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Deaf-mutes face many difficulties in daily interactions with hearing people 
through spoken language. Sign language is an important way of expression and 
communication for deaf-mutes. Therefore, breaking the communication barrier 
between the deaf-mute and hearing communities is significant for facilitating their 
integration into society. To help them integrate into social life better, we propose 
a multimodal Chinese sign language (CSL) gesture interaction framework based 
on social robots. The CSL gesture information including both static and dynamic 
gestures is captured from two different modal sensors. A wearable Myo armband 
and a Leap Motion sensor are used to collect human arm surface electromyography 
(sEMG) signals and hand 3D vectors, respectively. Two modalities of gesture 
datasets are preprocessed and fused to improve the recognition accuracy and to 
reduce the processing time cost of the network before sending it to the classifier. 
Since the input datasets of the proposed framework are temporal sequence 
gestures, the long-short term memory recurrent neural network is used to 
classify these input sequences. Comparative experiments are performed on an 
NAO robot to test our method. Moreover, our method can effectively improve 
CSL gesture recognition accuracy, which has potential applications in a variety of 
gesture interaction scenarios not only in social robots.
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1. Introduction

According to statistics, there are over 70 million deaf people in the world.1 For these people, 
communication with others through verbal language is impossible. Therefore, there are a great 
many difficulties in their daily communications. For instance, deaf people could not hear a horn 
when crossing the street. How to help the deaf community and those who have language 
impairment enjoy accessible social lives is very important. A service robot is a kind of intelligent 
robot dedicated to providing service for improving human life. With the development of 
robotics, information science, and sensor technology, service robots have been applied widely 
in many fields, such as medical rehabilitation, education, transportation, and entertainment to 
domestic service (Siciliano and Khatib, 2016; Yang et al., 2018a; Gonzalez-Aguirre et al., 2021). 

1 World Federation of the Deaf. (2023). E. coli. http://wfdeaf.org/our-work/. [Accessed February 8, 2023].
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As a kind of service robot, the social robot is aimed at interacting with 
people in a human-centric way, which can provide a friendly way for 
interaction and services to meet the diverse demands of human beings 
(Breazeal et  al., 2016; Yang et  al., 2018b). Thus, social robots are 
expected to help the above-mentioned people communicate with 
others in a nonverbal way. In this sense, how to develop and design an 
intuitive, natural, easily interactive, and friendly interaction mode that 
can help these people communicate conveniently is a challenging topic 
for social robots.

Among various approaches to human-robot interaction (HRI), 
the way of using hand gestures for interaction facilitates more efficient 
communication between humans and robots. Since gesture interaction 
is a kind of non-contact way, which is more secure, friendly, and easy 
to accept by humankind. The gesture is one of the most widely used 
communicative manners. In the long-term social practice process, the 
gesture is endowed with a variety of specific meanings. At present, 
gesture has become the most powerful tool for expressing sentiment, 
intention, or attitude for humans. Hence, more and more researchers 
focus on gesture recognition and its applications. Many approaches 
are studied to recognize hand gestures by different modality sensors 
with various features. These approaches can be mainly categorized 
into three types: the wearable sensor-based approaches (Si et  al., 
2022), the vision sensor-based approaches (Mitra and Acharya, 2007; 
Oudah et al., 2020; Rastgoo et al., 2020; AI Farid et al., 2022), and the 
combination of the above-mentioned gesture recognition approaches 
(Wu et al., 2016; Xue et al., 2018; Roda-Sanchez et al., 2023). However, 
most of these studies were based on the single static or dynamic 
gestures to classification or recognition. Seldom of them focused on 
both dynamic and static recognition by using different modal 
information. Dynamic and static gestures are both needed to recognize 
under some specific circumstances, such as sign language recognition 
(SLR) for deaf or speech-impaired people.

Sign language is highly structural hand gestures, including static 
gestures and dynamic gestures. It serves as a useful tool for the deaf 
and hearing-impaired individuals in daily communication. The 
structural features of sign language make it very suitable for computer 
vision algorithms (Wu and Huang, 1999). Therefore, many relevant 
studies (such as SLR) are based on vision-based approaches (Cheok 
et al., 2019). The input data of vision-based SLR algorithms are usually 
divided into static gesture and dynamic gesture. Correspondingly, 
there are static-based and dynamic-based SLR approaches. For static 
sign language gestures, the approaches, such as K-nearest neighbor 
(Tharwat et al., 2015), support vector machine (Kurdyumov et al., 
2011), and multilayer perceptron (Karami et al., 2011) are used to 
obtain better results. The vision-based dynamic sign language 
approaches include hidden Markov model (HMM; Wang et al., 2003), 
dynamic time wrapping (Lichtenauer et al., 2008), relevance vector 
machine (Wong and Cipolla, 2005), and finite state machine (Hong 
et al., 2000), etc.

Recently, with the advent of deep neural networks (DNN, Cao 
et al., 2022a), various deep learning algorithms are applied to SLR 
(Camgoz et al., 2018; Cui et al., 2019; Qi et al., 2021). Pu et al. 
presented a dynamic convolutional neural network (CNN) SLR 
model based on RGB video input (Pu et  al., 2018). Wei et  al. 
combined the 3D convolutional residual network and bidirectional 
long short-term memory (LSTM) network to recognize dynamic 
sign language gestures (Wei et  al., 2019). Similarly, Cui et  al. 

developed a dynamic SLR framework by combining CNN and 
bidirectional LSTM networks (Cui et al., 2019). Ye et al. proposed 
a 3D Recurrent CNN to classify gestures and localize joints (Ye 
et al., 2018). With the development of sensor technology (Chen 
et al., 2020; Cao et al., 2022b), many high accuracy and low cost 
sensors appears, such as Kinect and Leap Motion Controller 
(LMC) sensors. These sensors can capture hand or arm 
information more conveniently. The combination of new emerging 
sensors and deep learning approaches brings more new 
possibilities for SLR. Chong and Lee used the features recorded 
from the LMC sensor to classify 26 letters in American Sign 
Language (ASL). The recognition accuracy reaches 93.81% with 
DNN algorithms (Chong and Lee, 2018). Naglot et al. used a deep 
learning method to achieve 96.15% based on LMC gesture samples 
(Naglot and Kulkarni, 2016). Kumar et al. (2017a) presented a 
multimodal framework combining the HMM and bidirectional 
LSTM networks. The framework can recognize isolated sign 
language gesture datasets from Kinect and LMC sensors. To 
improve the accuracy of SLR, researchers fused different features 
to achieve the expected results. Kumar et al. (2017a) classified 25 
Indian sign language (ISL) gestures by employing the coupled 
HMM to fuse the Leap Motion and Kinect sign language 
information. Bird et al. (2020) presented a late fusion approach to 
multimodality in SLR by fusing RGB and 3D hand data with a 
deep convolutional network. In the above research works, the sign 
language gestures involve both isolated static and dynamic hand 
gestures, based on Chinese sign language (CSL), ISL, ASL, and 
other sign languages from different countries, etc. The SLR 
approaches include traditional machine learning, deep learning, 
and the combination of both algorithms. However, these studies 
seldom take into account both static and dynamic sign language 
gestures in a classifier at the same time. Moreover, most of the 
researchers focus on using depth or RGB information as the input 
data of the classifier. Generally, the fusion of different modal input 
data also often uses these two data. The SLR framework proposed 
by Bird et  al. fused two modalities of gesture datasets both 
captured from one sensor (LMC; Bird et al., 2020). Hence, inspired 
by the previous work (Naglot and Kulkarni, 2016; Kumar et al., 
2017a,b; Bird et  al., 2020), we  propose a multimodal SLR 
framework that combines CSL features from several sensors to 
recognize static and dynamic hand gestures. This framework uses 
the deep learning method to fuse two modalities features from 
two different sensors to improve the recognition accuracy. The 
proposed multimodal framework can not only recognize singular 
CSL gestures but also recognize gestures consisting of two 
singular gestures.

Sign language mainly use the human hands to convey information. 
In some cases, other body parts such as fingers, arms, and head also 
used to convey information (Wu and Huang, 1999). CSL gestures 
mainly use human hands and arms. Therefore, the focus of this paper 
is to use human hand and arm information to classify corresponding 
gestures. Different from most of the vision-based input data, this work 
fuses the information from the visual sensor and surface 
electromyography (sEMG) signals by using Leap Motion and a 
wearable Myo armband. Though some research works in the gesture 
recognition area use human arm sEMG captured by Myo armband or 
other similar devices. Sometimes, higher recognition accuracy is also 
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achieved. But for SLR, seldom research applies sEMG signals to 
classify different sign language gestures. In this work, considering the 
characteristic of CSL, we apply the advantages of information fusion 
to fuse two modalities of data to improve recognition accuracy. It 
combines the advantages of arm sEMG information in gesture 
recognition and the complementary for different modal sensor 
information. Besides, SLR is mainly applied to the daily 
communication between deaf, speech-impaired, and autism spectrum 
disorders (ASD) communities, the proposed CSL recognition 
framework is applied to social robots. Thus, it can promote 
communication between these communities and entertainment 
with robots.

The main contribution of this work is that an HRI system by 
integrating two modalities of CSL data is developed for deaf and 
speech-impaired people, which enables the social robots to 
communicate with target people efficiently and friendly. Most 
importantly, the proposed system can be applied in other interaction 
scenarios between robots and autistic children. The remainder of the 
paper is organized as follows. The CSL gestures classification method 
is presented in section 2. Section 3 provides the simulations and case 
studies on the real-world robot. Section 4 concludes this work and 
discusses the further potential applications.

2. Methodology

The overview of the proposed HRI system is shown in Figure 1. It 
includes three phases: data collection, data classification, and 
robot response.

2.1. System overview

In this data collection phase, we mainly collect four different kinds 
of common CSL gestures. Here, two modalities of hand action data 
are collected from two different modal sensors. Leap Motion is applied 
to capture human hand 3D features. Meanwhile, the human arm 
sEMG signals are captured by the Myo armband.

In the data classification phase, the collected gesture data from 
two sensors are preprocessed, respectively. Then, the features of two 
modalities datasets are fused as one dataset, which serves as input to 
the LSTM classifiers.

In the robot response phase, after the gesture data is recognized 
by the LSTM classifier, the results are transformed into executable 
commands of the social robot. Later, the robot makes a response to 
the recognition results.

2.2. Data collection and preprocessing

Figure  2 presents the overall steps of the data collection, 
preprocessing, and feature fusion. As aforementioned, the Myo 
armband and LMC are used to capture arm sEMG signals and 
human hand movements, respectively. As shown in Figure 2, a 
participant wears the Myo armband on the forearm and puts his/
her hand onto the Leap Motion sensor within viewing range to 
capture sEMG signals and hand movement information 
synchronously. When a participant is performing a certain sign 
language, the data are recorded synchronously from the Myo 
armband and LMC. That is, the sEMG signals and human hand 3D 
vectors from both sensors are timely collected. In this paper, four 
daily CSL gestures are considered.

2.2.1. Hand 3D information captured by leap 
motion sensor

Leap motion is an optical hand tracking sensor that captures 
the movements of human hands with sub-millimeter accuracy. The 
sketch of LMC is shown in Figure  3A. The core of the device 
consists of three infrared LEDs placed at equal distances from each 
other, and two stereo cameras placed between each pair of IR 
sensors (Li et al., 2019). With these devices, LMC can detect the 
bones and joints of the human hand accurately by combining 
stereoscopy and depth-sensing. The view of a 3D representation of 
the hand translated by the two cameras is shown in 
Figure 3B. Compared with the Microsoft Kinect sensor, LMC is 
more portable, smaller ( L W H cm× × = × ×8 3 1 1

3
. ), and lower-

cost (Weichert et  al., 2013). Here, the Leap Motion sensor is 
applied to collect 3D vectors of the human hand.

Two healthy participants aged 22–35 years contributed to a dataset 
of CSL gestures. They are asked to repeat each gesture 50 times 
comfortably. The length of each gesture is recorded within 5 s to avoid 
muscle fatigue and affect data quality. During the data recording, 
participants are asked to take a break for each repeat. They told the 
details of data collection in advance. Four different gestures of the 
right hand are recorded at a frequency of 50 Hz. The LMC data are 
recorded by the deep cameras located on the sensor facing the 
participants’ hand. It is worth noting that both participants placed 
their palms at the same height above the LMC sensor. Also, the 
positions of the Myo armband for them are the same.

FIGURE 1

The framework of the proposed multimodal human-robot 
interaction (HRI) system.
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Figure 4 demonstrates the fingertips, wrist, and palm position. For 
each performed gesture, we record all the 3D coordinates of human 
hand. Then, the start palm position, the difference between the start 
palm positions, changes of palm positions, palm direction, and 
velocity of the palm are extracted from these 3D coordinates. As 
shown in Figure 4, we also extracted the yaw, pitch, and roll of the 
palms. It is noted that yaw is the angle between the negative z -axis 

and the projection of the vector onto the x - z  plane. Similarly, pitch 
and roll are the angles between the corresponding negative coordinate 
axes and the projection of corresponding vectors. In other words, pitch, 
yaw, and roll represent the rotations around the x , y , and z  axes, 
respectively. The angle is calculated through two 3D vectors (Bird et al., 
2020). Assuming that the angle θ  is constructed by the vectors of a  
and 



b , then it can be computed as follows

FIGURE 2

An overall diagram of the HRI system.

A B

FIGURE 3

The view of Leap Motion Controller (LMC). (A) Schematic view of LMC. (B) 3D view of human hand from LMC (Weichert et al., 2013).
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where a  and b  are vectors made up of two points in space 
following the LMC coordinate system. The LMC sensor adopts a 
Cartesian coordinate system based on right-hand. The origin is at the 
top center of LMC. a  and b



 are the magnitudes of the 
corresponding vectors, which can be computed as follows

 

( ) ( ) ( )

( ) ( ) ( )

22 2

22 2

a a a

b b b

x y z

x y z

= + +

= + +

a

b





 

(2)

where the subscripts of a  and b  correspond to the x , y , and 
z  coordinates of each vector in space, respectively.

In this work, nine features (six 3D coordinates and three 
one-dimensional angle) are chosen to distinguish four CSL gestures. 
Each 3D coordinate is three-dimensional. Hence, the total dimensions 
of the nine features are 21, as shown in Table 1. It is known that the 
features of dynamic gestures are time-varying. The change of palm 
position can reflect that change well. Hence, the palm position (as 
shown in the second feature in Table 1) is extracted as one of the 
features to distinguish dynamic and static gestures effectively. Thus, 
the proposed framework can recognize both static and dynamic 
gestures without another special classifier. Noting that the wrist 
position is extracted to reflect the change of arm.

2.2.2. Human arm sEMG signals captured by Myo 
armband sensor

Figure 5 shows the sketch of Myo armband. It is a wearable and 
lightweight elastic armband. Myo armband is produced by the 
Thalmic Labs which consists of several metal contacts. These metal 
contacts can measure the electrical activity of the user’s forearm 

muscles. Thus, the Myo armband can recognize their hand gestures 
and detect their arm motion by reading the electrical activity of 
human muscles. The Myo armband has eight detection channels. 
Correspondingly, eight-channel sEMG signals of the human forearm 
arm are captured to classify sign language gestures together with LMC 
data. Since gestures are collected synchronously from the Myo 
armband and Leap Motion sensor, the sampling frequencies for both 
sensors are the same. The raw sEMG signals are noisy. Therefore, it is 
necessary to process the signals captured by the Myo armband to train 
the gesture classifier effectively (Zardoshti-Kermani et  al., 1995; 
Phinyomark et al., 2013; Camargo and Young, 2019).

2.2.3. Data preprocessing for two data subjects
Based on the above-mentioned, four CSL gestures recorded from 

two sensors are depicted in Figure 6. These four gestures are chosen 
because they are commonly used by Chinese people. The useful right-
hand gestures for general conversation include “you,” “me,” “everyone,” 
and “good.” For the four gestures, only “everyone” is the 
dynamic gesture.

FIGURE 4

The coordinate system of the Leap Motion sensor and diagram of the bone data detected by it.

TABLE 1 Descriptions of CSL collected from leap motion sensor.

Features Descriptions

Palm position 3D coordinates ( X , Y , and Z )

Change of palm position 3D coordinates ( X , Y , and Z ) The difference 

between the start and the end position of palm.

Palm normal 3D coordinates ( X , Y , and Z )

Palm direction 3D coordinates ( X , Y , and Z )

Palm velocity 3D coordinates ( X , Y , and Z )

Yaw of the palm Angle (one dimension)

Pitch of the palm Angle (one dimension)

Roll of the palm Angle (one dimension)

Wrist position 3D coordinates ( X , Y , and Z )
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Before the datasets are fed into the classifier, we must preprocess 
them to obtain a better recognition result. For the LMC data, each 
feature is normalized to a value between 0 and 1. The purpose of 
normalization is to make the preprocessed data limited to a certain 
range, so as to eliminate the adverse effects (such as causing the 
training time to increase, which also may lead to the failure of 
convergence) caused by the singular samples.

As for the Myo data, preprocessing and feature extracting are 
necessary before training a classifier. Since the sEMG signals are noisy and 
different features influence the recognition performance, the 
preprocessing technique is an efficient way to reduce the impact on 
recognition results caused by the above factors. Low-pass filtering and 
band-pass filtering are used to preprocess the sEMG signals first. The 
low-pass filtering is aimed at obtaining signals with a frequency of 
5–200 Hz, and band-pass filtering is used to obtain the envelope of sEMG 
signals. Then, the root mean square (RMS; Kundu et al., 2018; Le Sant 
et al., 2019) is extracted as a feature of sEMG signals. Compared with 
other features, such as waveform length (Phinyomark et al., 2009; Arief 
et al., 2015), and autoregressive model features (Subasi, 2012; Krishnan 
et al., 2019), it has been verified that the RMS feature obtain the best result 
under different lengths of sampling moving window (Luo et al., 2020).

2.2.4. Data fusion of two modalities data
After preprocessing, we can obtain two datasets from LMC and 

Myo armband sensors. Recent studies have shown that sensor fusion 
can promote richness, completeness, and accuracy of information 
with less uncertainty to enhance the performance of training 

(Chavez-Garcia and Aycard, 2015; Li et al., 2020). Here, feature-level 
fusion is applied to fuse information of two sensors. Two preprocessed 
sequences are merged into a longer sequence with 29 dimensions as 
input of the LSTM network. In other words, each gesture has 29 
features. For each gesture, the data collected from both sensors have a 
history of 50 frames. Thus, the size of each gesture is 50*29.

2.3. Deep learning classification 
approaches

Recurrent neural network (RNN) is a commonly used approach 
in training and classifying time-series data. However, it is easy to 
occur gradients explosion or vanish when RNN handles long-term 
dependence. LSTM is designed to solve this problem. Compared with 
general RNN, LSTM performs better in learning longer time-series 
data. In this work, the LSTM network is used to classify the 
multimodal CSL gesture sequences.

The key to the effectiveness of LSTM in dealing with sequence 
problems lies in memory blocks and gates (Hochreiter and Schmidhuber, 
1997). As shown in Figure 7A, each memory block consists of an input 
gate, a memory cell, an output gate, and a forget gate. The memory cell 
retains information relying on different time intervals. The input gate, 
forget gate, and output gate determine whether the information flow can 
enter or exit the memory cell. Three independent gates work together to 
ensure that the cell retains information for a long time. Figure 7B shows 
the actual structure of the LSTM memory cell.

FIGURE 5

The view of Myo armband.

FIGURE 6

Four kinds of CSL gestures.
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As shown in Figure 7B, xt  is the input of the LSTM network, and 
ht  is the output of the network. ft , it , and ot  respectively denote 
the forget gate, input gate, and output gate variables of the LSTM 
network. The subscripts t  and t −1  represent the current time and 
previous time. ct  is the memory cell state. The notation of σ  and 
tanh  denote sigmoid and hyperbolic activation functions, 
respectively. With the memory gates, the input, output, and key 
parameters of the LSTM network can be computed (Graves, 2013)

 
i W x W h W c bt ix t ih t ic t i= + + +( )− −σ 1 1  

(3)

 
f W x W h W c bt fx t fh t fc t f= + + +( )− −σ 1 1  

(4)

 
c f c i W x W h bt t t t cx t ch t c= + + +( )− −1 1tanh

 
(5)

 o W x W h W c bt ox t oh t oc t o= + + +( )−σ 1  
(6)

 
h o ct t t= ( )tanh

 
(7)

where subscripts i , o , f , and c  respectively represent the 
parameters related to the input gate, output gate, forget gate, and 
memory cell. The subscripts of the weight matrix are similar. For 
instance, Wih  denotes the input-hidden matrix, Wic  denotes the 
input-memory cell matrix, etc. Similarly, bf , bi , bc , and bo  present 
the biases of corresponding subscripts for the LSTM network. tanh  
is the hyperbolic activation function, while Ã  is the sigmoid 
activation function.

The special structure of the memory cell endows the LSTM 
network with powerful capability in modeling time-based sequences 
with long-range dependencies. Therefore, the applications of this 
network have covered a great many fields successfully. In this work, 
the LSTM network is used to classify the time-series CSL gestures. 
With this network, the CSL gestures can be classified well. Then, the 
classification results will be  sent to a social robot for interaction 
and reaction.

This section first outlined the proposed framework and briefly 
introduced each module of this framework. Then, the collection of the 

A

B

FIGURE 7

The architecture of the long short-term memory (LSTM) network. (A) The composition of LSTM memory blocks. (B) The structure of LSTM memory 
cell.
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sign language datasets, and the preprocessing and fusion of two 
different sensor data were elaborated in detail. Lastly, the relevant 
classification algorithm makes the above datasets suitable to our 
framework was presented.

3. Experiments and results

Two experiments were performed to verify the proposed HRI 
framework. First, we compare the recognition performance of sensor 
fusion-based multimodal gesture datasets with individual sensor 
datasets. Then, we test the proposed framework according to several 
gesture recognition results and reactions with the NAO robot using 
LMC and Myo armbands.

3.1. Experimental setup

The experimental platform is introduced below:

3.1.1. Hardware platform
The experimental devices mainly include two gesture collection 

sensors and a social robot. As aforementioned, the Myo armband and 
LMC sensors are used to collect eight-channel sEMG signals and hand 
3D information, respectively. The social robot applied in the experiment 
is a NAO robot. As a bipedal humanoid robot, NAO is produced by the 
French Aldebaran Robotics Company. It is currently the most influential 
social robot research platform (Bartneck et al., 2019). Because the robot 
is low cost, easy to program, small in size, portable, and able to conduct 
research outside the laboratory (Su et al., 2007; Cohen et al., 2011; 
Garimort et al., 2011). Therefore, it has become a widely used robotic 
platform for HRI research by academic institutions around the world. 
Here, it is used to communicate with a person by gestures.

3.1.2. Software environment
The LSTM classifier was run on an Intel i7-4600M CPU with 

2.9GHZ which has 8 GB of GDDR5 memory. The LSTM model was 
built using the Python 3.6 library of Keras and trained using fusion 
data. Control software of NAO robot Choregraphe is employed to 
interact via gestures with a specified person. Both software runs on 
Windows 10 operating system.

3.2. Multimodal gestures comparison 
experiments and results

The demonstration data from the Kinect sensor and Myo armband 
will be preprocessed before it is fed into the incremental learning 
method. Firstly, the data fusion method based on the KF is used to 
fuse the joint angles and joint angular velocities to obtain a more 
accurate and smooth dataset. Since the demonstration data are not 
matched in the timeline, then the dynamic time warping (DTW) 
algorithm is applied to align it. Here, the two preprocessing methods 
will be introduced briefly.

3.2.1. Settings
The first experiment is performed to test the recognition 

performance for multimodal gestures. To compare with single 

modality data, three different sensor datasets are fed into the LSTM 
classifier. The corresponding conditions are considered as follows.

Condition 1: Single modality data from LMC sensor. The input 
data of the LSTM network are the 21-dimension (as listed in Table 1) 
3D hand vectors collected from the LMC sensor.

Condition 2: Single modality data from Myo armband. In other 
word, the input data of the LSTM network are the eight-channel 
sEMG signals of the human forearm arm with eight dimensions.

Condition 3: Two modality sensors data from two sensors (Leap 
Motion sensor and Myo armband). In this condition, the input data 
of the LSTM network is the combination of the 21-dimension 3D 
hand vectors and the eight-dimension sEMG signals of the human 
forearm arm. Before the data are fed into the network, the two sensors 
datasets are preprocessed and normalized, respectively. Then, the 
normalized datasets are fused as a new input vector of the LSTM.

In the conditions 1 and 2, the steps are the same except that the 
input data is different. The LSTM model is trained by feeding each of 
the time-series training data in batches of 10. And this is performed 
over 100 epochs of training. There are 400 sequences for four CSL 
gestures in total. The data set is randomly divided into training data 
and cross-validation data at a ratio of 90–10, respectively. It means that 
the number of training and testing sets is 360 and 40, respectively.

There are two important parameters for the LSTM network that 
can improve the classification results. One is the number of hidden 
neurons, and the other is the epoch. To obtain the optimal performance, 
the number of hidden neurons and epochs for the LSTM network 
under the above conditions are successively valued from 1 to 150. 
Table 2 shows the parameters setup of the LSTM network under three 
conditions. Figure  8 shows the model of the LSTM network. The 
superscript n  of xn

0 49:
 denotes the dimensions of gesture features. The 

values of n  are different under the above three conditions. The 
subscript of xn

0 49:
 is the length of each gesture sample. The subscript 

m  of Sm  denotes the number of gesture samples.
For each epoch, the training and test accuracy are computed and 

echoed. The computation of accuracy is as follows

 
Accuracy

correct

total

=
Ges
Ges  

(8)

where Gescorrect  denotes the number of gestures classified 
correctly. Gestotal  represents the total number of gesture 
samples collected.

TABLE 2 Parameters setup for the first three experiments.

Parameters Condition 1 Condition 2 Condition 3

Size of input 50 ∗ 21 50*8 50*29

Size of output 4 4 4

Number of hidden 

neurons

20 20 15

Epoch 50 50 30

Batch size 10 10 10
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3.2.2. Results and analysis
For all conditions, the training processes were performed and 

repeated several times to obtain a better model of the LSTM 
classifier. At the end of all the epochs of training, the model is made 
to test with the cross-validation data and its accuracy is also echoed. 
To prevent overfitting, the model is trained over 100 times. At each 
time, the loss and accuracy are noted. At the end of each training, 
the model is saved. The model with the least loss and highest cross-
validation accuracy is chosen for use in the second experiment. The 
classification results of CSL gestures under three conditions are 
shown in Figure 9.

Obviously, the classification accuracy under condition 3 achieves 
100%, while the accuracy could not achieve that under conditions 1 
and 2. In other words, the multimodal sensor fusion-based input data 
obtains a better performance in comparison with that of single-
modality sensor data. The recognition accuracies under conditions 2 
and 3 are the same when the single modality sensor datasets are used.

Figure 10 shows the classification results corresponding to three 
conditions of the above-mentioned scenarios. With the increase of 

training epochs, loss gradually converges to three different values 
corresponding to three conditions. It means that the multimodal 
fusion data achieves the highest recognition accuracy with convergent 
loss values.

As shown in Figure  11, the confusion matrices under three 
conditions are presented to explore the impact on classification results 
based on misclassified gestures and different modality data. The 
recognition accuracy under condition 3 is 100%, which means that all 
testing gestures are correctly recognized. Hence, we will not discuss 
the confusion matrix under condition 3. From Figure 11, we can find 
that only one CSL gesture is classified incorrectly under conditions 1 
and 2 in the test samples. This is because both of the conditions have 
the same recognition accuracy. But the misclassified gestures are not 
the same. The misclassified gesture type is “you” under condition 1, 
and that is “me” under condition 2. That is probably because the two 
gestures have the same postures except for directions.

3.3. HRI experiments and results

3.3.1. Settings
The second experiments were conducted on an NAO robot 

based on the first experiments. Firstly, two different modalities of 
testing CSL gestures were sent to the LSTM classifier. Then, the 
recognition results were transported to the NAO robot for 
understanding and reaction. Based on the recognition results, 
Choregraphe APP converts the corresponding gestures into 
executable commands so that the robot can perform and respond. 
In other words, the output of the classifiers being coded into 
commands for the robot’s response. Hence, the recognition of 
human hand motion for the robot is from the system. Choregraphe 
connects robots via Ethernet. The experimental platform and 
experiment steps are shown in Figure 12. Once these gestures are 
classified and sent to Choregraphe, the corresponding responses of 
the NAO robot will be performed.

Noting that the classifier model under the third condition in 
the first experiment is saved to recognize the testing gestures in 

FIGURE 8

The LSTM model used in the experiment.

FIGURE 9

Classification accuracies under three conditions for the first 
experiment.
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this experiment. Testing data include two types of gestures: four 
kinds of captured singular gestures and two combination gestures 
consisting of them. The combined CSL gesture is composed 
according to Chinese grammar which can express a complete 
meaning. The testing gestures are shown in Table 3. In Chinese, 
“hello” is a combination of the two words “you” and “good,” and 
“hello, everyone” is a combination of the three words “you,” “us,” 

and “good.” As shown in Table 3, six gestures are tested in total 
for the second experiment.

3.3.2. Results and analysis
The experiment was performed more than 10 times for each 

gesture. Figure 13 shows the response results of the NAO robot 
corresponding to the six gestures. In Figure 13A, the words in the 

A

C

B

FIGURE 10

The first experiment results under three conditions. (A) CSL gestures classification results under condition 1. (B) CSL gestures classification results 
under condition 2. (C) CSL gestures classification results under condition 3. In panels (A–C), the blue curves with star markers denote the recognition 
accuracy of the training set, and the yellow curves with circle markers denote the recognition accuracy of the testing set. The magenta and green 
curves are the loss values of the training sets and testing sets, respectively.
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upper right corner are four kinds of gesture results recognized by 
the NAO robot and the gestures of NAO are the corresponding 
response results. In Figure 13B, the response results of the NAO 
robot gesture are divided into two steps for each combination 
gesture. Obviously, the robot’s responses to the six gestures are 
different. For the single gestures, the robot’s response is only one 

step. However, the response according to the combination gestures 
is two steps. This implies that the proposed framework can interact 
with people through CSL gestures and react with reasonable 
responses. It also indicated that the proposed system can not only 
interact with the robot based on a single gesture but also interact 
through a combination of gestures.

A B

FIGURE 11

The confusion matrices of the first experiment under conditions 1 and 2. (A) The confusion matrix under condition 1. (B) The confusion matrix under 
condition 2. In panels (A,B), x-axis denotes the real sample labels, and the y-axis denotes the predicted sample labels. The top and bottom elements on 
the main diagonal filled with green color, respectively, represent the number and percentage of the samples that are correctly predicted. The top and 
bottom elements inside of each pink square, respectively, represent the number and percentage of wrong predicted samples. The top and bottom 
elements inside of lower and right light gray squares represent the prediction accuracy and error rate of corresponding samples.

A

B

FIGURE 12

The experimental system of the second experiment. (A) The experimental platform of the second experiment. (B) The experimental steps of the 
second experiment.
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A

B

FIGURE 13

The NAO robot interaction results of experiment 2. (A) Robot response results of the four singular hand gestures. (B) Robot response results of the two 
combination gestures.
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4. Discussion

Two experiments are conducted to verify the effectiveness of the 
proposed framework. According to the first experimental results, we can 
conclude that the multimodal sensor data can effectively improve 
recognition accuracy, similar to the experimental findings of Zeng et al. 
(2019) and Zeng et al. (2020). The confusion matrices of experiment 1 
under conditions 1 and 2 imply that different single-modal sensor data can 
classify different kinds of gestures. Leap Motion sensor data can achieve a 
good result in human hand posture by capturing a 3D skeletal hand 
model. The Myo armband sensor can obtain better results in gestures with 
significant differences in sEMG signals. This also demonstrates that 
different modal sensor data provides complementary information. Hence, 
the fused multimodal data achieves the best results in the first experiment.

To investigate the application of our proposed framework in HRI 
and its advantages in CSL gesture classification, we performed another 
experiment. In general, most of the conventional gesture classification 
frameworks can only classify singular static or dynamic sign language 
gestures. However, our SLR framework can classify both singular and 
combination gestures well. This combination is not only in terms of 
gestures but also in terms of the special framework. As the input of the 
LSTM network, the dynamic and static gestures samples are mixed in 
one dataset. We  can distinguish them effectively by the specific 
features captured from the LMC. The second experimental results 
have proved that. In addition, our proposed SLR framework also can 
be applied in other HRI scenarios. It provides a novel way for the SLR 
application in social robots and provides a compatible SLR framework.

5. Conclusion and future work

This paper presented a multimodal CSL recognition framework 
applied in HRI between deaf-mutes and social robots. The multimodal 
framework considers multiple sensor information for the human hand 
and arm, including human 3D vector and arm sEMG signals. The Leap 
Motion sensor and Myo armband are used to capture corresponding 
signals. Then, the preprocessing techniques are carried out aimed at 
reducing the training process to improve recognition accuracy to some 
extent. For LMC data, the normalization method is to limit data to a 
certain range to eliminate the adverse effects of singular samples. Since the 
sEMG signals are noisy, low-pass filtering and band-pass filtering are used 
to preprocess the signals. After that, the RMS feature is extracted from 
sEMG signals and fused with Leap Motion data as the input data of the 
classifier. Our method fuses the sensor data from a wearable and vision-
based devices at the feature level. Comparative experiments have validated 
the method. The proposed multimodal framework can facilitate deaf and 
speech-impaired people to learn sign language through a social robot with 

the ability of SLR. Our future work will concentrate on developing a 
framework with a stronger generalization capability to recognize various 
sign languages without the limitation of country and language restrictions.
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TABLE 3 All testing gestures in the second experiment.

Type Gestures

Four singular hand 

gestures

Good

You

Us

Me

Two combination 

gestures

Hello (combination of you and Good gestures)

Hello, everyone (combination of you, us, and Good 

gestures)
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