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Background: Early identification of patients at risk of dementia, alongside timely 
medical intervention, can prevent disease progression. Despite their potential 
clinical utility, the application of diagnostic tools, such as neuropsychological 
assessments and neuroimaging biomarkers, is hindered by their high cost and 
time-consuming administration, rendering them impractical for widespread 
implementation in the general population. We  aimed to develop non-invasive 
and cost-effective classification models for predicting mild cognitive impairment 
(MCI) using eye movement (EM) data.

Methods: We collected eye-tracking (ET) data from 594 subjects, 428 cognitively 
normal controls, and 166 patients with MCI while they performed prosaccade/
antisaccade and go/no-go tasks. Logistic regression (LR) was used to calculate 
the EM metrics’ odds ratios (ORs). We  then used machine learning models to 
construct classification models using EM metrics, demographic characteristics, 
and brief cognitive screening test scores. Model performance was evaluated 
based on the area under the receiver operating characteristic curve (AUROC).

Results: LR models revealed that several EM metrics are significantly associated 
with increased odds of MCI, with odds ratios ranging from 1.213 to 1.621. The 
AUROC scores for models utilizing demographic information and either EM 
metrics or MMSE were 0.752 and 0.767, respectively. Combining all features, 
including demographic, MMSE, and EM, notably resulted in the best-performing 
model, which achieved an AUROC of 0.840.

Conclusion: Changes in EM metrics linked with MCI are associated with attentional 
and executive function deficits. EM metrics combined with demographics and 
cognitive test scores enhance MCI prediction, making it a non-invasive, cost-
effective method to identify early stages of cognitive decline.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder characterized by the accumulation of amyloid beta (Aβ) 
plaques and neurofibrillary tau-based tangles, beginning decades 
before symptoms appear and lead to cognitive decline, with individuals 
progressing from normal cognitive abilities to prodromal AD and 
ultimately AD dementia (Jack et  al., 2018). While treatment can 
ameliorate some symptoms of dementia, there is no currently available 
cure, and the disease inevitably progresses (Alzheimer’s Association, 
2022). Early diagnosis and intervention during the mild cognitive 
impairment (MCI) stage are essential to preventing the progression to 
dementia and improving the quality of life for those with preclinical 
or prodromal AD (Gauthier et al., 2006).

Validated biomarkers that are proxies for AD neuropathologic 
changes exist but are underutilized due to their invasive, high cost, and 
limited availability (Jack et al., 2018). A neuropsychological evaluation 
is the most widespread method used in clinical settings to screen for 
cognitive impairment and obtain a global index of cognitive 
functioning (Nasreddine et al., 2005; McKhann et al., 2011; Bradfield, 
2021). Evaluations range from simple bedside tests and brief screening 
tools to detailed neuropsychological batteries. Brief cognitive 
screening tests have been used and refined throughout the years, 
including the Mini-Mental State Examination (MMSE), Mini 
Cognitive Assessment Instrument (Mini-Cog), and Montreal 
Cognitive Assessment (MoCA) (Bradfield, 2021). Brief cognitive 
measures, such as the MMSE that can be easily administered with 
minimal training are optimal for fast-paced, high-patient-volume 
screening settings that often encounter older adult patients with 
cognitive problems. Although an array of brief cognitive screening 
tools that are sensitive to AD exist, most depend on intact linguistic 
function, which is highly influenced by demographic variables, and 
they may not be sensitive to the early stages of cognitive impairment 
(Nasreddine et al., 2005).

Furthermore, several cognitive tests entail writing and drawing, 
and motor dysfunction is highly prevalent in dementia patients, which 
can impact the results. Therefore, the utility of these brief cognitive 
tests, especially in patients with late-stage AD, can be limited. The gold 
standard for cognitive examination is a neuropsychological assessment 
battery, which requires in-depth training to ensure standardized 
administration and accurate interpretation of the findings (McKhann 
et al., 2011). Neuropsychological battery testing is not typically feasible 
in fast-paced clinical settings, such as primary care facilities. A rapid 
and easy-to-administer, non-invasive screening tool that is accurate 
and sensitive to the detection of MCI and AD dementia could 
accelerate new therapeutics for AD by selecting good trial candidates 
in the preclinical or prodromal stages and also screen healthy 
individuals in primary care facilities (Cummings et al., 2021).

Machine learning models built using non-invasive patient data are 
obvious candidates for use as screening tools. Previous research has 
demonstrated the use of machine learning in classifying MCI/AD 
dementia patients and cognitively normal controls and the potential 
of speech and language-based tools for non-invasive AD risk 
stratification (de la Fuente Garcia et  al., 2020; Pulido et  al., 2020; 
Tanveer et al., 2020). A major challenge in implementing a large-scale 
language tool is the presence of linguistic differences among speakers 
of different languages and dialects, which can result in variations in 
expression, speaking speed, and word usage. For these reasons, there 

are gaps between the clinical potential, research contexts, and actual 
clinical implementations of these tools.

Another modality gaining momentum is eye movement (EM) 
analysis; in recent years, eye-tracking (ET) devices have provided 
adequate temporal resolution, accuracy, and precision for measuring 
EM and detecting changes in pupil diameter (Klingner et al., 2008; 
Tobii Technology AB, 2012). The ET technique provides a 
non-invasive, quantitative, and objective evaluation of EM, which 
researchers can apply to assess cognitive function. Recent research 
suggests that impaired EM may be an early indicator of AD (Anderson 
and MacAskill, 2013), evident even in the prodromal stage and 
worsening as the disease progresses (Albers et al., 2015; Kusne et al., 
2017); EM metrics may be used as biomarkers of both disease status 
and progression. Promising findings have emerged recently on the 
predictive value of EM data collected during reading tasks alone or 
combined with language data during reading activities (Biondi et al., 
2018; de la Fuente Garcia et al., 2020).

The present study aimed to investigate the potential utility of EM 
data collected during an interleaved paradigm in differentiating 
individuals with MCI from CN controls. Specifically, we aimed to 
investigate the potential of EM data, either independently or in 
combination with neuropsychological scores, to improve the accuracy 
of distinguishing between individuals with MCI and CN controls. 
We collected demographic information, cognitive scores, and EM 
metrics from participants who completed the PS/AS and Go/No-go 
tasks. We explored the potential benefits of combining these datasets 
with MMSE scores. This study sheds light on the potential of EM data 
as a novel biomarker for MCI and examines the advantages of using a 
multimodal approach for improving prediction accuracy.

2. Methods

2.1. Participants

In total, 679 individuals participated in the study between October 
2019 and December 2020. We  divided the participants into MCI 
patient and age-matched CN control groups. MCI patients and CN 
controls were recruited at the Gwangju Alzheimer’s Disease and 
Related Dementia (GARD) center (Gwangju City, South Korea) 
(Doan et al., 2022).

We examined all the participants through detailed clinical 
consultations, incorporating a neuropsychological battery and the 
Clinical Dementia Rating (CDR) scale. CN controls were identified 
clinically as those who had a CDR score of zero and no sign of 
cognitive impairment; those with a CDR score of 0.5 and evidence of 
cognitive decline in one or more domains were considered MCI 
(Albert et al., 2011). MCI patients had a Seoul Neuropsychological 
Screening Battery-Second Edition (SNSB-II) z score of less than 
−1.5 in at least one of the domains. The SNSB-II is a widely used tool 
in South Korea for evaluating cognitive function in patients with MCI 
and dementia (Kang et al., 2003). In our study, all participants were 
assessed using the Korean version of the MMSE, which was included 
in the SNSB-II (Park, 1989).

Potential study participants underwent magnetic resonance 
imaging (MRI) scans to screen for evidence of brain atrophy or other 
focal brain lesions. Exclusion criteria for the study were as follows: the 
presence of focal brain lesions on MRI, including lacunes and white 
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matter hyperintensity lesions of grade 2 or more (Fazekas et al., 1987; 
Kim et  al., 2008); less than 3 years of education; and medical 
conditions that could interfere with the study design, such as mental 
health instability or a history of excessive alcohol consumption. A total 
of 85 participants were excluded based on these criteria. Specifically, 
we  excluded 25 individuals diagnosed with AD dementia, 60 
participants with visual impairments, and those who failed calibration 
and the preliminary trials that were conducted to familiarize 
participants with the task requirements before the actual trial. A total 
of 594 participants were included in the final analysis, including 428 
CN controls and 166 MCI patients, as shown in Table 1. The CN group 
included 428 subjects (190 males, 238 females), with a mean age of 
71.2 ± 6.2 years; the MCI group included 166 subjects (83 males, 83 
females), with a mean age of 73.5 ± 6.6 years (see Table 1). We obtained 
written informed consent from all participants or their legal guardians 
after providing a detailed description of the study, which was approved 
by the Chonnam National University Hospital Institutional Review 
Board (IRB no CNUH-2019-279).

2.2. Eye-tracking recordings and the 
experimental paradigm

The standardized pipeline used to preprocess the gaze data 
collected for each participant has been described in detail elsewhere 
(Opwonya et  al., 2022). We  recorded SEM data on the Tobii Pro 
spectrum system (Tobii Pro AB, Danderyd, Sweden), sampled at 
300 Hz, and processed with Tobii Pro Lab version 1.118. Visual stimuli 
were presented on a monitor approximately 65 centimeters from the 
participants. Furthermore, we used a desk with adjustable chin and 
forehead rests to maintain a suitable angle between each participant’s 
gaze and the ET monitor.

Our experimental design involved two interleaved sessions: the 
PS/AS (PA) and the Go/No-go (GN). Each session consisted of 30 
blocks, each consisting of 3 trials, with two standard (PS and Go) trials 
and one deviant trial (AS and No-go), as shown in Figure 1. The 
condition (PS, AS, Go, and No-go) and the peripheral target, projected 
at ±10° in the horizontal plane (left/right), were randomly interleaved 
with an equal frequency throughout each block.

This study classified six EM-related responses, including fixation 
duration, correct responses, anticipations, omissions, corrected 
inhibition errors, and uncorrected inhibition errors. We classified all 
errors as the summation of anticipatory errors, omissions, and 

inhibition errors in the PS/AS and Go trials and all errors as the 
summation of inhibition errors in the No-go trials. Criteria were 
established to determine the PS/AS and Go/No-go responses.

Correct responses for PS and Go trials were defined as the first 
saccade directed toward the target location, followed by a sustained 
fixation within the area of interest (AOI). For AS trials, correct 
responses were defined as the first saccade in the opposite direction of 
the target location, followed by sustained fixation within the AOI. In 
No-go trials, correct responses were identified as a maintained fixation 
at the center of the screen despite the appearance of any directional 
targets, indicating successful inhibition.

Anticipatory errors were defined as the first saccade that occurred 
less than 80 ms following target stimulus onset, while omission errors 
were defined as the absence of eye movement within 500 ms of target 
presentation. Inhibition errors were further subcategorized into 
corrected and uncorrected errors. Uncorrected inhibition errors were 
trials where the target stimuli inappropriately captured the gaze, but 
no corrective saccade was made. Corrected inhibition errors were 
defined as errors in which the gaze was redirected from an incorrect 
to a correct direction within 400 ms, with a gaze variation ≤1°.

2.3. Statistical analysis

R version 4.2.2, including the gtsummary (v.1.6.2) and tidyverse 
packages (v.1.3.2), was used for statistical analysis (Wickham, 2017; 
Sjoberg et al., 2021; R Core Team, 2022). We performed binomial 
logistic regression analyses to examine the ability of EM metrics to 
distinguish between CN controls and MCI patients. We estimated ORs 
from two logistic regression models (crude and adjusted), which 
included adjustments for age, sex, and education level.

2.4. Machine learning and model selection

We used the mikropml package (v.1.4.0) to train and evaluate 
models to predict cognitive status from the EM metrics obtained from 
PS/AS and Go/No-go tasks. Demographics, cognitive scores, and ET 
metric data were used to generate logistic regression (LR), random 
forest (RF), support vector machine (SVM), and extreme gradient 
boosting (XGB) classification models to predict cognitive status.

We aimed to classify patients with MCI (vs. CN controls) using 
each feature set (see below); we built classifiers using demographic 
characteristics, MMSE scores, and EM metric data. We performed LR 
on all feature sets using a modified version of the machine learning 
pipeline presented in the study by Topcuoglu et al. (2021) and caret 
version 6.0-93 in R version 4.2.2. Furthermore, we performed RF, 
SVM with a radial basis kernel, and XGB classification for the feature 
sets using the same method implemented in mikropml (Topcuoglu 
et al., 2021). We randomly split the data into 80/20 train/test splits, 
and the train/test splits were identical across models generated with 
different feature sets for a valid comparison.

Given that the data were imbalanced, we applied the synthetic 
minority oversampling technique (SMOTE) during cross-validation, 
which allowed for proper evaluation of the model’s capability to 
generalize from the training data and avoided biases or overly 
optimistic estimates (Santos et  al., 2018). Hyperparameters were 
selected via cross-validation on the training set to maximize the 

TABLE 1 Participants’ demographic information and neuropsychological 
test scores.

Characteristic All1 
(N = 594)

MCI1 
(N = 166)

CN1 
(N = 428)

p 
value2

Sex (female) 321 (54%) 83 (50%) 238 (56%) 0.2

Age 71.80 (6.42) 73.45 (6.63) 71.17 (6.22) <0.001

Education level 13.0 (4.4) 12.9 (4.5) 13.1 (4.4) 0.8

MMSE score 27.32 (2.16) 26.16 (2.64) 27.77 (1.75) <0.001

1The values represent the mean (SD) for continuous variables and n (%) for categorical 
variables. The p values for the continuous variables were obtained using the Wilcoxon rank 
sum test. For the categorical variables, the p values were derived from the Chi-squared test 
statistics.
2Pearson’s Chi-squared test; Wilcoxon rank sum test. The bold fonts indicate a p value lower 
than 0.05.
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average area under the receiver operating characteristics curve 
(AUROC) across cross-validation folds.

2.5. Feature sets

We studied the relationship between cognitive status and six 
feature sets: (i) demographic characteristics—sex, age, and years of 
education; (ii) MMSE scores; (iii) demographic characteristics and 
MMSE scores; (iv) EM features—variables derived from the PS/AS 
and Go/No-go tasks; (v) demographic characteristics and EM 
features; and (vi) demographic characteristics, MMSE scores, and EM 
features. Demographic features (particularly age, sex, and years of 
education) can be  obtained noninvasively and are predictive of 
dementia in previous studies (Calvin et al., 2019).

2.6. Feature set preprocessing

We preprocessed all six datasets by mapping categorical features to 
binary variables, centering and scaling the continuous features, and 
removing features present in only one sample or all but one sample.

2.7. Baseline classifier

We selected the best available classification method using 
demographic information (age, sex, and education level) as the 
baseline for our algorithm development (see Table 1).

2.8. Model performance

To characterize the accuracy of the MMSE scores and EM 
metrics, we performed receiver operating characteristic (ROC) curve 
analyses to calculate the AUROC and the deviance across all train/
test splits. We  selected the optimal model based on the highest 
AUROC and lowest binomial deviance in each combination of 
learning algorithms and six feature sets. Subsequently, we evaluated 
the predictive performance of this model on the test set. Feature 
importance was calculated using a permutation test, which breaks the 
relationship between the feature and the true outcome in the test data 
and measures the change in model performance.

3. Results

3.1. Participant characteristics

The participants’ baseline demographic characteristics and 
cognitive scores are shown in Table  1. Patients with MCI were 
significantly older (p < 0.001) and had significantly lower MMSE total 
scores (p < 0.001) than CN controls. There was no difference in sex or 
years of education between the groups.

3.2. Eye-movement tasks

Several EM variables were significantly predictive of MCI on all 
tasks, even after being adjusted for demographics.

FIGURE 1

PS/AS and Go/No-go paradigms.
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3.3. Prosaccade tasks

Univariate logistic regression models adjusted for demographics 
showed increased odds of MCI for individuals with wider latency 
variability (OR 1.532, 95% CI 1.262–1.868, p < 0.001), more errors (OR 
1.348, 95% CI 1.106–1.645, p = 0.003), and more anticipations (OR 
1.213, 95% CI 1.006–1.461, p = 0.043) (see Table 2).

3.4. Antisaccade tasks

Univariate logistic regression models adjusted for 
demographics revealed increased odds of MCI for individuals 
with more errors (OR 1.604; 95% CI 1.295–2.002; p < 0.001), more 
uncorrected errors (OR 1.394; 95% CI 1.171–1.665; p < 0.001), and 
more anticipations (OR 1.041; 95% CI 1.041–1.517; p = 0.018) (see 
Table 2).

3.5. Go tasks

Univariate logistic regression models adjusted for demographics 
showed increased odds of MCI for individuals with a wider latency 
variability (OR, 1.216; 95% CI, 1.003–1.477; p = 0.047), more errors 

(OR, 1.555; 95% CI 1.274–1.906; p < 0.001), more anticipations (OR, 
1.307; 95% CI 1.086–1.554; p = 0.0053), and more omissions (OR, 
1.295; 95% CI 1.084–1.554; p = 0.0053) (see Table 3).

3.6. No-go tasks

Univariate logistic regression models adjusted for 
demographics showed increased odds of MCI for individuals with 
a wider fixation variability (OR, 1.454; 95% CI, 1.198–1.788; 
p < 0.001), more errors (OR, 1.598; 95% CI 1.324–1.933; p < 0.001), 
and more uncorrected errors (OR, 1.621; 95% CI 1.343–1.961; 
p < 0.001) (see Table 3).

3.7. Diagnostic performance of the feature 
sets

3.7.1. Baseline demographic characteristics
Table  4 shows the performance of the four classification 

algorithms (LR, RF, SVM, and XGB) and summarizes the 
diagnostic performance of the six feature sets. The LR algorithm 
exhibited the highest AUROC of 0.656 with deviance of 161.409; 
hence, we used it as the baseline for all subsequent experiments.

TABLE 2 Estimated odds ratios and 95% confidence intervals of Pro/antisaccade EM variables derived from the two logistic regression models.

Crude model Adjusted model

Variables OR1 95% CI2 p value OR1 95% CI2 p value3

Prosaccade

Correct 0.717 0.597, 0.858 <0.001 0.736 0.601, 0.899 0.003

Latency 1.171 0.98, 1.400 0.082 1.137 0.945, 1.367 0.173

Latency SD 1.564 1.305, 1.883 <0.001 1.532 1.262, 1.868 <0.001

All errors 1.399 1.170, 1.677 <0.001 1.348 1.106, 1.645 0.003

Uncorrected error 1.115 0.936, 1.319 0.219 1.082 0.904, 1.286 0.381

Self-corrected 1.017 0.848, 1.214 0.857 0.998 0.829, 1.197 0.986

Anticipations 1.245 1.047, 1.480 0.014 1.213 1.006, 1.461 0.043

Omissions 1.195 1.008, 1.414 0.041 1.137 0.95, 1.353 0.151

Antisaccade

Correct 0.614 0.501, 0.745 <0.001 0.621 0.495, 0.771 <0.001

Latency 0.878 0.732, 1.051 0.158 0.867 0.719, 1.043 0.131

Latency SD 0.97 0.807, 1.158 0.725 0.929 0.774, 1.112 0.426

All errors 1.642 1.353, 2.009 <0.001 1.604 1.295, 2.002 <0.001

Uncorrected error 1.447 1.221, 1.722 <0.001 1.394 1.171, 1.665 <0.001

Corrected error 0.702 0.574, 0.852 <0.001 0.713 0.581, 0.868 <0.001

Anticipations 1.297 1.088, 1.545 0.004 1.257 1.041, 1.517 0.018

Omissions 1.224 1.033, 1.448 0.020 1.178 0.99, 1.400 0.066

1OR, odds ratio.
2CI, confidence interval; SD, standard deviation.
3p value obtained from the Wald test. The models were adjusted for age, sex, and years of education. The bold font indicates a p value lower than 0.05.
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3.7.2. Classification performance
In this study, we compared different models to determine the best 

predictors of cognitive impairment. Specifically, we  examined the 
performance of a baseline model against two other models: one that 
included demographics and EM and another that included 
demographics and MMSE total score. The model incorporating EM 
as a predictor showed superior performance with an AUROC of 0.715, 
surpassing the baseline model that used only demographic 
information. However, the MMSE total score had a slightly higher 
AUROC than the EM features alone with AUROC of 0.743. 
Furthermore, we observed that adding demographics to either the EM 
or MMSE features independently resulted in further performance 
improvements, with AUROCs of 0.752 and 0.767, respectively. Finally, 
we evaluated the performance of a combined model that included all 

features, namely demographics, MMSE total score, and EM. Our 
analysis demonstrated that this model had the best overall 
performance, with an AUROC of 0.840 and lowest deviance of 
121.671, as shown in Figure 2 and Table 4. Incorporating EM into 
predictive models may improve their accuracy in identifying cognitive 
impairment, and a combination of demographics, MMSE total score, 
and EM can effectively predict cognitive impairment, suggesting the 
importance of using multiple features in clinical assessments. 
Additional performance metrics, such as sensitivity and specificity, are 
provided in Supplementary Appendix Table A1.

To determine each feature set’s contribution to the classification 
model’s performance, we calculated the feature importance using a 
permutation test, identifying the five most important features, as 
shown in Figure 3.

TABLE 3 Estimated odds ratios and 95% confidence intervals of Go/No-go EM variables derived from the two logistic regression models.

Crude model Adjusted model

Variables OR1 95% CI2 p value OR1 95% CI2 p value3

Go

Correct 0.610 0.507, 0.732 <0.001 0.616 0.501, 0.753 <0.001

Latency 1.227 1.028, 1.467 0.024 1.174 0.98, 1.413 0.090

Latency SD 1.269 1.061, 1.522 0.009 1.216 1.003, 1.477 0.047

All errors 1.596 1.332, 1.919 <0.001 1.555 1.274, 1.906 <0.001

Uncorrected error 1.177 0.99, 1.393 0.061 1.141 0.96, 1.355 0.135

Self-corrected 0.948 0.788, 1.134 0.564 0.935 0.775, 1.122 0.473

Anticipations 1.334 1.123, 1.585 0.001 1.307 1.086, 1.572 0.005

Omissions 1.365 1.152, 1.626 <0.001 1.295 1.084, 1.554 0.004

No-go

Correct 0.604 0.505, 0.721 <0.001 0.604 0.497, 0.731 <0.001

Fixation duration 0.692 0.581, 0.822 <0.001 0.712 0.592, 0.854 <0.001

Fixation duration SD 1.503 1.240, 1.837 <0.001 1.458 1.198, 1.788 <0.001

All errors 1.603 1.346, 1.912 <0.001 1.598 1.324, 1.933 <0.001

Uncorrected error 1.621 1.362, 1.935 <0.001 1.621 1.343, 1.961 <0.001

Corrected error 0.996 0.823, 1.184 0.964 0.949 0.779, 1.135 0.579

1OR, odds ratio.
2CI, confidence interval; SD, standard deviation.
3p value obtained from the Wald test. The models were adjusted for age, sex, and years of education. The bold font indicates a p value lower than 0.05.

TABLE 4 AUROC results of prediction models according to feature set and classification model.

Logistic regression Random forest Support vector 
machine

Extreme gradient 
boosting

AUROC Deviance AUROC Deviance AUROC Deviance AUROC Deviance

Demo 0.656 161.409 0.552 – 0.610 – 0.613 158.382

MMSE 0.742 161.418 0.593 – 0.743 – 0.671 161.908

EM 0.702 149.244 0.715 – 0.643 – 0.707 148.732

Demo + MMSE 0.767 135.817 0.610 – 0.764 – 0.717 139.122

Demo + EM 0.700 149.333 0.752 – 0.718 – 0.726 137.378

Demo + MMSE + EM 0.773 138.866 0.831 – 0.769 – 0.840 121.671

Values in bold in each column represent the highest performance.
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4. Discussion

This study evaluated the efficacy of EM metrics for screening MCI 
patients from CN controls, comparing these metrics individually or 
jointly with other easily accessible and cost-effective measures such as 
demographic information and MMSE scores. Specifically, 
we  developed and validated prediction models with the ability to 
identify individuals with MCI using an ET paradigm comprising PS/
AS and Go/No-go tasks and examining the contributions of 
demographic information, MMSE scores, and EM data.

The cohort EM variables that were consistently associated with MCI 
were latency variability, fixation duration variability, the number of 
errors, anticipations, and omissions (Opwonya et al., 2022). Kapoula 
et al. (2010) suggested that a wide latency distribution is a good index of 
attentional fluctuation when participants perform SEM tasks. Therefore, 

the greater latency variability in the MCI group suggests more extended 
moments of inattention where their focus drifted from the task to other 
irrelevant things. Fixation duration, which represents the relative focus 
on an object, with a greater average fixation time indicating a greater 
degree of attention (Tullis and Albert, 2013), was shorter and had more 
variability in the MCI group, indicating a disengagement of attention. 
Participants with difficulties in sustained attention or working memory, 
such as the MCI group in our study, showed increased odds of omissions 
in Go and AS tasks, further supporting the suggestion that they have 
attention deficiencies (Crawford et al., 2013). Our results suggested that 
the MCI group had poorer sustained attention than the CN group, as 
indicated by the greater saccade latency variability, shorter fixation 
duration, and more frequent omissions.

When a participant preempts the onset signal of a task with an 
anticipatory EM in advance of the target, anticipation errors are 
generated (Crawford et  al., 2013). The MCI group showed 

FIGURE 2

ROC curves for the best-performing prediction models per feature set.
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increased odds of making anticipatory saccades. The higher 
frequency of anticipatory errors in the MCI group sheds light on 
the inhibitory dysfunction in these patients. Furthermore, 
we evaluated corrected and uncorrected inhibition errors to assess 
specific inhibitory processes. We found that the MCI group had 
increased odds of not correcting errors, consistent with an 
impairment in error monitoring. These findings are consistent 
with previous results, which showed that PS/AS and Go/No-go 
tasks could demonstrate specific deficits in inhibitory control, 
latency, and self-monitoring in patients with MCI compared to 
CN controls (Opwonya et al., 2022). Previous studies have linked 
variables such as latency variability, fixation duration variability, 
errors, anticipations, and omissions with increased odds of MCI 
or AD dementia (Crawford et  al., 2013; Noiret et  al., 2018; 
Opwonya et  al., 2021, 2022) and likely contribute to cognitive 
function deficits in this patient group.

Next, we employed machine learning models to evaluate the 
predictive performance of EM features from the PS/AS and Go/
No-go tasks, demographic information, and MMSE scores in a 
cohort of individuals with and without cognitive impairment. 
Upon comparing the EM feature performance to the baseline 
model, we found the EM metrics reliable for distinguishing MCI 
patients from CN. The results showed that the models using EM 
features alone outperformed those using demographic 
characteristics alone. Specifically, the discriminative ability of the 
ET model was superior in this dataset, with a peak AUROC of 
0.715, compared to the demographic characteristics model, with 
an AUROC of 0.656. However, the MMSE alone had a higher 
performance with an AUROC of 0.743 than EM features. 
Incorporating demographic characteristics, MMSE scores, and 
EM data in the prediction model further improved the detection 
of MCI, yielding the highest AUROC of 0.840 and lowest 

deviance of 121.671. These findings suggest that EM metrics 
captured during PS/AS and Go/No-go tasks can help detect 
subtle cognitive impairment and have additive clinical utility 
when combined with demographic characteristics and 
MMSE scores.

Previous research has shown that the MMSE and Montreal 
cognitive assessment (MoCA) are effective diagnostic tools for 
dementia (Roalf et al., 2013). The MoCA is more sensitive and 
accurate in differentiating MCI patients from CN individuals than 
the MMSE (Nasreddine et  al., 2005; Roalf et  al., 2013). 
Longitudinal assessments are essential for determining the 
progression from MCI to AD dementia or other forms of dementia 
in clinical and research settings. Additionally, these assessments 
assist in differential diagnosis and the measurement of the 
treatment effectiveness. However, conducting serial assessments 
can be challenging due to practice effects, particularly when using 
brief cognitive tests like MMSE and MoCA. Utilizing eye-tracking 
technology can reduce potential confounding associated with 
repeated task exposure, although it does not eliminate carryover 
effects from the test–retest method. Compared to high-cost or 
invasive techniques, non-invasive tools such as eye trackers 
provide data that may not require expert interpretation in the 
clinical context and pose no risk to patients. The ability of 
non-experts to interpret EM metrics will rely on establishing 
consistent performance by simple or automated classification 
algorithms, irrespective of potential confounding factors such as 
age and educational level. Dementia pathology causes progressive 
neurodegeneration, resulting in altered oculomotor performance 
and a decline in cognitive functions (Molitor et al., 2015; Barral 
et al., 2020). Previous studies have demonstrated a considerable 
impact of aging on saccadic reaction times, as younger adults 
exhibit notably quicker mean reaction times than their older 

FIGURE 3

The top 5 features that contributed the most to the best-performing model in each dataset. (A) RF model with the EM dataset, (B) RF model with 
demographic and EM data, and (C) XGB model with demographic data, MMSE scores, and EM data. Important features for the LR and SVM models 
were selected according to decreasing importance to the AUROC value when the feature was permuted.
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counterparts (Polden et al., 2020). Our study revealed weak to 
moderate correlations between demographics, specifically age and 
level of education, and EM variables. The correlation coefficients 
for these relationships are provided in Supplementary Appendix  
Figures A1, A2.

Furthermore, aging effects have been observed in oculomotor 
function, specifically in processing speed, spatial memory, and 
inhibitory control (Salthouse, 1996; Peltsch et al., 2011; Crawford 
et al., 2017). Eye movement changes in psychiatric disorders have 
been extensively studied, with schizophrenia being one of the 
most researched conditions in this regard. In individuals with 
schizophrenia, the most prominent saccadic abnormalities are 
inhibition errors and decreased spatial accuracy during volitional 
saccades (Broerse et al., 2001). However, it is essential to note that 
neither deficits are exclusive to individuals with schizophrenia. 
Our experimental results show promise for developing a 
non-invasive risk stratification tool, as we  could accurately 
distinguish MCI patients from CN controls using EM behavior 
assessed during PS/AS and Go/No-go tasks.

The study has limitations, as EM changes can occur with 
several neurological conditions and MCI subtypes (e.g., amnestic 
vs. nonamnestic conditions) (Garbutt et al., 2008; Molitor et al., 
2015). Eye-tracking can be  used in multiple neurological 
disorders, but more research with diverse samples is needed to 
test this possibility. Additionally, eye-tracking depends on good 
visual function in subjects and requires high-performance 
devices, which can limit its availability despite minimal staff 
training needs.

In summary, during the trials, patients with MCI had difficulty 
maintaining fixation, suppressing saccades, or making saccades 
toward or away from the target. The results show that EM metrics 
may reveal impaired sustained attention, working memory, and 
executive control function in patients with MCI performing EM 
tasks. This study shows that machine learning can aid in 
automatically detecting cognitive impairment using eye-tracking 
data. The classification model with EM metrics performed better 
than the model with demographic characteristics, indicating the 
usefulness of EM feature analysis for early-stage cognitive decline 
detection. Combining EM metrics, demographic characteristics, 
and MMSE scores resulted in the best classification performance. 
Combining these modalities improves model performance and 
demonstrates that EM metrics, demographic characteristics, and 
MMSE data are complementary in detecting cognitive impairment. 
Our study, which had a sample size of approximately 600 
participants, the largest sample size of a clinical trial in this area 
to date, provides strong evidence for the effectiveness of EM 
metrics in screening patients with MCI and has significant 
implications for clinical practice.

The following are our primary contributions: first, we built a 
dataset that includes EM data collected during interleaved EM 
tasks, brief cognitive test scores, and demographic information. 
Then, we used this dataset to study the contribution of the EM 
data to the classification of patients with MCI vs. CN controls, 
showing that EM data collected noninvasively could discriminate 
between patients with MCI and CN controls. Finally, we showed 
that EM data collected during an interleaved EM task 
complemented demographic and MMSE score data in detecting 
subtle cognitive impairment.
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