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Approaching the mapping limit
with closed-loop mapping
strategy for deploying neural
networks on neuromorphic
hardware

Song Wang, Qiushuang Yu, Tiantian Xie, Cheng Ma and Jing Pei*

Department of Precision Instrument, Center for Brain-Inspired Computing Research (CBICR), Tsinghua

University, Beijing, China

The decentralized manycore architecture is broadly adopted by neuromorphic

chips for its high computing parallelism and memory locality. However, the

fragmented memories and decentralized execution make it hard to deploy neural

network models onto neuromorphic hardware with high resource utilization and

processing e�ciency. There are usually two stages during the model deployment:

one is the logical mapping that partitions parameters and computations into small

slices and allocate each slice into a single core with limited resources; the other

is the physical mapping that places each logical core to a physical location in

the chip. In this work, we propose the mapping limit concept for the first time

that points out the resource saving upper limit in logical and physical mapping.

Furthermore, we propose a closed-loop mapping strategy with an asynchronous

4D model partition for logical mapping and a Hamilton loop algorithm (HLA) for

physical mapping. We implement the mapping methods on our state-of-the-

art neuromorphic chip, TianjicX. Extensive experiments demonstrate the superior

performance of our mapping methods, which can not only outperform existing

methods but also approach the mapping limit. We believe the mapping limit

concept and the closed-loop mapping strategy can help build a general and

e�cient mapping framework for neuromorphic hardware.

KEYWORDS

neuromorphic chip, logical mapping, physical mapping, mapping limit, closed-loop

mapping

1. Introduction

Deep neural networks (DNNs) have made a series of breakthroughs in many fields.

With the exponential growth (Vaswani et al., 2017; Gholami et al., 2021) of parameters and

computations of DNN models, the memory and computational costs are unaffordable for

conventional (Von Neumann, 1993) architectures. To overcome the memory wall problem,

the decentralized manycore architecture emerges in recent years for performing neural

network workloads, which presents massive processing parallelism, memory locality, and

multi-chip scalability (Painkras et al., 2013; Akopyan et al., 2015; Han et al., 2016; Jouppi

et al., 2017; Parashar et al., 2017; Shin et al., 2017; Davies et al., 2018; Chen et al., 2019; Pei

et al., 2019; Shao et al., 2019; Deng et al., 2020; Zimmer et al., 2020). Each functional core
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contains independent computation and memory resources with

close distance, and cores communicate through a flexible routing

fabric (Wu et al., 2020). Due to the limited hardware resources

in each core, a large neural network model has to be partitioned

and mapped onto cores during deployment. The mapping process

experiences two stages: logical mapping and physical mapping.

In the logical mapping stage, the requirements for computation

and memory resources are important consideration factors for

allocating cores. The parameters and the associated computations

are divided into small slices through tensor dimension partition

and each slice is allocated into a single core with limited hardware

resources (Shao et al., 2019; Deng et al., 2020; Wu et al., 2020). For

a convolutional layer, most previous work adopts the 2D partition

to split the input channel (Cin) and the output channel (Cout)

dimensions. However, partitioning the input channel dimension

would generate partial sums (psum), which might degrade the

model accuracy. To avoid the accuracy loss, the bit-width of

psum has to be enlarged, which unfortunately results in longer

communication latency and larger memory overhead.

The logical mapping only partitions a neural network and

allocates the partitioned sub-networks to cores logically. This stage

does not care the physical locations of cores on real hardware. The

physical mapping places each logical core to a physical location

in the chip, which greatly affects the communication latency and

might cause the deadlock problem (Wu et al., 2020). The core

placement optimization for minimized latency is actually an NP-

hard problem (Myung et al., 2021) and the search space grows

rapidly as the number of cores increases. Existing algorithms for

physical mapping on a 2D mesh topology are usually heuristic.

In this work, we find that there exists a limit in mapping

a neural network model onto the decentralized multi-core

architecture widely used by neuromorphic hardware. To approach

this limit for fully utilizing hardware resources, we propose the

closed-loop mapping strategy. Specifically, in logical mapping, we

propose an asynchronous 4D partition between input activations

(IA) and weights (W) from four dimensions for reducing execution

latency; in physical mapping, we propose a Hamilton Loop

Algorithm (HLA) for deadlock-free core placement with reduced

communication latency. With our optimization, the running speed

and computing efficiency can be improved by 7.6 and 8.8×,

respectively via the integration of the logical mapping and the

physical mapping, compared with the synchronous partition.

Moreover, the running speed and computing efficiency can

approach the performance limit of hardware, which is validated on

the TianjicX chip (Deng et al., 2018).

2. Preliminaries and related works

2.1. Graph representation

As aforementioned, mapping a neural network model onto a

decentralized multi-core architecture has two stages: the logical

mapping and the physical mapping, as illustrated in Figure 1.

The logical cores can be represented by a graph G(V , E), thus

the physical mapping can be viewed to place G(V , E) on a circuit

graph T(U, S). V and U denote the sets of nodes, i.e., logical cores

and physical cores, respectively; E and S denote the sets of edges, i.e.,

connections between logical cores and physical cores, respectively.

Specifically, the physical mapping can be described as follows:

V → U, s.t. =















|V| ≤ |U|,

∀vi ∈ V ,map(vi) ∈ U,

∀vi 6= vj ∈ V ,map(vi) 6= map(vj).

(1)

where vi and vj denote the i-th and j-th nodes (i.e., core) in V ,

respectively; |V| and |U| represent the numbers of logical and

physical cores, respectively. Above constraints imply one-to-one

mapping from logical cores to physical cores. Furthermore, we

denote the weighted edges (#packets) between vi and vj as cij and

denote the Manhattan distance between map(vi) and map(vj) as

Mij, i.e.,Mij = |xi − xj| + |yi − yj| where (xi, yi) and (xj, yj) are the

coordinates of the two physical cores on the 2D physical plane. Let’s

define E|h| as the energy of transmitting a routing packet through

a single hop distance, and define Lij as the communication latency

with a routing packet between map(vi) and map(vj), respectively.

With the above definitions, the total communication cost Ccost

(Myung et al., 2021), the average communication latency L (Amin

et al., 2020), and the average power consumption P (Pei et al., 2019;

Ma et al., 2020) can be calculated by

Ccost =
∑

∀vi ,vj∈V
cij ×Mij, (2)

L = avg(
1

Ni

∑

j
cij × Lij), (3)

P =
Ccost × E

∣

∣

∣
h
∣

∣

∣

T
. (4)

where the Ni is the number of routing packets received by the

physical coremap(vi). The working period T can be approximately

viewed as a fixed variable.

2.2. Logical mapping

At present, most researchers adopt 2D partition in logical

mapping by splitting both input and output channel dimensions.

The partition of the input channel dimension would compromise

accuracy due to the accumulation of psums, while the partition of

the output channel dimension would cause the requirement for

data reshaping in the next layer. Besides the 2D partition, some

works such as Simba (Shao et al., 2019; Zimmer et al., 2020) and

Tianjic (Pei et al., 2019; Deng et al., 2020) can support 4D partition

further on the feature map width and height. However, current

mapping strategies face some challenges as shown in Figure 2,

including the data overlap between the feature map partition, the

psum accumulation in the input channel partition, and the data

reshaping in the output channel partition.

The additional storage overheads in a core can be generated

by the row-wise overlap Srow_add, the column-wise overlap Scol_add,

the psum Sp_add, and the reshaped data Sre_add, which also result

in additional computation latency. The additional storage and

computation latency can be obtained by

Sadd = Srow_add + Scol_add + Sp_add + Sre_add, (5)
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FIGURE 1

Illustration of mapping (A) a neural network onto neuromorphic hardware with two stages: (B) logical mapping; (C) physical mapping.

FIGURE 2

Typical challenges in neural network partition: (A) column-wise overlap; (B) row-wise overlap; (C) psum accumulation; (D) data reshaping. The

symbol * means convolution.

tadd_1 = f1(Srow_add)+ f2(Scol_add)

+f3(Sp_add)+ f4(Sre_add).
(6)

where Sadd denotes the additional storage overhead in a core. fi(·)

represents the function for processing the additional data. Note that

we have fi(0) = 0. tadd_1 is the additional computation latency

of a core neglecting the additional latency caused by the physical

mapping. Because the partition depth of input channels is equal to

that of each weight filter, all of these partition methods are viewed

as the synchronous partition in this work.

2.3. Physical mapping

The optimal physical mapping is acknowledged to be an NP-

hard problem (Myung et al., 2021). The 2D mesh topology is

widely adopted by neuromorphic hardware owing to its high

throughput and scalability (Painkras et al., 2013; Akopyan et al.,

2015; Davies et al., 2018; Pei et al., 2019; Shao et al., 2019; Deng

et al., 2020; Zimmer et al., 2020). And the deadlock occurs in

the 2D mesh usually. When the requested number of packets

is more than that of the packet buffer size, the cores wait

each other infinitely, thus deadlock occurs. To avoid deadlock
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FIGURE 3

Example for helping understand communication latency caused by

physical mapping.

and optimize the communication latency and energy in physical

mapping, reinforcement learning (Ma et al., 2019; Barrett et al.,

2020; Feng et al., 2020; Cappart et al., 2021; Mazyavkina et al.,

2021) is used by some researchers (Wu et al., 2020; Myung et al.,

2021). Moreover, Figure 3 explains the communication latency in a

multi-core architecture after physical mapping (Amin et al., 2020).

Because the 8-th and the 9-th cores send data to the 11-th core

concurrently, the 10th core is crossed twice by them due to the

physical route. Thus, the latency is generated by the 10th core.

There aremany heuristic solutions to physical mapping, such as

the genetic algorithm (GA) (Lei and Kumar, 2003; Zhou et al., 2006)

and the simulated annealing (SA) (Ma et al., 2020) algorithm. Some

teams (Davies et al., 2018; Shao et al., 2019; Zimmer et al., 2020) also

use the greedy algorithm to optimize the communication latency

and energy. We use tadd_2 to denote the additional computation

latency of a core when considering the physical mapping. It can be

obtained by

tadd_2 = g1(Srow_add)+ g2(Scol_add)

+g3(Sp_add)+ g4(Sre_add).
(7)

where gi(·) represents the function for processing above additional

data under the condition of physical mapping. Similarly, we have

gi(0) = 0.

3. Mapping limit

3.1. Logical mapping limit

For logical mapping, we introduce a theoretical description.We

denote the sets of weights (W), input activations (IA), and output

activations (OA) of the i-th and j-th core as Wi, Wj, IAi, IAj, OAi,

and OAj, and further denote the storage volume of W and IA in

each core as SW and SIA, respectively. Then, the logical mapping

can be described as

∀i, ∪i IAi = IA, ∪i Wi = W, (8)

∀i, OAi = IAi ∗Wi, OA = IA ∗W, (9)

∀i 6= j, ∪i OAi = OA, OAi ∩ OAj = ∅, (10)

SIA + SW ≤ Smem, (11)

where Smem represents the total memory volume of a core. The non-

overlap of OA indicates each output activation is calculated only

once. Because OAwill be transmitted to the IAmemory of the cores

for the next layer, Smem does not take SOA into account.

The additional storage overhead for a core generated in

partition can be calculated by:

Scol_add =
HinCin

Jm
(Kw − s) · µ(I − 2), (12)

Srow_add =
WinCin

Im
(Kh − s) · µ(J − 2), (13)

Sre_add =
HoutWoutCout

IJm
· µ(n− 2), (14)

Sp_add =
HoutWoutCout

IJm
·
bp

b
· µ(m− 2). (15)

where µ(·) represents the unit step function, s represents the stride

of the filter,Hin,Win,Hout , andWout represent the height and width

sizes of IA and OA, respectively. kw and kh are the width and height

sizes of each weight kernel. And bp and b represent the bit-width of

psum and IA, respectively. The logical mapping limitmeans that the

logical mapping does not produce any additional storage overhead,

which can be described as

∀i 6= j, IAi ∩ IAj = ∅, Wi ∩Wj = ∅ (16)

Sadd = 0. (17)

When we approach the logical mapping limit, the values of Srow_add,

Scol_add, Sp_add, Sre_add, tadd_1, and tadd_2 should be zero.

3.2. Physical mapping limit

After the logical mapping stage, the logical cores would

be mapped onto the physical cores in a real chip. With the

aforementioned graph representation, we optimize the average

communication latency (L) and power consumption (P) without

deadlock. The physical mapping limit here implies all logical cores

are physically placed very close, especially being neighbors with

Manhattan distance equal to one, which can be described as

∀vi, vj, Mij = 1. (18)

Then, the communication cost can be reduced to

Ccost =
∑

∀vi ,vj∈V
cij ×Mij =

∑

∀vi ,vj∈V
cij. (19)

Because W and IA must be put in cores, the minimum of Ccost

is the sum ofW and IA. Now, the communication cost can be given

as follows:

Ccost =
∑

∀vi ,vj∈V
cij

=
∑

∀vi∈V
(IAi +Wi) = IA+W.

(20)
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FIGURE 4

Closed-loop mapping based on (A) IA or (B) W.

The average communication latency and power consumption

can be the communication latency and power consumption by

transmitting a routing packet between two neighboring cores due

toMij = 1.

In short, integrating the logical mapping limit and the physical

mapping limit, the overall mapping limit follows

∀i 6= j, IAi ∩ IAj = ∅, Wi ∩Wj = ∅, (21)

Sadd = 0, (22)

∀vi, vj, Mij = 1. (23)

To approach themapping limit, a closed-loopmapping strategy

is proposed in the next section.

4. Approaches

4.1. Closed-loop mapping strategy

To approach the logical mapping limit, we propose a closed-

loop mapping strategy with two forms. As illustrated in Figure 4,

one form is based on IA, and the other is based on W. Taking

four cores and the IA-based form as an example (see Figure 4A),

the computing process can be described as follows. In the first

phase, each core performs the convolution operation between IAi

and Wi. At the end of the first phase, each core keeps its Wi

stationary and sends its IAi to the downstream core. In the next

phase, each core performs the convolution operation between Wi

and its newly received IA. This loop would be closed when all cores

have performed a complete convolution operation between its local

Wi and all IAs. In this example, the loop needs four phases to close,

and then we can get all OAs distributed in the four cores. The

computing process can be summarized as

OA(i−t+N)%N =

N−1
∑

t=0

IA(i−t+N)%N ∗Wi. (24)

where N denotes the number of cores used for the layer and t is

the index of phases. It can be seen that the above mapping strategy

does not consume any additional memory overhead, satisfying the

logical mapping limit given in Equations (21)–(22). For the W-

based closed-loop mapping, the overall flow is similar. The only

difference is that each core keeps IA stationary and exchanges W

between cores.

In order to implement the closed-loop mapping on hardware,

a 4D partition with synchronous and asynchronous methods is

proposed for logical mapping, which is more flexible and general

than the existing 2D synchronous partition. Here “4D” refers toCin,

Cout , and two dimensions of each feature map.

First, we try the 4D synchronous partition, as illustrated in

Figure 5. Note that I, J,m, and n represent the number of partition

groups in feature map height, feature map width, Cin, and Cout

dimensions, respectively. kw and kh are the width and height sizes

of each weight kernel. In the synchronous partition, W should be

broadcasted along the feature map dimensions I × J times, and IA

should be broadcasted along the output channel dimension n times.

Therefore, the redundancy of storage caused by this partition is

Ssync =
n(HinWinCin)+ IJ(kwkhCinCout)

HinWinCin + khkwCinCout
− 1. (25)

Moreover, the number of allocating cores is

N = IJmn. (26)

The resulting storage overheads for IA and W in each core

should be
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FIGURE 5

Illustration of the 4D synchronous mapping.

FIGURE 6

Illustration of the 4D asynchronous closed-loop mapping: (A) exchanging IA as Figure 4A; (B) exchanging W as Figure 4B.

SIA =
HinWinCin

IJm
, SW =

kwkhCinCout

mn
. (27)

In short, the additional storage overhead on hardware given the

4D synchronous partition can be

Shw_add = (IJ − 1)kwkhCinCout + (n− 1)HinWinCin + IJmnSadd.

(28)

Apparently, Equation (21) can only be satisfied under the

condition IJn = 1, but Equation (22) cannot be satisfied under this

case because psums exist. Therefore, the synchronous 4D partition

fails to approach the logical mapping limit.

In order to approach the logical mapping limit described in

Equations (21)–(22), we further propose an asynchronous partition

method based on the closed-loopmapping strategy. Corresponding

to the IA-based closed-loop mapping, the asynchronous partition

method selects Cin of IA and Cout of W to partition. Taking N = 4

as an example, it can be seen from Figure 6A that both Cin of IA

and Cout of W are partitioned into m = n = N groups. Then, the

resulting IA and W in each core can satisfy Equation (21) without

duplication. The reshaping overhead does not exist because the

shape of OA is consistent with that of IA. Because psums can be

accumulated locally, the psum communication also does not exist.

Therefore, all additional storage overheads are zero and Equation
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FIGURE 7

HLA-based physical mapping: (A) even number of cores; (B) odd number of cores.

(22) is satisfied. For theW-based closed-loopmapping in Figure 6B,

the overall idea is similar to the IA-based case while Hin of IA and

Cin ofW are selected to partition. For the asynchronous closed-loop

mapping, the storage overheads for IA and W in each core are

SIA =
HinWinCin

N
, SW =

kwkhCinCout

N
. (29)

With the above knowledge, we make an explanation for

the words “synchronous” and “asynchronous.” In this work,

“synchronous” means both the partitioning dimensions of IA and

W involve Cin. In contrast, “asynchronous” means the partitioning

dimensions of IA and W are different, for example in Figure 6A

partitioning IA along theCin dimension while partitioningW along

the Cout dimension, and in Figure 6B partitioning IA along the Hin

dimension while partitioning W along the Cin dimension. In the

asynchronous closed-loop mapping, one of IA and W in each core

has a complete Cin dimension, and the other is gradually acquired

by exchanging data between cores without any redundant data

copy.

4.2. Hamilton loop algorithm for physical
mapping

To satisfy Equation (23) of the physical mapping limit, the

Hamilton Loop Algorithm (HLA) is proposed for the closed-loop

mapping strategy with asynchronous partition. Taking 12 cores as

an example, it can be seen from Figure 7A that the Manhattan

distance of every two logically neighboring cores equals 1, i.e.,

satisfyingMij = 1 as given in Equation (23). The physical mapping

form can be flexibly arranged according to the array form of the

available physical cores, e.g., 4 × 3, 3 × 4, and 6 × 2. Notice that

the number of cores cannot be odd, as illustrated in Figure 7B.

In those cases, Equation (23) cannot be satisfied unless there is a

diagonal communication path. Usually, only one Hamiltonian loop

is needed. A fast algorithm is proposed to find a Hamiltonian loop,

whose pseudo-codes are given in Algorithm 1.

for i in range(m): //row

//x direction communication distance

dx[i][0] = 1 if i == 0 else 0

//y direction communication distance

dy[i][0] = 0 if i == 0 else -1

if n == 2:

dx[i][n - 1] = -1 if i == m-1 else 0

dy[i][n - 1] = -1 if i == m-1 else 0

else:

dx[i][n - 1] = 0 if i % 2 ==0 else -1

dy[i][n - 1] = 1 if i % 2 ==0 else 0

for j in range(1,n-1): //column

if j = =1 and i != m - 1:

dx[i][j] = 1 if i % 2 ==0 else 0

dy[i][j] = 0 if i % 2 ==0 else 1

else:

dx[i][j] = 1 if i % 2 ==0 else 1

dy[i][j] = 0

Algorithm 1. Fast algorithm to find a Hamiltonian loop.

5. Experimental results

The mapping methods are implemented on a 28nm

neuromorphic chip, TianjicX (Ma et al., 2022), which adopts

a decentralized manycore architecture with 160 functional cores.

Each core has 128 multipliers and accumulators (MACs) for

parallel execution operations in neural networks. To maintain

accuracy as high as possible, the precision for accumulating psums

is 32-bit. TianjicX supports the aforementioned 4D partition

methods. The testing system includes a host computer, an Intel

Arria 10 FPGA, four TianjicX chips, and an oscilloscope, as

presented in Figure 8. The parameters and inputs of neural

networks can be downloaded onto the chip by the configuration

software on the host computer. The oscilloscope (RIGOL

MSO8104) is used to measure the running time. Notice that the

results of logical mapping are produced by the TianjicX simulator,

while the results involving physical mapping are measured from

the real chip.
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FIGURE 8

Testing system based on the TianjicX neuromorphic chip.

5.1. Analysis of logical mapping

We focus our application measurements on the ResNet50 (He

et al., 2016), which is often used to benchmark by many hardwares

(Jiao et al., 2020; Zimmer et al., 2020; Jouppi et al., 2021). However,

as we do not have an automatic mapping tool at the current

stage, we select a portion of the ResNet50 convolutional network

for experimental analyses. In essence, the methodology can be

extended to the whole convolutional networks in principle. To

optimize the running time of each dimension, the synchronous

partition method is selected as a baseline for investigation. The

benchmarking layers are the 5-th and 6-th layers of ResNet50. The

dimension settings of synchronous mapping are listed in Table 1. J,

I, m and n represent the numbers of partition groups in the width,

height, input channel, and output channel dimensions, respectively.

First, from Model 1 to Model 6, I × J is set to a constant, 28, to

explore the influence of partitioning I, J on the running clocks.

Second, fromModel 7 toModel 12, J×m = const and I×m = const

are set to compare the influence priority of J, I, andm in dimension

partition. Third, fromModel 13 to Model 15, the influence priority

is further compared among I, J, m, and n. Finally, we analyze the

impact of changing partition dimensions on the running latency

and computing efficiency.

The experimental results of partitioning different dimensions

are provided in Figure 9. From Figure 9A, it can be seen that the

close the values between J and I, the shorter running time can be

achieved. Meanwhile, we observe that the latency results of Model

1–6 present small variance, which implies that the partition of

feature map dimensions has a negligible impact on the execution

latency. From Figure 9B, it can be seen that the running time would

be increased when we partition Cin, which introduces additional

accumulation of psums and extra inter-core communication. As

Figure 9C shows, althoughModel 7 introduces reshaping latency as

n increases, it still reduces the total running clocks by 8000 owing to

the decrease of m. It indicates that the partition of Cin has a larger

impact on the running time than the partition of Cout . Similarly, by

comparing Model 14 and Model 15, we find the partition of Cout

has larger impact than the partition of feature map dimensions.

Overall, the accumulation and communication of psums caused by

partitioning Cin has the greatest impact on the execution latency,

TABLE 1 Dimension settings of synchronous partition.

No. of cores J I m n Model

28 28 1 1 1 Model 1

28 14 2 1 1 Model 2

28 7 4 1 1 Model 3

28 4 7 1 1 Model 4

28 2 14 1 1 Model 5

28 1 28 1 1 Model 6

56 28 1 1 2 Model 7

56 14 1 2 2 Model 8

56 7 1 4 2 Model 9

56 1 28 1 2 Model 10

56 1 14 2 2 Model 11

56 1 7 4 2 Model 12

56 28 1 2 1 Model 13

28 14 1 1 2 Model 14

28 1 28 1 1 Model 15

while reshaping caused by partitioning Cout has a greater impact

than overlapping caused by partitioning feature map dimensions.

With the above knowledge, it is possible to optimize execution

latency by elaborating partition method.

As aforementioned, the asynchronous partition based on the

closed-loop mapping strategy can approach the mapping limit. To

demonstrate its superior performance, we compare the running

latency and computing efficiency of both synchronous partition

and asynchronous partition. We use two types of layers: one is the

15-th layer of ResNet50 with 3× 3 weight kernels, and the other is

the 16-th layer of ResNet50 with 1 × 1 weight kernels. The model

settings for the two benchmarking layers are respectively listed in

Tables 2, 3.

The experimental results are depicted in Figures 9D, E. Due

to the limited number of primitive instructions in TianjicX, the

maximum number of nodes in a closed loop cannot be larger
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FIGURE 9

The logical mapping of running clocks and computing e�ciency (A) synchronous partition of changing I and J; (B) synchronous partition of

changing m, (I, J); (C) synchronous partition of changing m, n, and (I, J) (D) asynchronous partition with the 15-th layer of ResNet50; (E)

asynchronous partition with the 16-th layer of ResNet50.

TABLE 2 Dimension setting of synchronous and asynchronous partition

for the 15-th layer of ResNet50.

No. of cores J I m n Model

28 7 1 1 4 limit

28 7 1 2 2 S(m = 2)

28 7 2 1 4 A(#nodes = 2)

28 7 1 4 1 S(m = 4)

28 7 4 1 4 A(#nodes = 4)

S, synchronous mapping; A, asynchronous mapping; No. of nodes, number of nodes in a

closed loop.

TABLE 3 Dimension setting of synchronous and asynchronous partition

for the 16-th layer of ResNet50.

No. of cores J I m n Model

112 7 1 1 16 limit

112 7 1 2 8 S(m = 2)

112 7 2 1 16 A(#nodes = 2)

112 7 1 4 4 S(m = 4)

112 7 4 1 16 A(#nodes = 4)

S, synchronous mapping; A, asynchronous mapping; No. of nodes, number of nodes in a

closed loop.

than four. As Figure 9E presents, the running latency under

asynchronous partition based on the closed-loop mapping is faster

than that of synchronous mapping. For example, the running

latency of the 16-th layer can be improved by 4.12× under

four nodes in a loop. Without the communication of psums, the

communication latency of asynchronous mapping can also be

greatly reduced.

5.2. Analysis of HLA physical mapping

To test the latency of HLA, we select all-to-all communication

to conduct experiments. The 15-th layer of ResNet50 with 98KB

parameters is the target workload. The all-to-all communication

topology is illustrated in Figure 10A. The communicating latency

is tested on TianjicX by enabling 4, 8, 16, or 32 cores. The

energy consumption is estimated through simulation. Each case is

tested with multiple physical mapping methods, including HLA,

sequential neighboring placement with and without multicast

(Myung et al., 2021), and several prior placement methods,

including sequential placement (BS) (Wu et al., 2020), random

search (RS) (Wu et al., 2020), simulated annealing (SA), and the

RL-based approach (Wu et al., 2020). Due to the deadlock issue, we

do not give the results of the zigzag physical mapping (Ma et al.,

2020).

The communication latency results can be found in

Figures 10B, C. As predicted, the communication latency of HLA

is the shortest among all tested physical mapping methods, which

is quite close to the mapping limit. The communication latency

of HLA can be reduced by 4.22× compared to the neighboring

placement with broadcast, and reduced by 84.1, 80.1, 74.1, and

67.9% compared to BS, RS, SA, and RL, respectively. Due to the

launching delay of chip primitives, the communication latency

increases as the number of used cores grows. The communicating
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latency of HLA approaches that of the mapping limit if there is no

launching overhead. When using the HLA physical mapping, all

cores are parallel to communicate without deadlock.

Assuming the number of cores is N and the data of a core for

communication is V , the total energy consumption of the mapping

limit, HLA and the neighboring placement with broadcast and

without broadcast can be calculated as follows:

EHLA = Elimit = N(VE|h|

N−1
∑

i=0

1)

= VE|h|
N(N − 1)

T
,

(30)

EN_B = VE|h|

N−1
∑

i=0

i+ N(VE|h|

N−1
∑

i=0

1)

= VE|h|
(N − 1)(3N − 2)

2T
,

(31)

EN_W_B = VE|h|

N
∑

i=0

(

i
∑

t=0

t +

N−i
∑

j=0

j)

= VE|h|
2N3 − 3N2 + N

6T
,

(32)

where EHLA, Elimit , EN_B, and EN_W_B represent the energy

consumption of under HLA, the mapping limit, the neighboring

placement with broadcast, and the neighboring placement without

broadcast, respectively. The energy results can be found in

Figure 10D. The energy consumption of all methods increases as

the number of the allocated cores grows. Obviously, the energy

consumption under the neighboring placement is much higher

than that under the mapping limit, while the energy consumption

under HLA is equal to that under the mapping limit.

In short, the HLA physical mapping based on the closed-

loop mapping strategy shows significant superiority on reducing

communication latency and energy consumption compared with

other methods. More importantly, the HLA physical mapping can

approach the mapping limit.

5.3. Integration of logical and physical
mapping

To demonstrate the performance of asynchronous logical

mapping and HLA physical mapping based on the closed-

loop mapping strategy, we deploy neural layers on TianjicX.

The experimental results are provided in Figure 11. Again,

Figures 11A, B evidence the superior latency of our closed-loop

mapping strategy compared to the conventional synchronous

mapping with Cin partition adopted by Simba (Shao et al., 2019;

Zimmer et al., 2020), Tianjic (Pei et al., 2019; Deng et al., 2020), and

other neural network accelerators (Han et al., 2016; Jouppi et al.,

2017; Parashar et al., 2017; Shin et al., 2017; Chen et al., 2019). The

FIGURE 10

The physical mapping of latency and consumption (A) all-to-all communication between cores; (B) comparing communication latency between the

neighboring placement, the mapping limit, and HLA; (C) comparing communication latency between prior methods, the mapping limit, and HLA; (D)

comparing energy consumption between the neighboring placement, the mapping limit, and HLA.
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FIGURE 11

Running time and computing e�ciency by integrating the logical and physical mapping under the closed-loop mapping strategy: (A) running time

for the 15-th layer of ResNet50; (B) running time for the 16-th layer of ResNet50; (C) computing e�ciency for the 15-th layer of ResNet50; (D)

computing e�ciency for the 16-th layer of ResNet50.

better computing efficiency of the closed-loop mapping strategy is

also evidenced by Figures 11C, D. Specifically, with four nodes in a

closed loop, the running time can be reduced by 7.6× for the 15-th

layer of ResNet 50, and the computing efficiency can be improved

by 8.8× for the 16-th layer. The proposed closed-loop mapping

strategy implemented by integrating the asynchronous partition

and the HLA placement can approach the mapping limit.

6. Conclusion and discussion

In this work, we propose the mapping limit concept for

neuromorphic hardware based on the decentralized manycore

architecture, which points out the resource saving upper limit

during model deployment. To approach the mapping limit, we

further propose the closed-loop mapping strategy that includes

the asynchronous 4D partition for logical mapping and the HLA

placement for physical mapping. Our experiments demonstrate

the superiority of the proposed mapping methods. For example,

compared to conventional synchronous Cin partition, our mapping

methods improve the running time and computing efficiency by

7.6× and 8.8×, respectively, which can approach the mapping

limit.

Generally, the mapping schemes for multi-core system can be

divided into two processes: the first is the logical mapping process

and the second is the physical mapping process. Furthermore, the

logical mapping can be divided into two sets of models, which

are synchronization and asynchronization. Most of the previous

researches adopt the synchronization model based on the 2D

mapping system (Shao et al., 2019; Ma et al., 2020; Wu et al., 2020;

Myung et al., 2021), which only partitions the in-channel and out-

channel of the neural network. And these researches focus on the

physical mapping based on the 2D mapping system, while the 4D

mapping system is a general model that has wider applications.

Based on our 4D mapping system, we propose the mapping limit

concept for the multi-core system. In the 4D mapping system,

both the synchronization model and asynchronization model

are demonstrated through intensive experiments. To achieve the

mapping limit, we adopt the asynchronization mode to integrate

the logical process and the physical process by the closed-loop

mapping strategy.

Since the GPU is not a distributed architecture, the optimized

result may be slightly rather than significantly improved in

terms of energy consumption and computational speed. With the

emergence of the decentralized architecture, the multi-core system

is expected to be widely adopted due to its high-parallelism and

memory locality (Painkras et al., 2013; Akopyan et al., 2015; Han

et al., 2016; Parashar et al., 2017; Shin et al., 2017; Davies et al.,

2018; Chen et al., 2019; Pei et al., 2019; Shao et al., 2019; Deng

et al., 2020; Zimmer et al., 2020). Therefore, we are convinced that

our proposed methods will provide a systematic solution to map

neural networks onto multi-core systems, and provide guidance
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for further development of auto-mapping tools. Moreover, with the

proposed mapping limit and the closed-loop mapping strategy, it

is possible to build a general and efficient mapping framework for

multi-core system in the future.
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