

PHC (R)–PREC (R) 0.223 0.039

AV PHC (R)–PREC (R) −0.227 0.036

Vis_Lrng PRC (R)–OFC (L) 0.271 0.012

Verbl_Lrng PRC (R)–OFC (L) 0.506 0.000

PRC (R)–OFC (R) 0.409 0.000

WM OFC (L)–pHIPPO (L) 0.297 0.006

PRC (R)–OFC (L) 0.284 0.009

RPS aHIPPO–pHIPPO∗ 0.236 0.029

AMYG (L)–pHIPPO (L) 0.214 0.048

PHC (R)–PREC (L) 0.252 0.020

PRC (R)–OFC (L) 0.225 0.038

SC aHIPPO–pHIPPO∗
−0.226 0.037

aHIPPO–PM∗
−0.315 0.003

ANG (L)–aHIPPO (R) −0.299 0.005

PHC (R)–PREC (L) −0.279 0.009

PHC (R)–PREC (R) −0.219 0.043

PREC (L)–aHIPPO (R) −0.313 0.003

PREC (R)–aHIPPO (R) −0.293 0.006

PREC, precuneus; AMYG, amygdala; pHIPPO, posterior hippocampus; aHIPPO, anterior

hippocampus; PHC, parahippocampal cortex; OFC, orbitofrontal cortex; PRC, perirhinal

cortex; RSC, retrosplenial cortex; PCC, posterior cingulate cortex; ANG, angular gyrus; L, left;

R, right; ROI, region of interest; PM, posterior medial system; AT, anterior temporal system;

PANSS_P, positive PANSS score; PANSS_N, negative PANSS score; PANSS_T, total PANSS

score; SOP, speed of processing; AV, attention/vigilance; WM, working memory; Vrbl_Lrng,

verbal learning and memory; Vis_Lrng, visual learning and memory; RPS, reasoning and

problem-solving; SC, social cognition. ∗represent between network FC alterations.

The PM system has been found to be linked to episodic

and autobiographical memory, space and time, scene perception,

and social cognition, while the AT system is closely associated

with recognition and associative memory, affective processing,

semantic processing, and object perception. The PM and AT

systems must work collaboratively to support integral aspects of

cognitive behavior, including memory, which involves connections

via a crucial hub, the hippocampus (Barnett et al., 2021). Functional

dissociation along the longitudinal axis of the hippocampus

may explain the distinction in functional connectivity between

the anterior and posterior hippocampus with the PM and AT

systems (Dugré et al., 2021). Converging evidence from multiple

studies indicates that the anterior hippocampus is involved in

the first-episode psychosis stages of schizophrenia, with structural

and functional alterations (McHugo et al., 2018; Blessing et al.,

2020); this is consistent with the multiple instances of functional

dysconnectivity of the anterior hippocampus with other systems

observed in our study, with the focus in this study being on first-

episode schizophrenia patients. This indicates that the anterior

hippocampus may mediate the AT and PM systems, aberrant

connectivity of which may trigger the onset of symptoms and

cognitive deficits in first-episode schizophrenia. Interestingly, a

significant decline of functional connectivity between the anterior

and posterior hippocampus was also observed in our study. Few

previous studies have examined functional connectivity within the

hippocampus, and this additional result may reveal the critical

role of alterations to functional integration and connectivity in the

hippocampus in bringing about impairments to memory and other

cognitive functions.

4.3. Correlations between within- and
between-network FC and behavior

The correlations observed between aberrant within- and

between-network FC and the degree of cognitive deficits in

schizophrenia indicate that FC decreases as cognition becomes

increasingly impaired, with scores on working memory, verbal

learning and memory, visual learning and memory, reasoning,

and problem-solving showing positive correlations with the

reduction in FC. It has been reported previously that the

PMAT system has close involvement with multiple facets of

cognitive processing (Ritchey et al., 2015). Although the PM

and AT systems cooperate in functions relating to the item

and context information, emotional and semantic information,

and other event-related details, the functional separation of

PM and AT in the resting state is of increasingly concern

(Cooper and Ritchey, 2019). Numerous studies have shown that

schizophrenia patients experience extensive cognitive impairment.

Measurement of intrinsic fluctuations in the neural activity

that is considered to support cognition, through the resting-

state fMRI method, is essential to understand the neural

correlates of cognitive impairment in schizophrenia. Our findings

of correlations of decreased FC among the AT, PM, and

hippocampus with cognition may be consistent with those of

Adhikari et al. (2019), who observed extensively impaired rs-

FC in the salience, sensorimotor, auditory, default mode, and

other functional networks that are thought to support cognitive

function in terms of both within- and between-network functional

connectivity in schizophrenia patients, in consideration of the

preliminary foundation that multiple anomalies of between-

network connectivity are expected to become representative of the

network phenotypes of psychiatric disorders (Seeley et al., 2007;

Li et al., 2019; Rodriguez et al., 2019). Our findings emphasize

the significant role of decreased cortico–hippocampal network

functional connectivity in cognitive deficits in schizophrenia,

which may represent a new avenue for understanding of the

specialized neural representation of different domains of cognitive

function. In our study, there were 22 instances of altered ROI–

ROI and network–network FC that were significantly correlated

with PANSS and cognitive scores, among which 17 involved the

AT system, especially affecting the cognitive functions of Vis_Lrng,

Verb_Lrng, WM, and RPS, which were positively associated with
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the degree of altered FC. These striking results re-emphasize the

fundamental contribution of the AT system in the pathogenesis

of schizophrenia patients, which is especially strongly associated

with the cognitive domains of memory, reasoning, and problem-

solving.

4.4. Limitations

There are several limitations to this study that need to

be addressed. First, this was a cross-sectional study of pre-

medication schizophrenia patients. Therefore, it is important to

replicate the findings of alterations in the specific functional

connectivity of the cortico–hippocampal system using longitudinal

fMRI data to determine whether a given patient will progress

between different states. Second, our study utilized resting-

state functional magnetic resonance data, and it is difficult to

determine aberrant patterns of functional connectivity in the

hippocampal-AT/PM system when patients are suffering from

related symptoms or performing diverse cognitive tasks. Hence,

conducting fMRI scanning during concurrent performance of

distinct cognitive tasks by the subjects can help to judge the

cortico–hippocampal network connectivity state corresponding to

the relevant cognitive functions. Finally, while the study was not

particularly small, making strong, reproducible claims about these

results (correlations between RSFC and behavioral phenotypes

such as cognitive test performance or positive/negative symptoms)

would require thousands of individuals (Marek et al., 2022),

and our results should be followed up with a larger sample in

future work.

5. Conclusion

Taking the findings together, this study detected, using the

resting-state fMRI method and large-scale edge-based network

analysis, decreased within-network and between-network FC

of the cortical-hippocampus network involving the AT, PM,

aHIPPO, and pHIPPO systems (especially the AT system

and the aHIPPO) and associated with cognitive impairment

(mainly in the domains of Vis_Lrng, Verb_Lrng, WM, and

RPS). The large-scale brain network results demonstrated that

the integration and separation of AT/PM-aHIPPO/pHIPPO in

terms of functional connectivity could serve as cognition-

specific neurofunctional markers in schizophrenia (especially for

memory), supplying several new insights into the neurobiology

of schizophrenia.
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