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Efficient strategies for finger 
movement classification using 
surface electromyogram signals
Sunil Kumar Prabhakar * and Dong-Ok Won *

Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, Republic of Korea

One of the famous research areas in biomedical engineering and pattern 
recognition is finger movement classification. For hand and finger gesture 
recognition, the most widely used signals are the surface electromyogram 
(sEMG) signals. With the help of sEMG signals, four proposed techniques of finger 
movement classification are presented in this work. The first technique proposed 
is a dynamic graph construction and graph entropy-based classification of sEMG 
signals. The second technique proposed encompasses the ideas of dimensionality 
reduction utilizing local tangent space alignment (LTSA) and local linear co-
ordination (LLC) with evolutionary algorithms (EA), Bayesian belief networks 
(BBN), extreme learning machines (ELM), and a hybrid model called EA-BBN-
ELM was developed for the classification of sEMG signals. The third technique 
proposed utilizes the ideas of differential entropy (DE), higher-order fuzzy 
cognitive maps (HFCM), empirical wavelet transformation (EWT), and another 
hybrid model with DE-FCM-EWT and machine learning classifiers was developed 
for the classification of sEMG signals. The fourth technique proposed uses the 
ideas of local mean decomposition (LMD) and fuzzy C-means clustering along 
with a combined kernel least squares support vector machine (LS-SVM) classifier. 
The best classification accuracy results (of 98.5%) were obtained using the LMD-
fuzzy C-means clustering technique classified with a combined kernel LS-SVM 
model. The second-best classification accuracy (of 98.21%) was obtained using 
the DE-FCM-EWT hybrid model with SVM classifier. The third best classification 
accuracy (of 97.57%) was obtained using the LTSA-based EA-BBN-ELM model.
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1. Introduction

Performing daily activities without a forearm is quite difficult for people who have suffered 
the loss of it. Individuals whose upper and lower limbs have been amputated experience a lot of 
physical and mental trauma as they cannot perform their daily activities (Ouyang et al., 2014). 
Some kind of a prosthetic device is required by these individuals so that their daily activities can 
be adequately completed. When the muscle movement is experiencing some kind of disruption, 
these prosthetic devices are highly useful to tackle it (Su et  al., 2020). In order to control 
prosthetic limbs such as wrists and hands, one widely used signal is EMG (Gokgoz and Subasi, 
2015). The recordings of the EEG signals originating from the specific muscles related with hand 
and finger gestures are utilized to control and administer many types of movements. The 
classification of individual finger gestures are more difficult to perform than the classification of 
the whole hand as the usage of muscles for individual finger movement is quite complex in 
nature. In order to assess the presence of nerve dysfunction, disruption in the neuromuscular 
signal transmission, and muscle dysfunction, EMG is utilized (Sezgin, 2015). Furthermore, it is 
also widely used for diagnosing various kinds of chronic pains in the lower back and head. A set 
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of multiple motor unit action potentials are superimposed upon each 
other to form an EMG. The resulting signal is explained in the terms 
of frequency, amplitude, and phase as a function of time and it is 
usually stochastic in nature. The categorization of the EMG signals is 
done depending on how they are acquired from the body, whether in 
an invasive manner or non-invasive manner (Jali et al., 2014). With 
the advent of machine learning techniques, EMG signals are used to 
detect human activities and movements. Once this knowledge is 
acquired, it is implemented fully inside robots so that those activities 
can be replicated. Some of the famous works undertaken on EMG 
signal classification with machine learning techniques are reported 
as follows.

A novel finger movement classification technique dependent on 
multi-centered binary pattern (MCBP) using EMG signals was 
reported in Tuncer et al. (2022), where high classification accuracies 
of 99.17, 99.7, and 99.62% were obtained for three different cases. 
The EMG finger movement classification was implemented using an 
adaptive neuro fuzzy inference system (ANFIS) which proved that 
the classification of finger gestures is less than the classification of the 
hand gestures (Caesarendra et al., 2018). The high-density EMGs of 
intrinsic and extrinsic hand muscles for exploring finger movement 
decoding was repeated in Hu et al. (2022). Artificial Neural Networks 
(ANNs) were used for the EMG-based classifications of hand and 
finger gestures, reporting a mean accuracy of 0.940 (Lee et al., 2021). 
A high-precision wireless surface EMG sensor was developed for 
finger gesture recognition using the sensing and classification of 
EMG signals (Jianting et  al., 2021). An interesting method of 
utilizing cross recurrence plots was implemented in EMG hand 
movement recognition (Aceves-Fernandez et  al., 2019). A 
multichannel Convolutional Neural Networks (CNN) was also used 
for the heterogenous hand guise classification depending on the 
Surface Electromyogram (sEMG) signals (Sikder et  al., 2019). 
Two-channel surface Electromyogram (EMG) signals were utilized 
to classify the hand and finger movements with ELM classifiers 
reporting an accuracy of 98.95% (Sezgin, 2019). A fractal-based 
classification of EMG signals was performed where the results 
analysis showed that EMG signals have the greatest fractal dimension 
in the case of thumb extension and the lowest fractal dimension in 
the case of little finger extension (Namazi, 2019). The classification 
of five-finger movement depending on a low-cost, real-time EMG 
system was developed in Seguna et al. (2020). Sparse filtering of 
wavelet packet coefficients was used for EMG-based finger 
movement recognition, reporting an accuracy of 99.52% (Bhagwat 
and Mukherji, 2020). A deep learning model that combines a 
convolutional auto-encoder and convolutional neural network 
(CAE + CNN) for classifying an EMG data set comprising 10 classes 
of hand gestures was reported with an accuracy of 99.38% (Jia et al., 
2020). A particle swarm optimization-based support vector machine 
(PSO-SVM) algorithm was used for the classification of finger 
movements using EMG signals with a success of pattern recognition 
between 68 and 86% (Pamungkas et al., 2022). The proportional 
estimation of finger movements from high-density sEMG was 
conducted and the common spatial patterns proportional estimation 
(CSP-PE) outperformed the linear discriminant analysis (LDA; 
Celadon et  al., 2016). Different limb positions were used for the 
evaluation of feature projection techniques in object grasp 
classification via EMG signals using a spectral regression ELM 
technique (Thiamchoo and Phukpattaranont, 2022). Hybrid 

CNN-SVM architecture was used for the classification of EMG 
signals with AlexNet, GoogleNet, and ResNet and the accuracies 
reported were 99.17, 95.83, and 93.33%, respectively (Tuncer and 
Alkan, 2022). The time-domain features and pattern recognition 
networks were used for performance evaluation using EMG signals 
for the classification of hand gestures where a maximum accuracy of 
97.3% was obtained for the finger movement dataset and a maximum 
accuracy of 98.87% was obtained for the hand grasp dataset (Vasanthi 
and Jayasree, 2020). The multiclass myoelectric identification of five-
finger motion using an ANN with a classification accuracy of 98.7% 
and using a SVM with a classification accuracy of 96.7% was reported 
in Ahmad et al. (2017). The performance analysis of classifiers for 
EMG signals of various hand movements in LABVIEW software was 
reported in Dev and Singh (2016). The EMG signal classification of 
wide range motion signals for prosthetic hand control was done with 
a K-nearest neighbour classifier reporting a high classification 
accuracy of 98.9% (Mahmood et al., 2021).

The main contributions of this work are as follows:

 a. Once the basic pre-processing of sEMG signals is done by using 
a simple independent component analysis (ICA) technique, the 
proposed methodologies are then implemented. The first 
technique proposed is a dynamic graph construction and graph 
entropy-based classification of sEMG signals for finger 
movement classification.

 b. The second technique proposed encompasses the ideas of 
dimensionality reduction, evolutionary algorithms (EA), 
Bayesian belief networks (BBN) and extreme learning 
machines (ELM) for the classification of sEMG signals, from 
which a hybrid technique called as EA-BBN-ELM is developed.

 c. The third technique proposed utilizes the ideas of differential 
entropy (DE), fuzzy cognitive maps (FCM), and empirical 
wavelet transformation (EWT), and a hybrid model called 
DE-FCM-EWT with machine learning classifiers was 
developed for the classification of sEMG signals.

 d. The fourth technique proposed uses the ideas of local mean 
decomposition (LMD) and fuzzy C-means clustering along 
with a combined kernel least squares support sector machine 
(LS-SVM) classifier.

The organization of the research is as follows: Section 2 describes 
each of the proposed methodologies in detail, and is followed by the 
results and discussion in Section 3 and conclusion in Section 4.

2. Proposed strategies

The proposed strategies are explained in detail in the 
following subsections.

2.1. Proposed strategy 1: dynamic graph 
construction and graph entropy-based 
classification

2.1.1. Construction of dynamic graph
Among a multiple time series, causality is initially identified so 

that the spurious correlation coefficient can be easily computed (Goyal 
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et  al., 2020). For the particular time series p and q , the causality 
between them is represented as:

 
C p q

if prob
otherwise

,� � �
��

�
�

1 0 05

0

.

 
(1)

where the causality between the time series p and q is indicated 
by C p q,� � . The probability of showing that the two series are not 
causally related is expressed by the probability ‘prob.’ With the help of 
the Granger causality test, the computation of the causality between 
the time series p and q  can be  done. A null hypothesis is made 
considering that there is no causal relationship between the two-time 
series. To predict the time series q , the Granger causality test is 
proposed so that two regressions can be utilized. The past values of the 
series q are used to predict the current value of q by the first regression. 
The past values of p and q are used to predict the current value of q  
by the second regression. If the first prediction is outperformed by the 
second prediction, then it specifies that the prediction performance 
for the time series q  is improved by the past values of time series p. 
For these two regressions, the sum squared residuals (SSR) can 
be easily computed. To test the null hypothesis, the t-test and F-test is 
utilized by the Granger causality test by means of utilizing the SSR of 
two regressions. These are done to check whether the prediction of the 
series q is improved significantly by the series p. If the null hypothesis 
is true, then the ‘prob’ value is the probability of observing a particular 
data more extreme than the current one. If the ‘prob’ value is small, it 
implies that the two series exhibit causality as there is only a small 
probability. The null hypothesis can be easily rejected based on the 
principle of small probability. In hypothesis testing, the concept of 
significance is quite important as it indicates the probability of 
rejecting the null hypothesis when it is true. In our experiment, the 
significance level is assigned to 0.05. Between the two series, the 
probability of the causality is less than 5% if the probability value is 
less than 0.05. The null hypothesis can be rejected in such a case and 
so we could say that a causal relationship exists between the time 
series p and q. By means of using the Pearson correlation coefficient 
(PCC) and the causality, the computation of the spurious correlation 
coefficient is done and is formulated as:

 
R p q

if C p q
C p q PCC otherwise

,
,

,
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�
�
�

��

1 0

 
(2)

where the causality between the time series p and q is mentioned 
by C p q,� �. The spurious correlation coefficient is indicated by R p q,� �
. When the two correlated time series are not causally related, then the 
conception of the spurious relationship takes place. Therefore, a 
spurious correlation shares an inversely proportional relationship with 
the causality between the time series. The spurious correlation 
coefficient R p q,� � is 1 when the causality of C p q,� � is 0. The spurious 
correlation coefficient is large if the probability of causality between 
the series p and q is small. With the help of the spurious correlation 
coefficient, a graph can be easily built. For a graph G V E� � �, , the set 
of the vertices in the graph is indicated by V  and the set of edges in the 
graph is indicated by E. The channel is specified by the vertices for the 
multi-channel EMG signals. Between the two channels of the EMG 
signals, the spurious correlation coefficient is indicated by the weight 

of the edges (Goyal et al., 2020). The dynamic graph is indicated as 
G G G G G t Tt t i� � �� �� �� �1 0, , , where T  represents the total number 
of time intervals, Gi indicates the graph at time interval i, and Gt 
specifies the precedent graph of Gt+1. Figure 1 shows a simplified 
illustration of the dynamic graph construction and graph entropy-
based classification.

2.1.2. Computation of graph entropy
To assess the similarity between the two graphs, the graph entropy 

is used (Dehmer, 2008). For a graph G V E� � �, , the computation of 
the entropy of the vertex vi is done utilizing the weights of the edges 
which are connected to it. If there is a connection between vertex vi  
and vertex v j, the formulation of the entropy of the vertex vi  is 
calculated as follows:

 
e v R v v R v vi

j j i
i j i j

N

� � � � � � � �
� �
�
0,

log, ,

 
(3)

where the total number of vertices connected with the vertex vi is 
denoted as N . The spurious correlation coefficient between the 
vertices vi and v j is expressed as R v vi j,� �.

To assess the similarity between the two graphs, the exploitation 
of graph entropy is computed by utilizing the entropy of the vertices 
and is expressed as:

 
e G e V

i
i

N

� � � � �
�
�

0  
(4)

where the number of vertices is represented by N  and the entropy 
of the vertex vi  is specified by e vi� �. The formulation of the entropy 
from the graph in the particular time interval t T�� �0,  is expressed as:

 � � � � �� �� �e G t Tt 0,  (5)

Once the graph entropy features are obtained, they are then fed 
into the machine learning classifiers to compute the output.

2.2. Proposed strategy 2: dimensionality 
reduction with EA-based BBN-ELM

The expression of the sEMG dataset is initially mentioned here in 
a n D×  matrix P which has m  data vectors p i ni � �� �� �1 2, , ,  with a 
specific dimensionality D. In this dataset, an intrinsic dimensionality 
' ′d  is possessed (where d D<< ). The transformation of the dataset P 
with a dimensionality D into a new dataset Q with dimensionality d  
is done with the aid of dimensionality reduction techniques, while the 
geometry of the data is hold on firmly. The dimensionality of the 
sEMG dataset is reduced with the help of local tangent space 
alignment (LTSA) and local linear coordination (LLC) and then the 
EA-BBN-ELM model is implemented to compute the output.

2.2.1. LTSA
The local tangent space of all datapoints describing the native 

possessions of the high dimensional data is utilized by the LTSA (Huo 
and Smith, 2009). Linear mapping is present from a high dimensional 
datapoint to its local tangent space if there is conjecture of the local 
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linearity and the manifold. Similarly, from the corresponding 
low-dimensional datapoint, linear mapping is again extended to the 
same local tangent space. Therefore, from the low-dimensional 
representation, the local tangent space of the manifold is constructed 
and therefore the linear mapping is aligned in a proper way by 
LTSA. The co-ordinates of the lower-dimensional data representations 
are searched completely by the LTSA. Also, the searching of the linear 
mapping of the low dimensional data points is done to the high 
dimensional data’s local tangent space. At the datapoint pi , the local 
tangent spaces are computed by LTSA. For the k datapoints pij , 
Principal Component Analysis (PCA) is implemented as they are 
neighbors of datapoints pi . Therefore, the neighborhood of pi  is 
mapped through mapping Mi  to the local tangent space ˜ i . Linear 
map Li is present from the local tangent space co-ordinates θi j  to the 
low-dimensional representations qij . The minimization problem 
expressed below is performed by LTSA by means of utilizing the 
possession of the local tangent space as:

 
min

,Q L i
i k i i

i i

Q C L� � ˜
2

  
(6)

where the centering matrix of size k  is represented as Ck . The 
alignment matrix A is from the eigen vectors and so the minimization 
solution can be found corresponding to the d non-zero and smallest 
values of A. By means of iterative summation, the alignment matrix 
entries A are obtained as:

 
A A C I VV Cs s s s k i i

T
ki i i i

� � �� �   (7)

where the selection matrix is expressed as Si containing the 
indices of the nearest neighbor of datapoints pi . By means of 
computing the eigen vectors which match to the ' ′d  non-zero and 
smallest eigen vectors of the matrix 1

2
A AT�� �, the low-dimensional 

representation Q is obtained.

2.2.2. LLC
A number of locally linear models are computed initially and then 

a global arrangement of the linear models is done in a subsequent 
manner. There are two important steps in LLC: initially, using an 
expectation–maximization (EM) algorithm, the mixture of local linear 
models is computed and, secondly, using a variant of LLE, the 
low-dimensional data rendition is obtained by means of aligning the 

local linear models (Roweis et al., 2001). Using the EM algorithm, a 
mixture of m  factor analyzers are initially constructed by LLC. The 
engagement of mixture probabilistic PCA models can also be done. 
The construction of m  data representations yij and their respective 
responsibilities rij  is utilized by the local linear models in the mixture 
for every datapoint pi . The datapoint pi  corresponding to the mode j  
is described by the responsibilities rij , so that 

j
ijr� �1 is satisfied. The 

computation of the responsibility weighted data representations 
u r yij ij ij=  are done utilizing the local models and its respective 
responsibilities. In a n mD×  block matrix U , the storage of the 
responsibly weighted data representation, vij are done. Depending on 
U  and on a matrix M , the performance of the local models’ alignment 
is done and is expressed as:

 M I W WT� �� � �� �1   (8)

LLE computes the reconstruction weights for the matrix W  and 
the n n×  identity matrix is indicated by I . By means of solving the 
generalized eigen problem, the local models are aligned by LLC and 
represented as:

 Be Aev v� �   (9)

for the d non-zero and smallest eigen values. B represents the in 
product of M UT  and A represents the in product of U . Thus, the 
matrix L is found by the d  eigen vectors evi  and is represented as a 
linear depiction from the data representation U which is responsibly 
weighted to the data representation with the underlying low 
dimension Q. By means of computing Q UL= , the low dimensional 
data representation is easily obtained. Once the low dimensional data 
representation is obtained, it is then fed into the EA-BBN-ELM model.

2.2.3. Bayesian belief networks
A famous type of deep neural network that utilizes restricted 

Boltzmann machines (RBM) as learning models is the Bayesian Belief 
Network (BBN; Cheng et al., 1997). An RBM is a generative stochastic 
neural network that can learn the probabilistic distribution of its 
inputs without supervision. A set of visible units are present in an 
RBM and represented as v n�� �0 1, , and a set of hidden units are 
present in an RBM and represented as h m�� �0 1, , where n  is the 
number of visible units and m is the number of hidden units. With the 
help of an asymmetrically weighted connections matrix W� �, the 

FIGURE 1

Simplified illustration of dynamic graph construction and graph entropy-based classification.
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connection of the two layers is done and, in between the neurons 
within a layer, there are no connections. The structure of an RBM with 
n visible units and m hidden units is shown in the Figure 2, where a  
and b represent the biases of visible and hidden layers. The stacking of 
RBMs can be  done in an end-to-end manner and can be  trained 
greedily so that a BBN can be formed. The main idea behind a BBN is 
that the learning rule for updating weight using RBM is captured 
as follows:

 ”w v h v hij i jdata i j el t� �� �� mod  (10)

where .…d  indicates the expectation of a D distribution and the 
learning rate is expressed as ε . For the updating of bias parameters, 
the rules are set as follows:

 ” a v vi idata i el� �� �� mod  (11)

 ” b h hj jdata j el� �� �� mod  (12)

The RBM is a biographic graph as the computation of v hi jdata is 
quite simple. Depending on the hidden node, the activations of a 
visible node can be made mutually independent and is expressed 
as follows:

 
P v h P v h

i

n
i� � � � �

�
�

1  
(13)

Depending on the hidden vector, the mood of a visible vector is 
expressed as follows:

 P v h b W hi i j ij j�� � � �� �1 � £  (14)

where the logistic sigmoid function is expressed as δ , and it is 
defined as � x x� � � � �� �� �1 1/ exp .

The binary state hj  of hidden unit j  is adjusted to 1 for the 
randomly selected training input v with a particular probability 
depending on the following equation:

 P h v c W vj j i ij i�� � � �� �1 � £  (15)

The hidden unit is turned on if the random number value is in the 
interval (0,1) and with a uniform distribution. For the computation of 
the second part of Equation 10, a plethora of algorithms have been 
utilized. The standard algorithm proposed is contrastive divergence 
with one step of Gibbs sampling (CD-1). The visible units vi  are 
initialized to the input distance to compute the v hi j elmod  in CD-1. 
Then the moods of the hidden units hj are computed and finally vi' and 
hj'  are computed using a one-step reconstruction of v and h  nodes. 
Finally, the updating of the weight and biases are done as follows:

 
”W v h v hij i j data i jreconstruction� �� �� ' '

 
(16)

 
” b v vi i data ireconstruction� �� �� '

 
(17)

 
” c h hj j data jreconstruction� �� �� '

 
(18)

There are three important steps in BBN learning algorithms. To 
initialize the network, an unsupervised pre-training step via RBMs is 
done. Connection weights are assigned between the RBM hidden nodes 
and the output node by fine-tuning. Backpropagation (BP) is used so that 
the network weights are allowed to be refined layer by layer. The network 
weights are adjusted by BP so that the training samples T  are indicated by 
the output neurons O. The difference between expected output T  and the 
actual output O is a squared error and is computed as:

 Error T O� �� �2 (19)

2.2.4. Extreme learning machine
An efficient learning algorithm of the single hidden layer feed 

forward neural networks (SLFN) family is the ELM (Castaño et al., 
2013). In between the input nodes and hidden nodes, the connection 
weights are initialized randomly in ELM. The random initialization 
also takes place in the hidden node biases and the least squares 
approach is used to compute the connection weights between the 
hidden nodes and the output node. For a binary classification 
problem, the ELM classification function is expressed as:

 
f x h x h x

i

m
i i� � � � �

�

�
��

�

�
�� � � �� �

�
�� � � �

1  
(20)

where the connection weight vector between the hidden layer and 
output node is represented as � � �� �� �1, , m

T . For multi-class 

FIGURE 2

Illustration of a restricted Boltzmann machine.
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classification problems, the classification function must be  used 
accordingly (Castaño et al., 2013). The output vector from the hidden 
layer is represented as h x h x h xm� � � � � � � ��� ��1 , ,  according to input x
. The mapping of the data is done by h x� � from the d-dimensional 
input space to the m-dimensional feature space of hidden layer H . An 
ELM has the lowest norm of β  in addition to having the smallest 
learning error and so a higher network classification performance 
is achieved.

Minimize:  H T� �� 2
,   (21)

where the output matrix of hidden nodes is represented as H  and 
shown in the following equation.

 

H
h x

h x

h x h x

h x h xN

m

N m N

�
� �

� �

�

�

�
�
�

�

�

�
�
�
�

� � � � �

� � � � �

�

�

�
�
�

1 1 1 1

1

: : : :

��

�

�
�
�
 

(22)

The output weights vector β  can be computed easily using the 
following equation if matrix T y yN

T� �� �1, ,  is computed with sample 
labels as follows:

 
� � � � ��H T H HH TT T 

1

 
(23)

where the Moore-Penrose generalized inverse of matrix H  is 
represented as H  . The overall block diagram of this proposed 
technique is illustrated in Figure 3.

2.2.5. Ensemble learning model of EA-BBN-ELM
To learn the relationships between the input and output data, 

ANNs are quite useful and versatile. They are quite powerful when 
utilized for a variety of applications such as classifications, predictions, 
clustering, and control systems. The most used training algorithm for 
NN is a BP feed-forward network. At the start of the network training 
process, random connection weights are used and are one of the major 
challenges of using a BP. A better classification performance can 
be  provided by the local search feature in BP. One of the main 

advantages of BBN pre-training is that more reasonable weights can 
be used instead of random weights. In between the last hidden nodes 
and the output nodes, the connection weight matrix is generated 
randomly by the BBN and the problem can be overcome by using an 
EA-BBN-ELM hybrid model. Once the pre-training is done using 
RBMs to the end of the network, the addition of an ELM is done so 
that the connection weights between the hidden layer and output layer 
(β ) matrix is computed. Therefore, the matrix W  of the ELM is 
equivalent to the weights matrix considered from the final RBM of the 
BBN and the computation of matrix β  is done. The calculation of the 
error is done and then the implementation of the BP algorithm 
happens so that the network weights are updated. For a BNN, 
searching the proper topology is a search issue, where the main goal 
is to trace the optimal topology for the network. To address this 
challenge, standard evolutionary algorithms (EA) like ant colony 
optimization (ACO)/particle swarm optimization (PSO)/backtracking 
search optimization (BSO)/glowworm swarm optimization (GSO) 
techniques etc. are used to find the optimal or near optimal solution 
in various types of objective functions (Zhang et  al., 2015). An 
EA-BBN-ELM network as a whole improves the BBN learning and 
can help in the optimization of network topology using EA also.

2.3. Proposed strategy 3: DE-HFCM-EWT 
hybrid model with classifiers

2.3.1. Differential entropy
In the continuous probability distribution, the degree of 

uncertainty is quantified by the DE and is a continuous form of 
Shannon entropy (Wu, 1996). If a continuous variable x  is assumed 
along with its probability density function p x� �, then the differential 
entropy when the variable x obeys the Gaussian distribution N � �, 2� � 
is expressed as:

 

( )
( ) ( )

( )

2 2

2 22 2
2 2

2

1 1log
2 2

1 log 2
2

µ µ
σ σ

πσ πσ

π σ

− −∞ − −

−∞

 
 = −  
 
 

=

∫
x x

h x e e dx

e
 

(24)

FIGURE 3

Simplified illustration of the proposed EA-BBN-ELM model technique.
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where the constants are represented by π  and e. A linear relationship 
is present between the differential entropy of a Gaussian variable and its 
respective variance. For x N� � �� �, 2 , the variance is expressed as:

 
� �2 21

� �� �
N

x£
 

(25)

where the number of samples is represented as N . The previous 

formula is simplified to � 2 21
�
N
x£

 when the mean value is zero and 

it specifies the mean energy of variable x . Thus, by using discrete 
Fourier transform (DFT), the estimation of the variance of Gaussian 
variables from the energy can be calculated as follows:
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where the energy spectrum of the signal is represented as E. The 
raw signal may not be assessed following the Gaussian distribution as 
sEMG recordings are non-stationary signals and so the estimation of 
the differential entropy cannot be done directly; therefore, with the 
implementation of FCM, this issue can be easily solved.

2.3.2. Fuzzy cognitive maps (FCM)
FCMs are simply weighted directed graphs where the concepts are 

represented by nodes and the logical relations are represented by edges 
(Kosko, 1986). For a FCM which has Nc nodes, the concept state 
values are defined as a vector S, S S S SNc

� �� �1 2, , , , where Si �� �0 1,  
or [−1,1], i Nc� �1 2, , , .

The activations value of node i is represented by the state value Si
. With the help of a N Nc c×  matrix M , the representation of the 
logical relationships among the different nodes are done as follows:
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where mij � �� �11,  indicates the strength of node ′j s impact on 
node i. The negative m aij � �  indicates that a negative impact on 
node i is represented by node j  with a strength a . The mij = 0  
indicates that there is logical relationship between node i and j . The 
node j  has a positive impact on node i and that is represented by the 
positive m aij =  with a strength a . The weight matrix M  influences 
the state value of a node at t th+1 iteration and it has an equal influence 
on all the state value of connected nodes at tthiteration. The dynamics 
of the FCM can be expressed by the following equation as follows:
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where the state value of node j  at tth iteration is indicated by S tj � � 
and the non-linear trace function is indicated by g � �. For FCMs, a 
lot of transformation functions are available. A hyperbolic tangent 
function is utilized to locate the state values in the range �� �11,  and is 
defined as follows:
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Short term temporal relationships can be easily modeled by FCMs 
based on Equation 28. Therefore, to model the long temporal 
dependencies, the high-order FCMs (HFCMs) are utilized. The 
modeling process of an h order HFCM is specified as:
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(30)

where the bias term is expressed as mi0 and at time step t h� �1
the strength of node ′j simpact on node i is represented as mijh .

2.3.3. EWT
The FCM-modeled network is now computed with EWT as it is one 

of the famous data-driven adaptive signal decomposition techniques used 
(Gilles, 2013). For the analysis of non-stationary time series data, it has an 
effective performance along with an established theoretical foundation. It 
has been used widely in time series modeling and signal processing 
applications. The signal is analyzed directly in the Fourier domain by 
EWT after the Fast Fourier Transform (FFT). Then the spectrum 
separation is implemented through band-pass filtering with the aid of a 
specific filter bank. Figure 4 shows the overall framework of the DE-based 
FCM and EWT with machine learning classifiers.

The proposed algorithm steps for the novel DE-HFCM-EWT are 
explained as follows:

 1. The padding of the time series f(t) is done initially with the help 
of K-nearest neighbors (KNN) algorithm so that the boundary 
effect in EWT can be prevented.

 2. The differential entropy is computed.
 3. All the subseries S ti � � are generated by implementing EWT to 

the training set of f(t) by means of including all the padded 
data points.

 4. The discrete version of its spectrum F w� � is obtained by means 
of performing FFT to f(t).

 5. The corresponding frequency of ranked local minima are 
determined in the spectrum.

 6. To assess the empirical wavelet, the transitional band ratio γ  
is defined.

 7. The scaling and wavelet functions are well established.
 8. The approximate coefficients of the signals are computed 

in detail.
 9. The structure of HFCM is identified in detail and the 

weights optimized.
 10. The trained model is applied along with the test model to the 

machine learning classifiers.

2.4. Proposed strategy 4: LMD-based fuzzy 
C-means clustering and LS-SVM classifier

2.4.1. Local mean decomposition
A non-linear signal analysis used generally is LMD (Wang et al., 

2018). The sEMG signal is decomposed adaptively into a sum of 
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series of functional components so that the intrinsic nature of the 
signals can be reflected well. The non-stationarity of the signal can 
be  reduced well by the ensemble decomposition methods. The 
commonly used ensemble decomposition models are LMD, empirical 
mode decomposition (EMD), ensemble EMD (EEMD), and 
complementary EEMD (CEEMD). Some unique advantages are 
present in LMD as the decomposition of the signal can be  done 
adaptively based on its own characteristics. After decomposition 
using LMD, every component has some physical significance and can 
easily reflect the inherent nature of the signal. The end effect too can 
be well restrained with the help of LMD so that the integrity of signal 
information is preserved and the calculation time can be reduced 
well. For any original sEMG signal x t� �, the decomposition of the 
LMD algorithm is a process of multiple cycles. From the original 
signal, the pure frequency modulation signal and envelope signal can 
be extracted by using the LMD algorithm. By multiplying these two 
kinds of signals, a functional component can be easily obtained. By 
gradually cycling, all the functional components can be  easily 
obtained and thus the instantaneous frequency and amplitude too 
can be  ultimately obtained. From the pure frequency modulated 
signal, the instantaneous frequency can be  easily obtained. The 
amplitude modulation information and the frequency modulation 
information of the functional components are represented by the 
instantaneous frequency. Ultimately, for the full original signal, the 
entire time-frequency distribution is obtained. x t� � is the original 
signal and the intermediate variables are represented as h t� � and n t� �
. The envelope function is represented as a ti � � and the pure frequency 
component is represented by S ti � �. The vital function component is 
expressed by F ti � �, the local extremum point is expressed by n ti � �, 
and the local mean function is expressed by m ti � �. The decomposition 
of the original sEMG signal x t� � is done into a K functional 
component and a new residual signal r tk � � by LMD algorithm 
as follows:

 
x t F t r t

n
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n k� � � � � � � �

�
�

1  
(31)

The simplified illustration of this proposed method is shown in 
Figure 5.

2.4.2. Fuzzy C-means clustering
The fuzzy C-means algorithm is a very popular distance-based 

portioning clustering algorithm (Krishnapuram and Keller, 1993). 
The clustering partition is performed iteratively until its target 
reaches a minimum. A membership matrix is used by the fuzzy 
C-means algorithm so that each sample is divided based on its 
probability of belonging to each category. To multiple categories, the 
samples can belong and the probability of belonging to every such 
category is different. The fuzzy C-means algorithm is actually a 
statistical technique and the division process is actively the method 
of optimization of the target formula. The data object set 
P p p pn d� �� �� �1 2, , , is a limited collection of data objects and 
element pi  is a d-dimensional vector. The membership matrix Uij is 
found by the fuzzy C-means algorithm so that the degree of each 
data element pertaining to each cluster is denoted by it. The 
following objective function is optimized by the partition process 
as follows:
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where the weighting exponent is expressed as m and it is called the 
fuzzy weighting coefficient. The fuzzy weighting coefficient can be any 
real number greater than 1. The degree of pi  in the cluster c j is 
expressed as uij. The ith input data is represented as pi  and the center 

FIGURE 4

Overall framework of the DE-based FCM and EWT with machine learning classifiers.
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of the jth cluster is represented as c j. The computation of the cluster 
center ci is done as follows:
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The membership matrix is computed as follows:
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The basic steps of the fuzzy C-means algorithm are as follows:

 (1) The membership matrix U  is initialized with a random number 
between 0 and 1 so that the constraint is satisfied.

 (2) The clustering centroids ci are computed, i c� �1 2, , ,

 (3) The value function is also computed. If the obtained result is less 
than a defined threshold value, then the algorithm terminates.

 (4) The new membership matrix U  is computed and then return 
to Step 2. The fuzzy clustered feature values after the assessment 
of LMD methodology are directly fed into the combined kernel 
function LS-SVM.

2.4.3. Combined kernel function LS-SVM
The mapping of the sample space of the LSSVM is done into a 

high-dimensional feature space through the non-linear mapping 
function. For a sample dataset p qt t,� �, t N� �1 2, , , , there is:

 q w p b� � � ��  (35)

where the total number of samples is represented as N ; q q d, ��
is the output of the non-linear systems; p p m, ��  is the input of 
non-linear systems. The dimension of sample space is represented by 
m . The mapping function of input space with m-dimensional to 
output space with high d-dimensional d m� � is represented as � � �
. The weight coefficient vector is represented as w w d, ��  and the 
constant bias is represented as b. By minimizing the next objective 
function, the optimal w and b can be obtained as follows:
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where the structural form is represented by J w e,� � . The 
permissible error is represented by e t Nt , , , ,� �1 2  and it implies that 
there is a prediction error between the original and predictive output. 
To control the degree of penalty, the regularization parameter used is 
γ . To solve such a constrained optimization problem, the Lagrange 
function is used as follows:
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where the Lagrange multiplier is represented by at . The kernel 
function K � � and the mapping function � � � should satisfy the 
following equation as follows:

 K p p p pt j t
T

j,� � � � � � �� �  (38)

The kernel function is used to assess the non-linear mapping 
ability of the LS-SVM prediction model (Maria et al., 2014). To map 
the samples from an input space to feature space, the kernel function 
is used. Generalization ability and learning ability differ for each 
kernel function. Generally, partial kernel and global kernel functions 
are the important types of kernel functions. The kernel value will 
be large if it is farther from the test point if the model uses global 
kernel functions. The kernel value will be small if it is closer to the test 
point, if the model uses partial kernel functions. A typical example of 
a partial kernel function is the radial basis function (RBF) and a 
typical example of a global kernel function is the polynomial kernel 
function. Equations 39 and 40 show the polynomial kernel function 
and RBF kernel function, respectively.
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The order of polynomial function is represented by O and the 
width of the RBF kernel function is represented as σ 2. For the 
LS-SVM model, the prediction model is represented as:
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FIGURE 5

Simplified illustration of LMD-fuzzy C-means combined kernel function LS-SVM.
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In the high dimensional feature space, the complex calculation is 
avoided by the introduction of the kernel function. One of the vital 
issues of the LS-SVM is the apt choice of the kernel function (Adankon 
et al., 2011). A high influence is present on the data points in areas close 
to the test point by the partial kernel function and therefore it has a weak 
generalization ability and strong learning ability. On the contrary, the 
global kernel function has a strong generalization ability and weak 
learning performance. Thus, the inherent advantages of these two kinds 
of kernel functions are used to construct the mixed kernel functions.

A good generalization ability is present for the polynomial kernel 
function. The output of the function will be influenced by the distance 
of the sample point from the test point. The width of the kernel 
function is determined by the parameters σ 2 of the RBF. To assess the 
output of the function, the sample points close to the test point have 
a major influencing factor and so a good interpolation ability is 
achieved by the RBF function. Therefore, to have a combined kernel 
function, the hybrid of these two kernel functions are considered so 
that a better learning ability and generalization ability in the LS-SVM 
is achieved. The merits of the two kernels functions are jointly 
considered and then a better regression prediction performance is 
obtained. The new hybrid kernel function obtained is as follows:

 K aK a K ahybrid rbf poly� � �� � �� �1 0 1, ,  (42)

The weight coefficient is indicated as a. The polynomial kernel 
function is specified as Kpoly and the RBF kernel function is specified 
as Krbf . The Mercer condition is satisfied by the Kpoly and Krbf , so the 
Khybrid is also used to satisfy the Mercer condition. The proportion of a 
single kernel to a mixed kernel is assessed by the weight coefficient a. 
The domination of polynomial kernel function happens if a is greater 
than 0.5 and the domination of the RBF kernel function happens if a is 
less than 0.5. The two kernel functions are equally important when a
=0.5. When the combined kernel function is constructed, a can 
be  adjusted and the combination of the RBF kernel function and 
polynomial kernel function can be realized. The partial properties of the 
RBF kernel function and the global properties of the polynomial kernel 
function are combined with the help of the combined kernel function to 
achieve a high generalization ability. Every parameter has a significant 
impact on the working ability of the LS-SVM if we adopt the combined 
kernel function. As the parameters are highly interrelated to each other 
a q, , ,� �2� � , the paper employs some metaheuristic algorithms like 

ACO, GA, and PSO (Zhang et al., 2015) to assess the optimal parameters 
of the hybrid kernel function LS-SVM prediction model.

3. Results and discussion

The dataset utilized in this paper is from Khushaba and Kodagoda 
(2012). From eight different participants (six males and two females), 
the sEMG signals were obtained. The participants were quite healthy 
and did not report any major neurological disorders. With the help of 
eight channels, these signals were collected using Delsys sEMG sensors 
when these participants were made to sit in an armchair. The age range 
of the participants was between 20 and 35 years and the acquisition of 
these signals was done at 4,000 Hz. The conversion of these signals was 
done into a 12-bit format and ultimately 15 movements of the fingers 
were collected (thumb, index, middle, ring, little, thumb-index, 

thumb-middle, thumb-ring, thumb-little, hand close, index-middle, 
middle-ring, ring-little, index-middle-ring, and middle-ring-little), and 
therefore there are 15 classes in this dataset. There are 24 observations 
in each class and so there are 360 observations in total (24 × 15 = 360). 
The analysis was done on this small dataset and the results were 
analyzed in detail. The standard performance metrics like sensitivity, 
specificity, and accuracy were computed.

 
Sensitivity TP

TP FN
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�  
(43)

 
Specificity TN

TN FP
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�  
(44)

 
Accuracy TP TN

TP TN FP FN
�
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(45)

where TP stands for true positive, FP stands for false positive, TN 
stands for true negative, and FN stands for false negative. As far as the first 
strategy is concerned regarding the construction of a dynamic graph, the 
significance value is set to 0.05 only. The experiment was tried with other 
values as well on a trial-and-error basis but the best results were found 
only for this value. When the second strategy of the EA-BBN-ELM 
network was considered, algorithms like ACO, PSO, BSO, and GSO were 
utilized and the main parameters used were as follows. For ACO, the 
number of ants was selected as 20, the total number of generations was 
set as 1,000, the initialization of pheromone was set at 0.8, the weight of 
pheromone on decision was set as 0.6, the weight of the heuristic data on 
decision was set at 0.5, and the degree of random choice at random points 
was assigned a value of 0.1. As far as PSO was concerned, the population 
size was set at 50, the number of particles was set at 20, the number of 
iterations at 100, inertia weight at 0.5, and local weights were assigned as 
1. For the BSO algorithm, the population size was set at 30 and the mix 
rate parameter was assigned to 0.5. For the GSO algorithm, the important 
parameters such as the maximum number of iterations was set at 100, the 
number of glowworms chosen was 25, the number of neighbors chosen 
was 10, the constant parameter was set at 0.05, and the step size was 
assigned at a value of 5. Regarding the third and fourth strategies 
considered, all the values have been explained in the experimental part 
itself. Table 1 shows the performance analysis of the dynamic graph 
construction and graph entropy-based machine learning classifiers. It was 
observed that a high classification accuracy of 96.44% is obtained when 
the proposed dynamic graph construction with graph entropy is 
implemented with the SVM classifier. Table 2 shows the performance 
analysis of dimensionality reduction with the EA-BBN-ELM hybrid 
model and the highest classification accuracy of 97.57% is obtained if the 
PSO-BBN-ELM hybrid model is implemented. Table  3 shows the 
performance analysis of the DE-FCM-EWT hybrid model with machine 
learning classifiers and the results show that a high classification accuracy 
of 98.21% is obtained when classified with the SVM classifier. Table 4 
shows the performance analysis of the LMD-fuzzy C-means with 
combined kernel SVM and the results show that a high classification 
accuracy of 98.50% is obtained when classified with the combined kernel 
LS-SVM classifier. The good detection rates (GDR) for the proposed 
models are also illustrated in Figures 6–9, respectively.

Figure 6 illustrates the GDR analysis for the dynamic graph 
construction and graph entropy-based machine learning technique. 
It is evident from Figure  6 that a high GDR is found for the 
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TABLE 1 Performance analysis of dynamic graph construction and graph entropy-based machine learning classifiers.

SVM Adaboost NBC KNN

Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc

Dynamic graph 

construction

92.15 91.15 91.65 90.12 91.12 90.62 86.45 84.59 85.52 88.23 87.23 87.73

Dynamic graph construction 

and graph entropy

96.56 96.32 96.44 93.34 93.56 93.45 92.23 91.03 91.63 92.34 91.24 91.79

NBC, Naive Bayesian Classifier.

TABLE 2 Performance analysis of dimensionality reduction with the EA-BBN-ELM hybrid model.

ACO-BBN-ELM PSO-BBN-ELM BSO-BBN-ELM GSO-BBN-ELM

Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc

LTSA 96.23 95.21 95.72 97.34 97.81 97.57 96.34 95.48 95.91 93.21 92.45 92.83

LLC 96.59 96.08 96.33 95.55 96.23 95.89 95.02 94.98 95 92.76 90.68 91.72

TABLE 3 Performance analysis of the DE-FCM-EWT hybrid model with machine learning classifiers.

SVM Adaboost NBC KNN

Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc

DE 88.12 89.12 88.62 86.12 85.63 85.875 85.28 84.59 84.935 88.12 87.02 87.57

FCM 89.12 89.23 89.175 88.24 87.23 87.735 87.57 86.89 87.23 86.35 86.78 86.565

EWT 92.21 93.43 92.82 90.24 89.38 89.81 89.49 88.51 89 88.76 89.12 88.94

DE-FCM 93.23 92.23 92.73 91.25 91.01 91.13 90.17 91.28 90.725 90.234 90.23 90.232

DE-EWT 94.24 94.02 94.13 92.16 91.11 91.635 91.01 90.24 90.625 91.23 91.23 91.23

FCM-EWT 96.45 95.91 96.18 94.23 93.13 93.68 92.69 91.23 91.96 93.34 92.98 93.16

DE-FCM-EWT 98.34 98.09 98.215 95.73 94.25 94.99 93.47 93.08 93.275 94.03 93.11 93.57

TABLE 4 Performance analysis of the LMD-fuzzy C-means with combined kernel SVM.

SVM-linear kernel SVM-polynomial kernel Combined kernel LS-SVM

Sen Spe Acc Sen Spe Acc Sen Spe Acc

LMD 92.23 93.25 92.74 93.23 93.45 93.34 96.54 96.32 96.43

Fuzzy C-means 94.46 95.23 94.845 94.88 94.99 94.935 97.55 97.91 97.73

LMD-fuzzy C-means 96.11 95.12 95.615 96.91 96.03 96.47 98.23 98.78 98.505

FIGURE 6

GDR analysis for the dynamic graph construction and graph entropy-based machine learning technique.
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proposed dynamic graph construction and graph entropy-based 
SVM classification technique. Figure 7 illustrates the GDR analysis 
for dimensionality deduction with the EA-BBN-ELM hybrid model 
and it is evident that a high GDR is found for the LTSA-based 
PSO-BBN-ELM hybrid model. Figure 8 illustrates the GDR analysis 
of the DE-FCM-EWT hybrid model with machine learning 
classifiers and a high GDR is found for the DE-FCM-EWT model 
with SVM classifier. Figure 9 illustrates the GDR analysis of the 
LMD-fuzzy C-means with SVM and combined kernel SVM and a 
high GDR is observed for the LMD-fuzzy C-means model classified 
with the combined kernel SVM.

3.1. Comparison with previous works

The results of our research have been compared with the 
results of previous works done on the same dataset. Only one 

published paper was found in the literature in the year 2022 
where the same dataset was used and a result of about 99.17% was 
obtained by means of applying a MCBP method classified with a 
SVM classifier (Tuncer et al., 2022). In Tuncer et al. (2022), the 
authors used just one methodology to obtain that result. However, 
in our work, four different methods have been proposed 
encompassing many ideas and an exhaustive analysis has been 
conducted. The best results were obtained for the DE-FCM-EWT 
hybrid model with SVM classifier reporting a classification 
accuracy of 98.21%. The second-best classification accuracy (of 
98.5%) was obtained using the LMD-fuzzy C-means clustering 
technique classified with a combined kernel LS-SVM model.  
The third best classification accuracy (of 97.57%) was obtained 
using the LTSA-based EA-BBN-ELM model and the fourth best 
classification accuracy (of 96.44%) was obtained for the dynamic 
graph-based construction with graph entropy and SVM classifier. 
As far as the first proposed strategy is concerned, the lowest 

FIGURE 8

GDR analysis of the DE-FCM-EWT hybrid model with machine learning classifiers.

FIGURE 7

GDR analysis for dimensionality reduction with the EA-BBN-ELM hybrid model.
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classification accuracy (of 85.52%) was obtained when the 
dynamic graph construction concept was implemented directly 
with NBC. As far as the second proposed strategy is concerned, 
the lowest classification accuracy (of 91.72%) was obtained  
when the LLC with GSO-BBN-ELM model was used. As far as the 
third proposed strategy is concerned, DE with NBC produced a 
lower accuracy of 84.93% and, as far as the final proposed 
strategy is concerned, the LMD with SVM linear kernel  
produced a lower accuracy of 92.74%. Thus, for different 
combinations, an exhaustive analysis has been done to analyze 
the best and worst performing methods and the results are 
projected clearly.

4. Conclusion and future work

A good research area in the field of biomedical engineering is in 
the field of neuro-prosthetics as it has gained a lot of popularity in the 
past few decades. Significant advancements in prosthetics control 
allow amputees to complete more tasks independently, although the 
classification accuracy remains a huge challenge. sEMG signals are 
highly useful for the control and application of prosthetic control, 
where these signals are implemented for robotic control of fingers, 
arms, and hands. With the advent of automated machine learning 
techniques, the automated classification of sEMG signals has been 
explored to a great extent and in our paper four methods have been 
proposed. The best results are obtained using the DE-FCM-EWT 
hybrid model with SVM classifier, reporting a classification accuracy 
of 98.21%, and the second-best classification accuracy (of 98.5%) is 
obtained using the LMD-fuzzy C-means clustering technique 
classified with a combined kernel LS-SVM model. In the future, the 
plan is to implement it on bigger sEMG datasets. Also, the plan is to 
further implement a variety of other machine learning and transfer 
learning techniques. Future work is also planned to incorporate 
advanced deep learning models if bigger datasets are available. In 
future, the work can also be implemented for telemedicine applications 
so that remote healthcare monitoring systems can be improved.
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