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Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery 
to achieve wheelchair control or motion control for smart prostheses. However, 
problems of poor feature extraction and low cross-subject performance exist 
in the model for motor imagery classification tasks. To address these problems, 
we  propose a multi-scale adaptive transformer network (MSATNet) for motor 
imagery classification. Therein, we  design a multi-scale feature extraction 
(MSFE) module to extract multi-band highly-discriminative features. Through 
the adaptive temporal transformer (ATT) module, the temporal decoder and 
multi-head attention unit are used to adaptively extract temporal dependencies. 
Efficient transfer learning is achieved by fine-tuning target subject data through 
the subject adapter (SA) module. Within-subject and cross-subject experiments 
are performed to evaluate the classification performance of the model on the 
BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark 
models in classification performance, reaching 81.75 and 89.34% accuracies for 
the within-subject experiments and 81.33 and 86.23% accuracies for the cross-
subject experiments. The experimental results demonstrate that the proposed 
method can help build a more accurate MI-BCI system.
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1. Introduction

A brain-computer interface (BCI) establishes a direct connection between the human brain 
and a computer or external device, without requiring muscular stimulation (Saha et al., 2021). 
A BCI system decodes the patient’s intentions to move specific limbs, and subsequently uses 
these decoded intentions to provide corresponding sensorimotor feedback to the patient in 
various forms (Mane et al., 2020). In addition to being widely employed in the field of medical 
rehabilitation, BCI offers significant room for growth in fields like sleep monitoring, brain 
disease detection, and game entertainment (Chen et al., 2018; Arpaia et al., 2020; Lee et al., 2021).

As a non-invasive approach, motor imagery brain-computer interface (MI-BCI) has the 
characteristics of high safety and low power consumption. Motor imagery can alter neuronal 
activity in primary sensorimotor areas in a manner similar to that of performing actual 
movements (Pfurtscheller and Neuper, 2001). When motor imagery occurs, energy in different 
sensory regions of the cerebral cortex changes and leads to event-related desynchronization 
(ERD) and event-related synchronization (ERS). Compared to other BCI paradigms, motor 
imagery is stimulus-independent and does not require external stimuli (Khan et al., 2020). A 
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multi-scale adaptive transformer network (MSATNet) is designed in 
this paper to classify and recognize users’ motor imagery intention by 
acquiring their electroencephalogram (EEG) signals through 
MI-BCI. The category information predicted by the network can 
be used as output commands for wheelchair control or motion control 
of smart prostheses.

Due to the low signal-to-noise ratio and non-stationarity of EEG 
signals, it is difficult to extract features with high discrimination 
abilities. Therein, traditional machine learning methods have been 
widely applied to EEG decoding. The main steps include feature 
extraction and classification. For feature extraction, EEG features are 
divided into temporal features, spectral features, and spatial features. 
Temporal features are extracted from time points or time segments, 
such as by the mean and variance, while spectral features include 
frequency-domain and time-frequency features, such as the power 
spectral density and wavelet transform. The common spatial pattern 
(CSP) (Ramoser et al., 2000) is the most widely-used spatial feature 
extraction algorithm, and many researchers have attempted to 
improve its baseline implementation. To mitigate the negative impact 
of outliers and noise on the performance of conventional CSP method, 
researchers have proposed several modifications and enhancements, 
such as Sparse Common Spatial Pattern (SCSP)(Arvaneh et al., 2011), 
CSP-L1(Wang et al., 2012), CSP-QMEE (Chen et al., 2020). These 
modifications can enhance the robustness and accuracy of the CSP 
algorithm and have shown promising results in improving the 
performance of BCIs. For the classification stage, several classifiers 
have been used to distinguish high-dimensional features, such as the 
support vector machine (SVM) and linear discriminant analysis 
(LDA). However, these methods rely on feature selection and require 
extensive professional experience.

Deep learning can automatically perform representation 
learning without tedious preprocessing and feature engineering. 
Two classical deep learning models are the convolutional neural 
network (CNN) and recurrent neural network (RNN), which are 
widely used for EEG classification in motor imagery. Existing CNN 
models can be divided into two types based on the different input 
forms of the model. One is to directly input the original signal into 
the model, such as deep Convnet (Schirrmeister et al., 2017) and 
EEGNet (Lawhern et  al., 2018), and the other is to input the 
extracted features into the model. Xue et  al. used the FBCSP 
algorithm to extract spatial features and the multilayer brain 
network into their respective CNN models before finally performing 
feature fusion (Xue et al., 2020). Sujit Roy et al. used the short-time 
Fourier transform to extract time-frequency maps of the EEG as the 
model input (Roy et al., 2020).

Existing CNN-based methods perform better in terms of 
classification performance, but most only use single-scale convolution, 
which is inadequate to extract EEG signals using individual and 
temporal variability and has poor recognition accuracy. Dai et al. 
improved the accuracy of EEG classification using mixed-size 
convolution kernels for feature extraction (Dai et al., 2020). Inspired 
by the inception network structure in computer vision, EEG-Inception 
uses one-dimensional convolutions of different sizes for feature 
extraction (Zhang et al., 2021). Further, Jia et al. used a multi-branch 
multi-scale structure to achieve state of the art (SOTA) in EEG 
recognition (Jia et al., 2021). However, these methods have too many 
model training parameters and are prone to overfitting in the face of 
small datasets, which limits their recognition performance.

Recent studies have found the existence of long-range temporal 
correlation (LRTC) in EEG signals during motion imagery, which 
changes dramatically over time (Wairagkar et al., 2021). Therefore, 
capturing long-range temporal dependencies in EEG signals is 
important for feature extraction. To this end, many studies have 
applied RNN-based models for temporal modeling. Wang et al. used 
a one-dimensional aggregation approximation for dimensionality 
reduction and input the results into the long-short term memory 
(LSTM) for feature extraction (Wang et al., 2018). The gate recurrent 
unit (GRU) simplifies the model structure and improves the training 
efficiency. Liu et  al. applied the GRU to extract the temporal 
dependence in deep features (Liu et  al., 2022). Although these 
methods exploit the time series features of EEGs, the models are too 
complex for parallel training. The temporal convolutional network 
(TCN) improves upon these drawbacks, and the training efficiency is 
greatly improved as no gradient disappearance or gradient explosion 
occurs when training on long input sequences (Ingolfsson et al., 2020). 
However, the above methods can only mine a small range of time-
dependent relationships, and there are still limitations when modeling 
long-sequence EEG signals.

An important function of a practical MI-BCI system is to 
accurately recognize different subjects. Although previous models 
have achieved high performances for within-subject tests, these 
models are heavily data-dependent due to the individual variability of 
EEG data, which results in poor model generalization performance. 
To address these issues, transfer learning, which is a machine learning 
method that reduces data shifts between different domains, has 
achieved better performance in BCI classification. Domain adaptation 
is a common transfer learning approach that reduces the gap between 
the source and target domains via feature transformation. Wei et al. 
(2021) proposed aligning feature distributions using the maximum 
mean discrepancy. Chen et al. then used domain adversarial training 
to reduce the gap in the depth features between individuals (Chen 
et  al., 2022). However, this domain adaptation-based approach 
requires access to the data of all individuals in the target domain, 
which is difficult to implement in practice.

To solve these problems, we propose a novel multi-scale adaptive 
transformer model (MSATNet) for motor imagery decoding to obtain 
user motion imagery intention from collected EEG data. The 
contributions of this paper are given as follows.

 (1) In terms of feature extraction, in order to solve the problem 
that the models in the past methods are too complex and prone 
to overfitting, we propose a Multi-Scale Feature Extraction 
(MSFE) Module, which uses two branches and different 
convolution kernels to extract features of different 
frequency bands.

 (2) To address the limitation of previous methods, which could 
only capture small-scale time dependencies, we propose an 
Adaptive Temporal Transformer (ATT) Module. By combining 
temporal convolution with multi-head attention mechanism, 
we were able to capture long-range temporal dependencies 
from deep features of EEG signals.

 (3) In terms of model generalization, in order to solve the 
limitations of previous methods that need to obtain all the data 
of the target subject, we designed a Subject Adapter Module. 
By fine-tuning a pre-trained model with a small amount of data 
from new individuals, we attained good performance.
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The rest of the paper is organized as follows. Section 2 describes 
the structure of MSATNet, Section 3 describes the experimental setup, 
Section 4 analyzes the experimental results, and conclusions are 
drawn in Section 5.

2. Materials and methods

2.1. Data description

This paper uses the BCI Competition IV 2a and 2b datasets 
(Tangermann et al., 2012) to evaluate the validity of the proposed 
model. The BCI Competition IV 2a is a multiclass motor imagery 
dataset that contains EEG recordings from nine participants during 
imagining movements for the left hand, right hand, feet, and 
tongue. Data were collected through a band pass filter from 
0.5–100 Hz with a sampling rate of 250 Hz. The signals consist of 22 
EEG channels and 3 electro-oculogram (EOG) channels. Based on 
the requirements of the dataset, we removed the data of the EOG 
channel during the experiments. In addition, the dataset consists of 
two sessions that were collected on different days for each subject. 
Each session consists of 288 trials with the same number of trials 
for each category. The first session was used as the training set, 
while the second session was used as the test set. Each trial in the 
paradigm began with a 2 s prep time and was followed by a cue that 
lasted 1.25 s to represent the imagined class. The imagination period 
lasted 4 s after the cue was initiated and was terminated by the 
rest period.

The BCI Competition IV 2b is an EEG dataset based on visually 
evoked left- and right-handed motor imagery. The EEG signals of nine 
participants were collected in the dataset. Each experimenter’s EEG 
data set consists of five sessions, the first two sessions are EEG imagery 
data without visual feedback, and the last three sessions are EEG 
imagery data with visual feedback. Each session with visual feedback 
had a total of 120 motor imagery data segments, and each session 
without visual feedback contained 160 motor imagery EEG segments. 
We utilized a total of five sessions from the dataset, with the first three 
sessions used as the training set and the remaining two sessions used 
as the test set. The data in all experiments were band-pass filtered at 
0.5–100 Hz and trap filtered at 50 Hz. The sampling frequency of the 
entire experiment was 250 Hz.

2.2. EEG representations

The initial EEG signal is defined as X y i Ki i, |( ) = …{ }1 2, , , , where 
X Ri

C T∈ ×  is a representation of the i-th trial consisting of C channels 
and T  sampling time points, yi is the sample label corresponding to 
Xi, and K  is the total number of trials.

2.3. Overall model framework

A multi-scale adaptive transformer model called MSATNet is 
proposed to decode the acquired EEG signals and obtain the user 
motor imagery awareness. The overall framework of MSATNet is 
shown in Figure 1. The MSATNet model consists of three modules: 

MSFE, ATT, and SA. First, a multiscale CNN network is used in the 
MSFE module to extract the input EEG signals from a local 
perspective. Large (small) convolutional kernels are used to extract the 
low (high)-frequency features. After the MSFE module, the ATT 
module adaptively extracts the temporal information of the EEG 
signal from a global perspective. This module consists of a temporal 
decoder and a multi-head attention unit. To enhance the cross-subject 
performance of the model, the SA module is introduced for fine-
tuning the target subject data. Finally, the prediction category is 
output after a fully-connected layer and a softmax activation function.

The motor imagery recognition task can be defined as learning the 
nonlinear mapping between EEG signals and their 
corresponding categories:

 Y F Xclass = ( )

Where X  represents the representation of EEG signals, F  denotes 
the learned nonlinear mapping, and Yclass is the classification result.

2.4. Multi-scale feature extraction module

The multi-branch convolutional structure can extract rich multi-
scale signal features using variable-sized convolutional kernels in 
different branches, but too many branches make the model too 
parametric and prone to overfitting for small EEG datasets, which 
limits the enhancement of the classification performance. Therefore, 
we design an MSFE module with a two-branch structure, as shown in 
Figure 2. The MSFE is performed through two convolutional layers of 
different sizes, which ensures the richness of feature extraction while 
controlling the complexity of the model and avoiding overfitting. In 
each branch, the signals of each channel are first processed using 
one-dimensional temporal convolution as a frequency filter. Different 
convolution kernel sizes can capture various time step ranges and 
extract features from different frequency bands (Eldele et al., 2021). 
Therein, a large (small) convolution kernel is used to extract low 
(high)-frequency features. Then, depth-wise convolution is used to 
extract the features between the channels. After processing each 
branch with depthwise convolution, we fused the features and further 
processed the extracted multi-scale features with convolution. This 
approach improves upon previous methods, which utilized multiple 
branches and various convolutional layers, by reducing the number of 
parameters required for training while maintaining high classification 
accuracy. Each branch has two convolutional layers and an average 
pooling layer with each convolutional layer followed by batch 
normalization (Santurkar et al., 2018) and ELU function activation. 
The mathematical expression of the ELU function is:

 
ELU x e x

x x

x
( ) = − <

≥







1 0

0

The fused features are then extracted in the feature dimension. To 
avoid overfitting, a dropout layer is added at the end of each branch 
and MSFE module. The detailed configuration of this module is 
provided in Table 1.
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2.5. Adaptive temporal transformer module

EEG signals contain rich temporal information. Previous 
methods often utilized TCN, GRU, and similar methods for feature 
extraction. However, these methods only capture information from 
a relatively small range, which is insufficient for EEG signals with 
long-term dependencies. Therefore, we designed an ATT module 
consisting of a temporal decoder and a multi-head self-attention 
mechanism unit. After the MSFE module, the temporal decoder 
extracts deeper temporal features, and the multi-headed attention 
unit focused on more important information in the time series. The 
temporal decoder is utilized to extract additional features and 
provide temporal encoding for the subsequent self-attention 
mechanism unit.

The TCN is distinct from the LSTM and GRU as it uses 
convolutions for sequence modeling, which can be  processed in 
parallel and have a higher computational efficiency with lower 
memory requirements. We  improve TCN and design a temporal 
decoder unit. After each original TCN, the ELU activation function is 
added to enhance the expressive ability of the model. The temporal 
encoder consists of a one-dimensional fully-convolutional network 
and a causal convolution. The one-dimensional fully-convolutional 
network uses zero-padding to ensure the input and output time steps 
are equal and that each time has a corresponding output. Causal 
convolution ensures that the features at each time point are determined 
only by the previous time points. A dilated convolution is introduced 
to expand the receptive field while avoiding layers that are too deep, 
which is the dilated casual convolution. For the input 

FIGURE 1

Diagram showing the general framework of the MSATNet. For the within-subject experiments, the model consists of the MSFE and ATT modules. For 
the cross-subject experiments, the model adds the SA module to the original model.

FIGURE 2

Structure of the proposed MSFE module, where N and d donate the sequence length and feature dimension, respectively.
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sequence x n∈ , sequence element t , and filter f k: 0 1, ,… −{ }→ , 
the dilated convolution F  is calculated as:

 
F t x f t f i xd

i

k
s d i( ) = ∗( )( ) = ( )

=

−

− ⋅∑
0

1

•

where d is the expansion factor, and k  is the convolution kernel size.
The temporal decoder is implemented by the modified TCN, and 

the structure diagram is shown in Figure 3. We design the temporal 
decoder with two residual blocks to achieve a global perspective 
temporal feature extraction. Each residual block is composed of two 
layers of dilated casual convolutions, where the convolution 
expansion of the identical residual blocks is the same. The dilated 
casual convolution is accompanied by batch normalization and the 
ELU activation function after each convolution operation. For n  
residual blocks, m  convolution layers in each block, convolution 
kernel of size K , and expansion of size b, the perceptual field of the 
temporal encoder is calculated as:

 
r m K b

b

n
= + −( ) −

−
1 1 1

1

The attention mechanism imitates human cognitive attention, 
which enhances the weight of some parts of the input data while 
weakening the weight of others. This focuses attention in the network 
on the most important parts of the data. The self-attention mechanism 
is a variant of the attention mechanism, which reduces the dependence 
on external information and better captures the internal correlation 
of data or features. Vaswani et al. proposed the transformer model for 
sequence-to-sequence learning on text data and achieved a new state-
of-the-art approach (Vaswani et al., 2017) that has been extended to 
various modern deep learning algorithms, including for language, 
vision, speech, and reinforcement learning. The transformer model is 
based entirely on the self-attention mechanism without any 
convolutional or recurrent neural network layers.

We incorporated the design principles of transformers into 
motion recognition, but applying this method to EEG signals 
presents several challenges. Compared to the vast amount of 

TABLE 1 Parameter settings for the proposed MSFE module, where p  donates the dropout probability.

Layer Filters Size Stride Activation Options

Conv2D 16 Branch1: (1,64) Branch2: (1,16) 1

BatchNorm

DepthwiseConv2D (22,1) 1

BatchNorm

Activation ELU

AveragePooling2D (1,8) 1

Dropout 0.3

Conv2D 16 (1,16) 1

BatchNorm

Activation ELU

AveragePooling2D (1,7) 1

Dropout ELU 0.3

FIGURE 3

Structure of the temporal decoder, where the structure of the input features is the same as the previous module output.
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language data used in transformer training, EEG data is limited, 
making it insufficient for training transformer architectures that 
require large amounts of data. Additionally, EEG signals are 
one-dimensional time-series data with high sampling frequencies, 
making it computationally intensive to directly input them into a 
transformer. To address these challenges, we utilized multi-scale 
feature extraction and temporal convolution to extract small-
dimensional features that still contain rich signal information, which 
were then used as inputs for the multi-head self-attention unit. 
Furthermore, we reduced the model size by using only two parallel 
attention heads for computation, allowing us to maintain accuracy 
while reducing computational cost. Therefore, we designed a multi-
head attention unit, which is mainly composed of a multi-head self-
attention mechanism (Figure 4).

The multi-head attention mechanism sets multiple attention heads 
based on the self-attention mechanism, which divides the input 
features and increases the learning space of the model. This provides 
a mechanism to comprehensively focus on information at different 
times and representation subspaces, which enhances the model’s 
ability to decode complex information in EEGs.

The multi-head self-attention mechanism consists of multiple self-
attention layers. Each self-attention layer is composed of a query Q, 
keys K , and values V . The features after the temporal decoder have the 
form X RN d∈ × , where N  is the sequence length and d is the feature 
dimension. Under H  heads, each X  is split into H  spaces, and the 
converted features are expressed as ′ = …{ }X X XH1, , where 

X Rh
N d
H′ ∈

×
 and 1 ≤ h ≤ H. Then, Qh , Kh, and Vh are multiplied by 

the transformation matrices Wh
Q d dk∈ × , Wh

K d dk∈ × , and 
Wh
V d dv∈ × . The formulas are given as:

 Q W Xh h
Q

h= ′

 K W Xh h
K

h= ′

 V W Xh h
V

h= ′

Next, we use the three matrices Qh , Kh, and Vh to calculate the 
attention score Zh  of each attention head as:

 
Z softmax Q K

d
Vh

h h
T

h
N d
H=









 ∈

×


Finally, we connect the H  representations and perform a spatial 
transformation to obtain the final output as:

 MultiHead Q K V Concat Z Z Wh o N d
H, , , ,( ) = …( ) ∈

×
1 

where the projection is the parameter matrix Wo Hd dv∈ × . For each 
of these, we use d d d Hk v= =  .

2.6. Subject adapter module

Due to the individual variability of EEG signals, how to improve 
the generalization ability of the model has always been a challenge. 
The original transfer learning method based on domain adaptation 
needs to obtain all the data of the new individual, which is obviously 
difficult to use in practice. To address the limitations of previous 
methods, we designed our own adapter module. By retraining the 
adapter module with partial data from new individuals, efficient 
transfer learning can be  achieved. Detailed training and testing 
strategies will be described in the Experimental Setup section. As 
shown in Figure 5, the SA module is a bottleneck structure that 
consists of two feedforward layers and the ELU activation function. 
The feedforward down-project layer transforms high-dimensional 
features into low-dimensional features and then transforms them 
into their original dimension using the feedforward up-project layer 
after passing the ELU activation function. The SA module also 
contains a residual connection to prevent model performance 
degradation. The pre-trained fine-tuning approach obtains a more 
generalized model by pre-training on a larger source domain and 
then fine-tuning it using a smaller amount of data from the target 
domain. This method ensures a higher cross-subject performance 
with a shorter calibration time. The SA module can achieve subject-
specific adaptation of the pre-trained model by introducing a very 
small number of parameters.

3. Experiments

This paper conducts within-subject and cross-subject experiments 
to illustrate the effectiveness of the MSATNet in classifying and 
identifying motor imagery signals. The within-subject experiments 
illustrate the effectiveness of MSATNet in EEG feature extraction, and 
the cross-subject experiments illustrate the effectiveness of MSATNet 
in model transfer after adding the SA module.

FIGURE 4

Structure of the multi-head attention unit.
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3.1. Benchmark models

We choose FBCSP, EEGNet, EEG-ITNet, and SHNN for within-
subject performance comparison and DJDAN and JDAO-Mix for 
cross-subject performance comparison. The FBCSP applies the SVM 
classifier for classification by slicing bands and selecting features based 
on the CSP algorithm (Ang et  al., 2008). The EEGNet applies 
frequency filters via temporal convolution, applies depth-wise 
convolution to learn frequency-specific spatial filters, and then applies 
separable convolution to learn the features from different feature maps 
(Lawhern et  al., 2018). The EEG-ITNet performs multi-domain 
feature extraction using a multi-branch CNN and dilated casual 
convolution (Salami et al., 2022). The SHNN uses the SincNet-based 
CNN structure to extract spatial and spectral features of EEG signals, 
uses the SE module to recalibrate the features to obtain a sparse 
representation of the EEG, and applies the GRU module to extract the 
sequence relationship of the data (Liu et al., 2022). The DJDAN uses 
temporal and spatial convolutions for feature extraction and applies 
an adversarial learning strategy for domain adaptation (Hong et al., 
2021). The JDAO-Mix uses optimal transport for joint distribution 
adaptation, which is the latest SOTA method (Chen et al., 2022).

3.2. Experimental setup

For the within-subject experiments, only the MSFE and ATT 
modules were available as the SA module was not added. Both the 
training and test data were obtained from the same subject. The 
training set was taken from session 1 and the test set was from session 
2; thus, the effect of different sessions on the EEG data was ignored. 
We  used the training set from each subject for training and then 
performed validation with the test set from the corresponding subject. 
The EEG data were taken from the dataset without any other 
pre-processing. The data division standard for all comparison methods 
is the same to ensure a fair comparison. The EEG-ITNet is tested 
under the same conditions as the proposed model, and the results of 
the remaining comparison models are taken from their original 
papers. We apply accuracy as the evaluation metric.

For the cross-subject experiments, the SA module is added, and 
the model evaluation is divided into four parts. (1) We first divide the 
entire dataset into two parts: the i-th subject is a randomly-selected 
target domain, and the remaining N −( )1 subjects are the source 
domain. Half of the samples in the target domain are used for 

fine-tuning, while the other half is used to evaluate the classification 
performance. (2) We pre-train the proposed model on all samples of 
the source domain and update all trainable parameters. (3) Based on 
the training samples of the target domain, we  only fine-tune the 
parameters embedded in the SA module to narrow the gap between 
the target and source domains. (4) Finally, the trained model is 
evaluated on the test samples of the target domain. The EEG data were 
taken from the dataset without any other pre-processing. The results 
of the benchmark models were taken from their original papers. The 
model parameters, evaluation indexes, and experimental assumptions 
were the same as those of the within-subject experiments.

We built the model in TensorFlow and trained it using an RTX 
3060 GPU. The batch size was set to 64 and the Adam optimizer was 
used with a learning rate of 0.0008. All convolutional layers were 
initialized using parameters based on the Glorot method, and the final 
fully-connected layer was constrained with maximum parametric 
weights having a parameter value of 0.25. The default epoch of the 
experiments was 1,000 iterations, and an early stopping mechanism 
was used to prevent overfitting. For the temporal decoder, the 
convolution kernel size was 4 and the expansion factor was 2. We used 
2 attention heads in parallel for the multi-head attention unit.

4. Results and analysis

This section analyzes the experimental results of MSATNet in the 
within-subject experiments for the BCI Competition IV 2a and 2b 
datasets and describes the effects of the MSFE and ATT modules with 
the ablation experiments in the BCI Competition IV 2a dataset. Then, 
the experimental results of MSATNet in the cross-subject experiments 
in the BCI Competition IV 2a and 2b datasets are analyzed, and the 
effects of the SA module are considered in the ablation experiments 
from the BCI Competition IV 2a dataset.

4.1. Within-subject experimental results 
and analysis

4.1.1. Analysis of model effect
To evaluate the performance of the model for the within-subject 

experiments, the proposed MSATNet model was tested on the BCI 
Competition 2a and 2b datasets, and the experimental results were 
compared with FBCSP (Ang et al., 2008), EEGNet (Lawhern et al., 
2018), EEG-ITNet (Salami et al., 2022), and SHNN (Liu et al., 2022) 
models. Table 2 summarizes the accuracy of the different subjects and 
average accuracy under the BCI Competition IV 2a dataset for the 
proposed and benchmark methods. The powerful feature extraction 
ability of the neural network gives a higher classification performance 
for deep learning methods than in traditional machine learning 
approaches. In particular, the proposed MSATNet achieved the 
greatest accuracy among most subjects and the highest average 
accuracy. Compared with EEGNet, we use multi-scale convolution 
and adaptively extract features from a global perspective, which 
achieves a performance improvement of 8.06%. Compared with 
EEG-ITNet and SHNN, we use the multi-head attention unit to focus 
on information related to EEGs and attain a higher accuracy in EEG 
recognition. Figure 6 shows the confusion matrix of the number of 
correct and incorrect predictions generated under the BCI 

FIGURE 5

Structure of the SA module.
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competition IV 2a dataset. As can be seen in Figure 6, the data in the 
confusion matrix is mainly distributed on the diagonal of the matrix, 
indicating that MSATNet correctly predicted most of the imagined 
actions of the subjects with a low error rate.

To further verify the effectiveness of the proposed model, it 
was tested on the BCI Competition IV 2b dataset. Table 3 shows 
the accuracy of different subjects and average accuracy under the 
BCI Competition IV 2b dataset based on the proposed and 
benchmark methods. The proposed model still achieves the highest 
accuracy in most subjects and achieves the highest average 
accuracy. The data show that the performance of the FBCSP is 
greater than that of the EEGNet, but the FBCSP has the worst 
performance in the BCI Competition IV 2a dataset. This indicates 
that the generalization performance of the method extracted by the 
artificial design is poor, and the extracted features cannot be widely 
applied. However, the remaining deep learning methods perform 
better in both datasets. The MSATNet achieves effective feature 

extraction through the MSFE module extracting multi-band rich 
features and the ATT module adaptively capturing the temporal 
dependencies of EEG signals. In summary, the MSATNet performs 
well on both datasets and surpasses the benchmark methods in 
terms of performance. Thus, MSATNet can identify users’ motor 
imagery consciousness more accurately when used for motor 
imagery BCI data extraction.

4.1.2. Analysis of the effect of the MSFE module
Five models were used for comparative experiments to explore the 

impact of the MSFE module on the classification accuracy. (1) A 
single-scale feature extraction model that only retains a single branch 
with a convolution kernel size of 64. (2) The MSATNet model, which 
has the 2-branch structure shown in Figure 2. (3) A three-branch 
feature extraction model with three convolution kernels sized at 64, 
32, and 16. (4) Three convolution kernels with sizes of 64, 32, 16, 8, 
and 4 are used with a five-branch feature extraction model. (5) The 
existing multi-branch multi-scale model MMCNN (Jia et al., 2021), 
which replaces the MSFE module in MSATNet while keeping the rest 
of the model the same. We conducted within-subject classification 
experiments using these five models on the BCI Competition IV 2a 
dataset. The accuracy of different subjects and the average accuracy 
are shown in Figure 7.

The two-branch feature extraction model can extract more 
abundant signal features than the single-branch model, but by adding 
more branches, feature redundancy may occur when using a three- or 
five-branch feature model, which degrades the classification 
performance. This is why the final design adopts two branches. 
Figure 8 shows that the complexity of the comparison model gives a 
significant overfitting phenomenon when faced with EEG datasets 
having a small amount of data. This significantly reduces the 
classification effect. At the same time, the MMCNN has a poor 
performance compared with the comparison model with five 
branches, indicating that the convolutional structure can effectively 
extract features. Additionally, the number of parameters (5.7×104) of 
the multi-scale multi-branch module in MMCNN is approximately 

TABLE 2 Classification performance of the MSATNet and benchmark 
models using the BCI Competition IV 2a dataset for the within-subject 
experiments.

Subject FBCSP EEGNet EEG-
ITNet

SHNN Proposed 
method

S1 76.00 81.94 84.38 82.76 90.62

S2 56.50 56.95 62.85 68.97 65.97

S3 81.25 90.62 89.93 79.31 95.14

S4 61.00 67.01 69.1 65.52 78.12

S5 55.00 72.57 74.31 58.62 79.86

S6 42.25 58.68 57.64 48.28 62.50

S7 82.75 76.04 88.54 86.21 91.67

S8 81.25 81.25 83.68 89.66 88.89

S9 70.75 78.12 80.21 89.87 82.99

Mean 67.42 73.69 76.76 74.26 81.75

FIGURE 6

Confusion matrix of a single subject (left, S3 as a representative) and of all subjects (right, with mean value processing), where L, H, F, and T are 
abbreviations for left-hand, right-hand, feet, and tongue, respectively.
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twice that of the proposed multi-scale feature extraction module 
(3.1×104). Under the same experimental conditions, the training time 
of the MSATNet is about 32.7% that of the MMCNN. Therefore, the 
MSFE module can ensure a moderate complexity and extract more 
abundant EEG features.

4.1.3. Analysis of the effect of the ATT module
We designed an ablation experiment to verify the effectiveness of 

the ATT module at improving the accuracy of EEG recognition. Four 
models are used for the comparative experiments. The first 
comparison model is composed of only the MSFE module, the second 
is composed of the MSFE module and temporal decoder, the third is 
composed of the MSFE module and multi-head attention unit, and 
the fourth is the MSATNet. Figure  9 shows the accuracy of the 
different subjects and the average accuracy of the four comparison 
models under the BCI Competition IV 2a dataset. The model 
performance improved after adding the temporal decoder due to the 
feature extraction of the local temporal information. Feature 

extraction of the multi-head attention mechanism improved the 
classification performance after adding the attention mechanism. 
However, the classification performances of the model adding only the 
temporal decoder or only the multi-head attention unit are lower than 
MSATNet. It shows that on the basis of local feature extraction, the 
ATT module further adaptively extracts shallow features from a global 
perspective. The experimental results show that the ATT module can 
effectively capture information related to motor imagery and improve 
the recognition accuracy.

4.2. Cross-subject experimental results and 
analysis

4.2.1. Analysis of model effect
To evaluate the cross-subject classification performance of the 

model, we compare MSATNet with the benchmark models DJDAN 
(Hong et al., 2021) and JDAO-Mix (Chen et al., 2022) on the BCI 
Competition 2a and 2b datasets. In addition to performing well on the 
within-subject experiments, our method has good performance on the 
cross-subject experiments. We use eight subjects in the dataset for 
pre-training and the remaining subject for fine-tuning and 
performance evaluation. Table  4 shows the accuracy of different 
subjects and the average accuracy of the proposed and benchmark 
methods under the BCI Competition IV 2a and 2b datasets, 
respectively. The cross-subject classification accuracies of the model 
reached 81.33 and 86.23% respectively, which exceeds the DJDAN and 
JDAO-Mix models. After the MSFE module and ATT module, the 
model learns features with high discrimination and achieves efficient 
transfer in target subjects using only a small number of parameters. 
This method does not need to obtain all the target subject data, which 
shortens the tedious calibration time of the EEG and is important in 
practical applications.

4.2.2. Analysis of the effect of the SA module
We designed two comparison models to verify the effectiveness of 

the SA module at improving the cross-subject performance. One 

TABLE 3 Classification performance of the MSATNet and comparison 
benchmark methods using the BCI Competition IV 2b dataset for the 
within-subject experiment.

Subject FBCSP EEGNet EEG-
ITNet

SHNN Proposed 
method

S1 70.00 67.50 67.5 83.33 81.87

S2 60.36 60.35 71.43 61.76 72.14

S3 60.94 62.81 86.88 58.33 87.81

S4 97.50 91.25 98.44 97.30 97.81

S5 93.12 83.44 94.06 91.89 99.38

S6 80.63 61.56 86.25 88.89 88.44

S7 78.13 83.75 90.00 86.11 93.13

S8 92.50 91.88 93.44 92.11 94.37

S9 86.88 82.50 55.31 91.67 89.06

Mean 80.00 76.12 82.59 83.49 89.34

FIGURE 7

Classification performance of different branches for the MSFE module.
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TABLE 4 Classification performance of the MSATNet with benchmark 
methods using the BCI Competition IV 2a and 2b datasets in cross-
subject experiments.

Method BCI IV 2a BCI IV 2b

DJDAN 53.20 76.24

JDAO-Mix 60.69 76.65

Proposed MSATNet 81.33 86.23

model is composed only of the MSFE module and the ATT module 
and is directly tested on the target subjects after pre-training on eight 
subjects without the SA module for fine-tuning. The other model is 
composed of the MSFE, ATT, and SA modules, and the target subjects 
is adapted by fine-tuning the SA module. Figure 10 shows the accuracy 
of the different subjects and average accuracy under the BCI 
Competition IV 2a dataset for the model with and without the SA 
module. The MSATNet performs poorly in the face of new subjects, 

and features learned by the MSFE and ATT modules do not have 
better generalization. The addition of the SA module allows complete 
adaptation of the target domain with only a very small increase in the 
number of parameters to obtain better cross-subject performance 
under the common feature distribution of the learned source domain. 
Thus, the SA module helps adapt the model to the target subjects and 
can achieve more accurate transfer learning.

5. Conclusion

We propose a multi-scale adaptive transformer network called 
MSATNet. First, the MSFE module extracts rich features in 
different frequency bands. Then, the ATT module adaptively learns 
the information related to motion imagery from a global 
perspective. Finally, we  achieve effective transfer learning with 
relatively few extra parameters using the SA module. Our approach 

FIGURE 8

Model loss change diagram during training and testing. The left picture is the MSATNet, and the right picture is the comparison model MMCNN.

FIGURE 9

Classification performance of the ATT module ablation experiment.
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was evaluated on two publicly available datasets, and the results 
indicate that it outperforms existing methods. Future work will 
extend the methodology to additional activities to include disease 
diagnostics. Although our work achieves good classification 
performance, it still has some limitations. First, we only recognize 
motor imagery patterns of different limbs, such as the left hand, 
right hand, and foot. In the future, our proposed model will 
distinguish more complex motor imagery patterns, such as small 
arm rotation and elbow flexion (Chu et  al., 2020), which is 
important for patients’ rehabilitation training. Second, our adapter-
based approach still requires data from the user for calibration, but 
the calibration process is time-consuming and requires significant 
time. Therefore, future work will push toward calibration-free BCI 
classification techniques.
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