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Introduction: MicroCT of the three-dimensional fascicular organization of the 
human vagus nerve provides essential data to inform basic anatomy as well as 
the development and optimization of neuromodulation therapies. To process the 
images into usable formats for subsequent analysis and computational modeling, 
the fascicles must be segmented. Prior segmentations were completed manually 
due to the complex nature of the images, including variable contrast between 
tissue types and staining artifacts.

Methods: Here, we developed a U-Net convolutional neural network (CNN) to 
automate segmentation of fascicles in microCT of human vagus nerve.

Results: The U-Net segmentation of ~500 images spanning one cervical vagus 
nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly 
four orders of magnitude faster. The automated segmentations had a Dice 
coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and 
accurate segmentation. While Dice coefficients are a commonly used metric to 
assess segmentation performance, we also adapted a metric to assess fascicle-
wise detection accuracy, which showed that our network accurately detects the 
majority of fascicles, but may under-detect smaller fascicles.

Discussion: This network and the associated performance metrics set a 
benchmark, using a standard U-Net CNN, for the application of deep-learning 
algorithms to segment fascicles from microCT images. The process may be further 
optimized by refining tissue staining methods, modifying network architecture, 
and expanding the ground-truth training data. The resulting three-dimensional 
segmentations of the human vagus nerve will provide unprecedented accuracy 
to define nerve morphology in computational models for the analysis and design 
of neuromodulation therapies.
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1. Introduction

The vagus nerve is a major autonomic pathway that carries signals 
to and from the brainstem and the visceral organs (Neuhuber and 
Berthoud, 2021). As a result of the role of the vagus nerve in regulating 
parasympathetic functions, vagus nerve stimulation (VNS) holds 
tremendous potential for treating numerous medical conditions. VNS 
is FDA-approved to treat epilepsy, depression, obesity, and after-effects 
of stroke (FDA, 1997, 2005, 2015, 2021; LivaNova, 2017). However, 
despite the heterogeneity of physiological functions of the vagus 
nerve, VNS generally involves placing a cuff electrode that wraps 
around the mid-cervical nerve trunk, which then results in activation 
of fibers causing both therapeutic benefit and potentially therapy-
limiting side effects (Settell et al., 2020b; Blanz et al., 2023; Jayaprakash 
et al., 2023). To inform improved neuromodulation approaches that 
reduce side effects, the functional organization of the vagus nerve 
must be better understood (Settell et al., 2020a; Osanlouy et al., 2021; 
NIH, 2022). There is additional inherent value in understanding the 
vagus nerve’s functional pathways for the purpose of basic physiology 
and elucidation of its micro-anatomical features (Upadhye et al., 2022).

Anatomically-realistic computational models enable predictive 
simulations of nerve fiber activation in response to VNS, studies of 
mechanisms of action, and rational development of novel electrode 
designs and stimulation parameters for selective and effective 
stimulation (Musselman et al., 2021). The modeled nerve morphology 
is defined using the segmentation of a 2D histological cross section 
that is extruded to define the 3D finite element model (Musselman 
et al., 2021). However, a recent study used microCT to quantify the 3D 
fascicular morphology of the human vagus nerve and found that 
fascicles merged or split every 0.56 mm on average, with high intra- 
and inter-sample variability (Upadhye et al., 2022); thus, over the 
8 mm center-to-center span of the clinical VNS cuff, these microCT 
data indicate that the 2D extrusion model does not reflect the 
true anatomy.

The fascicles and epineurium must be segmented from the raw 
microCT images to quantify anatomical metrics and to serve as inputs 
to computational models. Manual segmentation is highly time-
consuming and is subject to user-to-user variability, which can 
be somewhat alleviated by semi-automated methods, such as Otsu’s 
thresholding or region growing, followed by manual correction 
(Gonzalez and Woods, 2018). Thus far, in our hands, common semi-
automatic segmentation methods have under-performed in this 
application due to the non-uniformity of contrast in the fascicles and 
imaging artifacts.

Conversely, convolutional neural networks (CNNs) have been 
widely used in image classification and image detection applications 
due to their ability to recognize features without manual feature 
extraction or additional image processing steps (Gu et  al., 2018). 
CNN-based image segmentation can distinguish features from both 
background and artifacts that would cause other automatic 
segmentations to fail (Sarma and Gupta, 2021; Kumar, 2023). Network 
architectures such as U-Net (Ronneberger et al., 2015), FPN-Feature 
Pyramid Network (Lin et al., 2017) and Mask R-CNN (He et al., 2017) 
have been designed to perform image segmentation. Further, 
execution of the CNNs on graphics processing units (GPUs) has 
greatly reduced training time (Alzubaidi et al., 2021). In recent years, 
countless applications of CNN-based image segmentation for medical 
images have been reported in the literature, from segmentation of CT 

(Li et al., 2022), MRI (Zhao and Zhao, 2021), ultrasound (Liu et al., 
2019), optical coherence tomography (Viedma et  al., 2022) or 
histology images (Basu et al., 2023), and from structures as varied as 
blood vessels (Chen et  al., 2020, 2021), cells (Kumar et  al., 2017; 
Stringer et al., 2021), and nerves(Balsiger et al., 2018; Wang et al., 
2019; Horng et  al., 2020; Tovbis et  al., 2020; Kim et  al., 2022; 
Jayaprakash et al., 2023).

In this work, we trained a U-Net CNN to achieve efficient and 
reproducible segmentation of fascicles from microCT images of the 
human cervical vagus nerve. We quantified its performance compared 
to ground-truth manual segmentation using multiple metrics, 
including Dice coefficient—which is a measure of pixel-wise detection 
accuracy—and adapted methods to create a new measure of fascicle-
detection accuracy (Caicedo et  al., 2019). A trained researcher 
requires several hours to segment microCT images of a single human 
cervical vagus nerve, whereas our trained CNN required seconds. The 
U-Net architecture is one of the most established and widely used 
CNN-based segmentation algorithms, and therefore may serve as a 
benchmark for future refinements.

2. Materials and methods

2.1. Sample acquisition and preparation

Human cervical vagus nerves were collected and prepared using 
methods from a previous study (Upadhye et al., 2022). Briefly, nerves 
were dissected and harvested from five de-identified cadavers (three 
left and five right sides) donated to the Case School of Medicine 
Anatomy Department (Cleveland, OH). Additional demographic 
information was not collected. A non-human subject determination 
was obtained from the Case Western Reserve University Institutional 
Review Board (IRB). The dissection was performed by a trained 
neuro-anatomy teaching assistant and vagus nerve sections from the 
jugular foramen to the clavicle were extracted. A total of five nerves 
from three subjects were chosen for this study based on the staining 
quality, and demographic information such as age and gender were 
not recorded.

Specimens were stored in 10% neutral buffered formalin (Fisher 
Scientific) for several days prior to subsequent processing. The authors 
would like to note that in subsequent studies, nerves have been 
collected from fixed cadavers and stored directly in 1X phosphate 
buffered saline (1X-PBS) with 0.01% sodium azide to avoid 
over-fixation.

A specimen labeling scheme is presented in the figures throughout 
this manuscript. Specimens were labeled based on subject number (1, 
2, 3…) followed by the letter R (right) or L (left) to indicate the side of 
the body. Samples were stained with 1% (v/v) osmium tetroxide 
solution (Polysciences, IL, United  States) as previously described 
(Upadhye et al., 2022). The nerves were embedded in paraffin and 
placed inside a plastic mold with grooves marked with radio-opaque 
paint every 5 mm to facilitate navigation during imaging.

2.2. Imaging

Nerves were scanned using a Quantum GX2 micro-computed 
tomography (micro-CT) scanner (Perkin Elmer, Waltham, MA, 
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United States), with an excitation voltage of 90 kV, a current of 80 μA, 
a scan time of 14 min, and a scanning field of view of 36 mm in 
diameter and 20 mm in length. Three to four overlapping scans 
(minimum 20% overlap in the dimension along the nerve) were 
performed to capture at least 5 cm of vagus nerve length, centered 
approximately at the mid-cervical region where neuromodulation cuff 
electrodes are typically placed.

Image reconstruction was performed at 10 μm voxel resolution 
using the Rigaku software (Perkin Elmer, Waltham, MA, 
United States). The software limits reconstructions to a 512 × 512 × 512 
voxel cube at a time, thus the reconstruction field of view was a 
sub-volume of size 5.12 × 5.12 × 5.12 mm. The resulting data were 
exported as 16-bit TIFF images. The sub-volumes were then down-
sampled 10x in the dimension along the nerve length (i.e., to 
512 × 512 × 51 pixels) by copying every 10th image into a new directory 
in an effort to reduce memory and processing requirements for 
subsequent steps. Subsequently, these volumes were stitched using 
ImageJ (FIJI, Version 2.1.0/1.53c). Slices in the final stitched dataset 
had voxel dimensions of 10 × 10 × 100 μm.

2.3. Ground truth creation

Images were imported into Simpleware™ ScanIP S-2021.06 
(Synopsys, Mountain View, CA, United States). The nerve fascicles 
and the epineurium were segmented by a trained user using built-in 
region painting tools. Fascicles were segmented manually on each 
image (501 images per 5 cm nerve sample) due to the high amount of 
variability in brightness, contrast, and position from one slice to the 
other along the length of the nerve. In comparison, the shape of the 
epineurium was more uniform and thus it was manually segmented 
every 10th slice and a built-in interpolation algorithm was used to 
segment the epineurium in the remaining slices. Layers containing the 
segmentation masks were exported as binary images. At this stage, 
images where the whole epineurium was not contained within the 
image field-of-view were removed from the dataset (7 images from 
nerve 2 l, 57 images from nerve 6 l).

2.4. Image pre-processing and data 
augmentation

A summary of the image pre-processing steps is shown in 
Figure 1A. Images were separated into training and validation sets 
based on a leave-one-out cross-validation approach (Sammut and 
Webb, 2010) where images obtained from three nerves were used at a 
time for network training, and images from one nerve were kept as 
validation. This was repeated four times so that the average 
performance from all four networks could be evaluated. Images from 
a separate fifth nerve were used for final testing. All images belonging 
to the same nerve were kept within the same training, validation or 
testing set since sequential images obtained in any given nerve are 
highly correlated with each other, and thus could lead to overfitting if 
separated across multiple sets.

Based on the manual segmentation of the nerve epineurium, the 
position of the epineurium centroid was calculated using a custom 
MATLAB script (MathWorks, Natick, MA, United States). Images 
were then automatically cropped to 400 × 400 pixels, centered around 

the nerve epineurium. Centering was applied to each microCT image 
slice and label pair separately as the position of the nerve in the 
imaging field-of-view changed from slice to slice.

In order to improve image uniformity, correct for staining 
heterogeneity between samples and increase contrast, pixel values in 
the microCT images were converted from 16-bit to 8-bit and image 
contrast was enhanced as follows: saturated pixels corresponding to 
staining artifacts (values >18,000, manually chosen threshold) were 
set to zero, after which the lowest 0.1% of pixels were set to 1, the 
highest 0.1% of pixels were set to 255, and the remaining pixels were 
rescaled linearly between 1 and 255. Before inputting into the CNN, 
images were converted to float 32 precision where the intensity of each 
image was normalized by dividing each pixel value by the mean 
intensity of the image.

Data augmentation was performed on-the-fly on each image 
during network training to increase the size of the training dataset and 
prevent network overfitting. Multiple compound transformations 
were randomly used on each image every epoch as follows: (1) a 
random rotation of angle 0°–270° (performed on 50% of images), (2) 
a vertical or horizontal flip (each 33% of images), (3) random scaling 
between 0.9 and 1.2x in size (66% of images), (4) random additive 
Gaussian noise with a mean of zero and a standard deviation randomly 
distributed between 0.001 and 0.003 (applied to all images), (5) 
random intensity variations added in the shape of an arbitrary 
function f x y, A ax B by( ) = ( ) + ( ) +*sin *sin 1 , where A, B, a, and 
b are random numbers in the range 0.001–0.3 (applied to 50% of 
images). All images were also smoothed with a Gaussian filter 
(standard deviation = 1 pixel) as a preprocessing step.

2.5. Network architecture and deep 
learning experiments

Network training was executed on the High Performance 
Computing cluster at Case Western Reserve University using a 48 GB 
A40 GPU (NVIDIA Corporation, Santa Clara, CA, United States). All 
deep learning networks were implemented and trained in MATLAB 
2021a (MathWorks, Natick, MA, United States).

Convolutional neural networks with U-Net architecture 
(Figure  1B) were trained for fascicle segmentation. A Dice loss 
function was used to decrease the impact of class imbalance and 
improve segmentation results (in a typical 400 × 400 pixels image, only 
~5% of pixels belong to the fascicle class). Networks were trained for 
60 epochs. The initial learning rate was 5 × 10−4, and the learning rate 
was multiplied by 0.75 every 8 epochs. The mini-batch size was set to 
20 images, and the Adam optimizer algorithm was used. An example 
training curve (for Network 1) can be see in Supplementary Figure S1.

2.6. Success metrics

The Dice similarity coefficient (DSC) was used to evaluate the 
network segmentation on the validation and testing sets on a per 
pixel basis:

 
DSC

True Predicted

True Predicted
=

+
2 

 
(1)
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where True is the set of pixels identified as fascicles in the ground 
truth and Predicted is the set of pixels classified as fascicles by the deep 
learning network. While the Dice coefficient reflects the number of 
pixels correctly classified per image, it does not provide any 
information on the number of correctly identified fascicle cross-
sections, nor on the occurrence of mistakes such as added, missed, 
merged or split fascicles. The accuracy of the network prediction was 
thus also evaluated on a per fascicle basis using an intersection-over-
union (IoU) matrix (adapted from Caicedo et al., 2019, similar to 
Kirillov et al., 2019) where individual matrix elements are defined as:

  
IoUi j

i j

i j
, =

True Predicted

True Predicted

∩
∪

 
(2)

where IoUi,j is the intersection-over-union of a fascicle i (identified 
using connected components) in the ground truth image and a 
corresponding fascicle j (identified also using connected components) 
in the prediction image. Truei is the set of pixels identified in the 
ground truth for fascicle i, while Predictedj is the set of pixels classified 
as fascicle j by the deep learning network. For analysis, a matrix IoUi x j 
can be calculated for all fascicle pairs (i, j). Elements of IoUi x,j will 
be  above a threshold t if a fascicle i in the ground truth has been 
correctly predicted as fascicle j by the network (true positive, TP). 
However, rows of IoUi x j with all elements equal to zero (or below 
threshold t) indicates missed fascicles in the prediction (false negatives, 
FN), and conversely columns of IoUi x j with all elements equal to zero 
(or below threshold t) indicates fascicles added in the prediction (false 

positives, FP). From these results, the fascicle F1-score reflects the 
number of correctly identified fascicles per image and is calculated 
as follow:

 

F fascicle
fascicle

fascicle fascicle fascicle

1
1

2

=
+ +( )

TP

TP FP FN
 

(3)

Similarly, rows of IoUi x j with more than one non-zero element 
(>0.1) indicates a fascicle was mistakenly split by the network, and 
columns of IoUi x j with more than one non-zero element (>0.1) 
indicate that more than one fascicle were mistakenly merged by the 
network prediction. For this step, an effective IoU threshold was 
empirically derived to be 0.1 to include all cases of merges/split, not 
only when predicted and true fascicles have a significant overlap 
(IoU > 0.4). To further understand fascicles affected by the different 
types of mistakes, fascicles were also classified by sizes as follows: large 
(>300,000 μm2), medium (90,000–300,000 μm2), small (20,000–
90,000 μm2), and tiny (<20,000 μm2).

2.7. Image processing software

Network training and network prediction was executed in 
MATLAB 2021a. Result visualizations were produced using ImageJ and 
MATLAB in 2D, and Amira (Thermo Fisher Scientific, Waltham, MA, 
United States) in 3D. Statistical plots were produced in MATLAB and 
Microsoft Excel (Microsoft Corporation, Redmond, WA, United States).

FIGURE 1

Pre-processing steps and architecture of deep learning network. (A) Four nerves (2 l, 2R, 3R, and 6R) were repeatedly separated as training and 
validation data using a leave-one-out cross-validation approach. A fifth nerve (6 l) was used for testing. As part of pre-processing, each image was 
centered on the epineurium and cropped, the contrast was enhanced, and the image was augmented via random rotations, flips, size changes, added 
noise and changes in pixel intensity. (B) Structure of the deep learning network, following the widely used U-Net architecture. Numbers above 
rectangles indicate the number of channels. Numbers on the left side indicate pixel dimensions. ReLU, Rectified linear unit.
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3. Results

3.1. U-Net successfully segments vagus 
nerve fascicles from microCT images

Four deep learning networks (Net #1–4) were trained using leave-
one-out cross-validation with the nerves 2R (501 images), 2 L (494 
images), 3R (501 images), and 6R (501 images) kept out as validation 
in turn. As seen in Figure 2, the networks successfully segmented the 
nerve fascicles in all nerves, with high agreement between the 
predicted and ground truth fascicles. The network predictions were 
robust and unaffected by the wide variability across images: from 
small to large fascicles, from few to many fascicles, from high to low 
contrast images. The high variability in staining and imaging 

conditions across the nerves included in this study is shown in 
Supplementary Figure S2.

To quantify the performance of our networks, Dice coefficients 
were calculated between the predicted and ground truth fascicle 
masks (see Equation 1). The Dice coefficients of all images for all 
validation nerves can be seen in Figure 3A. The mean Dice coefficient 
was 0.87 across all four validation nerves (5th percentile: 0.77, 95th 
percentile: 0.93), which indicates high agreement between the network 
prediction and ground truth. Example of high, average and low Dice 
coefficient images are shown in Supplementary Figure S3, to 
demonstrate the range of segmentation performance exhibited at 
different numerical values.

However, Supplementary Figure S3 highlights that while the Dice 
coefficient is a measure of the overall fascicle area that was correctly 
segmented, it does not describe how individual fascicles were 
segmented from each other and it does not quantify the occurrences 
of errors such as missed or added fascicles, or accidental fascicle 
merges and splits. Examples of each type of fascicle segmentation 
error are shown in Supplementary Figure S5. Therefore, we  also 
performed a per-fascicle analysis for all four validation nerves (similar 
to per-cell analysis of Caicedo et al., 2019). Using Equation (2), the 
IoU of each fascicle in the predicted and ground truth images was 
calculated, and fascicles in the predicted images were classified as true 
positives, false negatives, or false positives based on their level of 
overlap with the corresponding ground truth fascicle (i.e., if the IoU 
is above a threshold t). The F1fascicle score was then calculated using 
Equation (3). The F1 scores obtained from each of the four validation 
nerves at increasingly high IoU threshold t can be seen in Figure 3B, 
and a visualization of different IoU per fascicle values and per-image 
F1 scores can be seen in Supplementary Figure S3. As an example, 
with a threshold of t = 0.4, fascicles overlapping with an IoU of t > 0.4 
were classified as correctly detected by the network (true positive), 
while fascicles with an IoU t < 0.4 were classified as false positives or 
false negatives, and an average F1 score of 0.78 was obtained. However, 
with increasingly stringent IoU thresholds, fewer predicted fascicles 
were classified as true positives until true positive fascicles were only 
found in one nerve (2R) with t = 0.9. This result indicates that while 
the vast majorities of fascicles are correctly identified, the precise 
location of fascicle boundaries vary between the network prediction 
and the manual segmentation. Supplementary Figure S3 also 
highlights that smaller fascicles with fewer pixels are more sensitive to 
changes in individual IoU metrics, while larger fascicles with more 
pixels are less sensitive to IoU but have a larger impact on the per 
image Dice coefficient. Both metrics are thus essential to understand 
segmentation accuracy.

To quantify the type of mistakes made by the network when 
identifying individual fascicles, we broke down the type of errors 
(fascicles falsely added, missed, merged, or split) as a function of 
fascicle size (see Figure 3C for nerve 2R, see Supplementary Figure S4 
for all other nerves). In nerve 2R, a small minority (0.4–1.6%) of large 
(>300,000 μm2) and medium fascicles (90,000–300,000 μm2) were 
accidentally split or merged, and <0.1% were mistakenly added or 
missed by the algorithm. On the other hand, fascicles incorrectly 
added or missed by the algorithm were more common in the small 
(20,000–90,000 μm2) and tiny fascicles (<20,000 μm2), where a total of 
14% of fascicles were missed, and 8.1% were incorrectly added. A few 
of the small fascicles (0.4%) were also incorrectly merged. As seen in 
Supplementary Figure S4, this distribution of added/missed/split/

FIGURE 2

Comparison of deep learning segmentation to the ground truth 
segmentation. Networks 1–4 trained on three nerves with a fourth 
nerve kept out as validation. (Row I) Three slices from the validation 
specimen 2 L predicted using Net2. (Row II) Three slices from the 
validation nerve 2R using Net1. (Row III) Three slices from the 
validation nerve 3R using Net3. (Row IV) Three slices from the 
validation nerve 6R using Net4. (Row V) Three slices from the test 
nerve 6 L which was not included in any training of validation set. 
Prediction made by Net3. There was a high amount of overlap 
between the ground truth (magenta) and predicted (cyan) areas, 
colored in yellow. Images shown have an average Dice score of 0.88, 
0.92, 0.92, 0.88, and 0.88, respectively, for each row.
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merged fascicles varied between nerves. For example, validation nerve 
3R had virtually no mistakenly split fascicles (<0.1%) across all sizes, 
while a significant percentage of large fascicles (6–8%) were incorrectly 
merged by the algorithm in validation nerve 2 l, 3R, and 6R.

3.2. U-Net segmentation generalizes well 
to other nerves not included in the training 
or validation datasets

We used our network to predict fascicle segmentation on a 
separate test nerve that was not included in the training or validation 
set. The prediction was made on a 4.4 cm vagus nerve segment (6 L) 
comprised of 444 2D slices using Network 3 (Figure 4). The predicted 
fascicle segmentation strongly resembled the ground truth 
segmentation of the same nerve, apart from one small diameter 
fascicle (Figure 4A) which appeared to track alongside the nerve and 
was only detected by the network at a few discrete intervals. As seen 
in the close-up rendering of one end of the nerve (Figure 4B), the 
individual nerve fascicles were correctly detected. Importantly, the 
frequent fascicle merging and splitting previously characterized in the 
vagus nerve (Upadhye et al., 2022) were visible along the nerve length. 
Two example slices (Figure 4C) demonstrate the high level of overlap 
between the predicted and ground truth images, with individual Dice 

coefficients of 0.90 and 0.85. No additional post-processing was 
performed on the network segmentation, but additional refinements 
could be  made manually for inputs to computational modeling 
(Marshall et al., 2022).

To quantify the ability of our network to segment the microCT 
images of a nerve that were not used in the training or validation of 
the CNN, all four trained networks were individually tested on nerve 
6 L, and the per-pixel recall, precision, and Dice coefficient were 
calculated on the resulting images (Figure  5). All four networks 
performed similarly when tested on nerve 6 l, with an average Dice 
coefficient of 0.85. This demonstrates that even with the high 
variability in staining intensity, nerve morphology, and nerve 
appearance in our limited dataset, the composition of the training 
dataset has little influence on the end performance for segmenting a 
new nerve. This was further supported by the shape of the precision-
recall curve, showing an AUC (area under curve) value close to 1 
(Figure 5A) for each instance and the average.

3.3. Network segmentation vastly improves 
throughput

Automated fascicle segmentation is essential for volumetric 
microCT images, as manual segmentation is highly labor- and 

FIGURE 3

Evaluating segmentation accuracy on a per pixel and per fascicle basis. (A) Distribution of Dice coefficients for all four validation nerves, with 493–500 
images per nerve. Mean Dice coefficient of 0.87 across all four nerves. (B) Per fascicle F1-score, indicating the prevalence of correctly (true positives) 
and incorrectly (false positives, false negatives) identified fascicles per image. A fascicle is identified as “true positive” if the predicted fascicle and the 
true fascicle overlap with an intersection-over-union (IoU) value above a certain threshold. (C) Size distribution of correctly and incorrectly identified 
fascicles for one example nerve (2R). Fascicles may have been missed (false negatives), incorrectly split, incorrectly merged, or incorrectly added (false 
positives) by the network prediction. Total percentage of fascicles affected by each error type is reported, with a breakdown into fascicle sizes affected 
by each error type (Large: yellow, Medium: orange, Small: fuchsia, Tiny: blue). Errors affecting <0.1% of fascicles are not reported. Data for other nerves 
(2 L, 3R, 6R) are reported in Supplementary Figure S4.
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time-intensive. From our experience using a typical segmentation 
software, it took approximately 40 h for a trained user to manually 
segment all the fascicles in 501 image slices. This is a significant time 
commitment which slows down the data pipeline from image 
acquisition to fascicle analysis and modeling. Considering that 
multiple specimens with 501 slices (5 cm, covering the surgical 
window) are required for computational modeling, the manual 
segmentation process is months-long. In addition, in order to further 
characterize of the vagus nerve morphology throughout the body, the 
desired segmentation nerve length could be much longer.

While computing speeds can vary from computer to computer, 
our deep learning network trained in approximately 173 min (using 
1,500 images from three nerves for 60 epochs and a mini-batch of size 
20), and it can segment the fascicles in one image in 0.05 s. Overall, a 
5 cm nerve segment can be segmented in an average of 24.3 s. This is 
four orders of magnitude faster than manual segmentation. Even 
considering that a user might want to apply manual correction after 
automated segmentation, the time saved is considerable and enables 
fast transition times between nerve imaging and nerve modeling.

4. Discussion

Here, we developed a U-Net convolutional neural network to 
automate segmentation of fascicles in microCT of human vagus nerve. 
Once trained, the network was capable of segmenting fascicles nearly 
4 orders of magnitude faster than manual segmentation. The resulting 
segmentations were assessed for accuracy in multiple ways, including 
the standard performance metric, the Dice similarity coefficient, as 
well as a newly developed metric to assess fascicle detection, the 
combination of per fascicle Intersection over Union (IoU) and per 

image F1 score. While the standard metrics suggest generally good 
accuracy (Dice coefficient 0.87), the fascicle metrics suggest that the 
segmentations tend to under-detect “small” or “tiny” fascicles, in some 
cases, >10%. Even so, performance is generally good and provides a 
rapid first approximation that is similar in appearance to the ground 
truth segmentations (e.g., Figure 4A). While we did not specifically 
measure it here, the time savings from automatic segmentation is so 
great that a user could likely apply manual revisions/corrections and 
still provide net benefits over purely manual segmentation.

4.1. First demonstration of U-Net-based 
segmentation of peripheral nerve fascicles 
from microCT images

This is the first demonstration of automated vagus nerve fascicle 
segmentation from microCT images using U-Net. While there has 
been ongoing interest in segmenting peripheral nerves imaged with 
ultrasound (Wang et al., 2019; Horng et al., 2020; Kim et al., 2022) and 
magnetic resonance imaging (Balsiger et al., 2018), the focus of these 
studies has been on identifying and locating the peripheral nerves 
within the surrounding tissues to aid clinicians with the diagnosis of 
neurological problems. As a result, the segmentation algorithms used 
in these studies focused on segmenting the nerve from the background 
structures. In comparison, recent efforts to image pig and human vagus 
nerves used excised nerves and higher resolution approaches (e.g., 
microCT) (Thompson et al., 2020; Upadhye et al., 2022; Jayaprakash 
et al., 2023). Here, we aimed to automatically segment individual nerve 
fascicles and to characterize segmentation accuracy on a per-pixel and 
per-fascicle basis, with an ultimate goal of accelerating the study of 
human vagus nerve morphology to improve VNS therapies.

FIGURE 4

Deep learning segmentation of the full three-dimensional fascicles of a human vagus nerve. (A) Volume surfaces recreated from sequential 2D 
automated segmentation of a 4.4 cm nerve segment by Network 3. Magenta: manually generated ground truth of the testing nerve 6 L. Cyan: network 
prediction. (B) Region of interest (white boxes in A) showing individual nerve fascicles. (C) Two example slices (identified as 1 and 2 in B) with true and 
predicted segmentation shown in magenta and cyan. Yellow indicates overlap. Dice coefficients = 0.90 and 0.85 for slice 1 and 2, respectively.
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We chose the U-Net architecture as a benchmark for automated 
fascicle segmentation since the encoder-decoder architecture of U-Net 
and other U-Net variations (such as nnU-Net) are easy to implement 
and have been highly successful in a wide array of medical image 
segmentation (Isensee et al., 2021). U-Net also has a straightforward 
expansion to three-dimensional volumes, 3D U-Net (Çiçek et  al., 
2016), which could provide an easy transition toward volumetric 
segmentation of fascicles in the future. It is expected that any attempts 
toward improved CNN architecture for fascicle segmentation will 
have to outperform U-Net accuracy, thus the current demonstration 
of U-net acting as a benchmark.

4.2. U-Net-based deep learning approach 
will improve computational modeling of VNS

Computational modeling of neuromodulation therapies provides 
an important suite of tools to analyze neural responses to stimulation 
and to design improved approaches (Musselman et  al., 2021). 
However, the accuracy of outputs from all models relies on the 

accuracy of the inputs. Computational models of peripheral nerve 
stimulation—across different nerves and species—typically define the 
nerve morphology using a cross section of the nerve and fascicle 
boundaries that is extruded longitudinally (e.g., Helmers et al., 2012; 
Pelot et  al., 2017; Bucksot et  al., 2019). The cross section may 
be defined from segmented histology (Pelot et al., 2020) or by using a 
simplified representation. Thus, the models assume that changes in 
fascicle morphology along the length affected by neural stimulation 
are negligible.

The assumption of constant cross-sectional morphology along the 
nerve length may be appropriate for certain nerves, such as the sciatic 
or femoral nerve (Gustafson et al., 2009, 2012). However, microCT of 
human vagus nerves recently showed that the fascicles split and merge 
every ~560 μm, and that there is substantial variability in fascicle size, 
number, and location within and across samples (Upadhye et  al., 
2022). Due to the heterogeneous electrical properties of different 
neural tissues, these morphological parameters affect the electric field, 
and thus affect the resulting neural responses (Pelot et al., 2019; Davis 
et al., 2023). Further, the tortuous fiber paths and smaller electrode-
fiber distances at certain locations along the nerve would result in 

FIGURE 5

Precision-Recall curve and a table with the precision and recall values at the highest Dice coefficient. (A) Precision-Recall curve with a large AUC (Area 
Under Curve) indicating low numbers of false positives and false negatives. Although training specimens are different from one another and from the 
test specimen in terms of anatomy and contrast, performance of the networks on the test dataset is similar with high accuracy. The precision-recall 
curve was generated by applying a variable threshold from 0 to 1 with a step size of 0.02 to the output of each of the four networks and calculating the 
precision and recall at every step. (B) The first four rows of this table shows the precision and recall values using the optimal threshold value at which 
the highest Dice coefficient is calculated for each network. The next four rows show the precision, recall and Dice coefficient at a fixed threshold of 
0.5. There is not a big difference in network performance at the optimal thresholds compared to the fixed threshold.
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lower activation thresholds (Marshall et  al., 2022). Therefore, 
assuming a constant cross section for human vagus nerves may 
be inaccurate for modeling the response to VNS.

More realistic models of the vagus nerve that take into account 
variations in fascicle morphology are thus likely required to achieve 
precise prediction of VNS performance. These models will serve to 
simulate population responses (e.g., Musselman et al., 2023), study 
mechanisms of action (e.g., Davis et al., 2023), and design improved 
electrode geometries, electrode placements, and stimulation 
parameters (e.g., Schiefer et  al., 2008; Wongsarnpigoon and Grill, 
2010; Aristovich et  al., 2021). There is thus substantial interest in 
characterizing the fascicular morphology of the vagus nerve along its 
length and in a larger number of human cadaver subjects (NIH, 2022). 
However, to accomplish these goals, fast and accurate fascicle 
segmentation are necessary to expand our understanding of the 
functional organization of the vagus nerve (Ravagli et  al., 2021; 
Thompson et al., 2022; Upadhye et al., 2022; Jayaprakash et al., 2023).

High resolution imaging methods like microCT provides detailed 
information about fascicular morphology along the length of the 
vagus nerve (Thompson et al., 2020; Upadhye et al., 2022; Jayaprakash 
et al., 2023). Thompson et al., imaged peripheral nerves (rat sciatic and 
pig vagus) using microCT and were able to manually segment and 
trace fascicles in their samples (Thompson et al., 2020). Jayaprakash 
et al. (2023) imaged the pig vagus nerve for the purpose of tracing 
“organotypic” fascicular connectivity. By taking into account the 
fascicle morphology over the length of the nerve, microCT imaging 
has the potential to improve computational models of VNS.

In addition to the impact on computational modeling there is 
substantial merit and potential impact to further elucidating the 
micro-anatomy of the vagus nerve. The parasympathetic autonomic 
system is very complex and involved in many functions within the 
body, and may therefore underpin multiple diseases (Andersson and 
Tracey, 2012; De Couck et al., 2012; Breit et al., 2018).

4.3. Limitations and future directions

Our approach may be improved by training a network to segment 
the epineurium in addition to fascicles. Epineurium segmentation 
provides morphological quantification and inputs to computational 
modeling on the size of the nerve, which is important for designing cuff 
electrodes that are appropriately sized and for predicting activation 
thresholds with correct electrode-fiber distances. However, additional 
staining procedures are needed to enhance the contrast of the epineurium.

It is important to note that the segmentations are performed on 
dissected and processed tissue which inevitably causes volume 
shrinkage. Therefore, our segmentations underestimate fascicle 
dimensions and it would be necessary to compensate for shrinkage if 
utilizing this data for subsesquent electrode design efforts. Past 
publications have estimated that tissue shrinkage is on the order of 
15–30% (Pelot et al., 2020).

Fascicle sizes and locations in adjacent cross sections of the nerve 
are also highly spatially correlated. Although our network performed 
well on both the validation and test nerves, its performance could 
improve if a 3D network approach were taken (Çiçek et al., 2016). 
We sampled nerves from de-identified cadavers, but in future studies, 
demographic information may be leveraged to study potential effects 
on nerve morphology.

Staining with osmium tetroxide enhances the brightness of the 
fascicles in images, primarily through its reaction with lipid-
containing myelin (Kiernan, 2007), but the osmium was not uniformly 
absorbed in all specimens and along the length of the nerve in single 
specimens, resulting in areas with non-uniform brightness. This 
limitation may be able to be overcome with additional optimization 
of the staining procedures and control of the time from death to 
embalming, dissection, and staining. Nonetheless, despite variability 
in tissue contrast, our deep-learning approach seemed to be robust 
and made similarly accurate predictions regardless of which nerves 
were included or excluded of the training dataset.

Even though our ground truth segmentations were performed by 
trained ‘experts’, there is an inherent risk that some of the smaller 
fascicles could have been missed. We  believe this is particularly 
possible as some of the smaller fascicles would be on the order of 3 × 3 
pixels (or 30 × 30 μm). Therefore, it is possible that improvements in 
the ground truth segmentation, aided by higher resolution imaging, 
may yield better performance of the network detection of smaller 
fascicles. In general higher quality images improve automatic 
detection method performance (Sabottke and Spieler, 2020).

Lastly, lipid deposits and/or precipitates of osmium tetroxide 
generate high pixel intensity artifacts. While these were occasionally 
misinterpreted by the network as fascicles, these are easy to identify 
and remove during manual clean-up processing.

5. Conclusion

Understanding the fascicular organization of the vagus nerve is an 
important step in the development and optimization of 
neuromodulation devices that selectively activate the nerve’s diverse 
functional pathways.

We demonstrated that a U-Net CNN successfully segments 
fascicles from microCT images of the human vagus nerve. Further, 
we demonstrated that U-Net segmentation generalizes well to other 
nerves not included in the training or validation datasets. This 
automated segmentation approach vastly improved throughput 
compared to manual segmentation.

While the network’s Dice coefficient (0.87) suggests moderate-to-
high performance, the segmentations are not perfect. To supplement 
typical segmentation metrics, we developed a fascicle-wise detection 
metric that categorized various types of errors (falsely missed, added, 
split or merged fascicles). This network and the calculated 
performance metrics herein set a first benchmark, using a standard 
U-Net CNN, for the application of deep-learning algorithms to 
segment fascicles from microCT images. The process may be further 
optimized by refining tissue staining methods, modifying network 
architecture, and expanding the ground-truth training data sets. The 
improvement in processing time has significant implications for the 
consortium of researchers currently engaged in mapping the entire 
length of the vagus nerve, as manually segmenting long nerves would 
be otherwise untenable.
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