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Background: Accurately detecting and segmenting areas of retinal atrophy are 
paramount for early medical intervention in pathological myopia (PM). However, 
segmenting retinal atrophic areas based on a two-dimensional (2D) fundus image 
poses several challenges, such as blurred boundaries, irregular shapes, and size 
variation. To overcome these challenges, we have proposed an attention-aware 
retinal atrophy segmentation network (ARA-Net) to segment retinal atrophy areas 
from the 2D fundus image.

Methods: In particular, the ARA-Net adopts a similar strategy as UNet to perform 
the area segmentation. Skip self-attention connection (SSA) block, comprising a 
shortcut and a parallel polarized self-attention (PPSA) block, has been proposed 
to deal with the challenges of blurred boundaries and irregular shapes of the 
retinal atrophic region. Further, we  have proposed a multi-scale feature flow 
(MSFF) to challenge the size variation. We have added the flow between the SSA 
connection blocks, allowing for capturing considerable semantic information to 
detect retinal atrophy in various area sizes.

Results: The proposed method has been validated on the Pathological Myopia 
(PALM) dataset. Experimental results demonstrate that our method yields a high 
dice coefficient (DICE) of 84.26%, Jaccard index (JAC) of 72.80%, and F1-score of 
84.57%, which outperforms other methods significantly.

Conclusion: Our results have demonstrated that ARA-Net is an effective and 
efficient approach for retinal atrophic area segmentation in PM.
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1. Introduction

The eyes are one of the essential sensory organs in humans; many people worldwide have 
myopia, which causes many inconveniences in their lives. Holden et al. (2016) performed a 
meta-analysis of myopia prevalence. They predicted that by 2050, 49.8 and 9.8% of the world’s 
population would suffer from myopia and high myopia, respectively. High myopia has the risk 
of deteriorating into pathological myopia. Retinal changes caused by myopia include fundus 
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tessellation, parapapillary atrophy, optic disc tilting, myopic 
maculopathy, and retinal detachment. Retinal atrophy is a condition 
that leads to the loss of retinal layers, affecting vision quality. It is 
associated with choroidal retinal thinning and attenuation of the 
parapapillary retinal pigment epithelium (RPE) adjacent to the optic 
nerve head (ONH). Myopia, glaucoma, and age-related macular 
degeneration (AMD) are among the diseases that can cause retinal 
atrophy (Jonas et al., 1988; Manjunath et al., 2010; Srinivas et al., 
2018). Accurate segmentation of retinal atrophic regions from OCT 
or fundus images is essential for eye condition diagnosis, monitoring, 
and treatment. It enables personalized interventions and plays a 
crucial role in improving the overall management of these 
ocular conditions.

The degree of retinal atrophy is a valuable medical assessment 
indicator as it is correlated closely with the severity of ophthalmic 
diseases and conditions, including glaucomatous optic nerve damage, 
visual field defects, and myopia (Park et al., 1996; Uchida et al., 1998; 
Dai et al., 2013). Consequently, the segmentation of retinal atrophic 
regions has become a significant part of diagnosing ophthalmic 
diseases. Although experienced ophthalmologists can give accurate 
results, manual segmentation is laborious and time-consuming, and 
different ophthalmologists might make different treatments. The 
development of an automatic segmentation model to accurately 
segment the retinal atrophy regions is thus vital, as it offers a reliable, 
efficient, and arguably more consistent diagnosis for ophthalmic 
diseases. The automatic segmentation models always adopt fundus 
images to perform the segmentation task of retinal atrophy areas. 
Compare with three-dimensional (3D) fundus image, 
two-dimensional (2D) fundus image are more widely available and 
easier to be acquired. The 3D fundus images require special equipment 
and technology that may not be accessible or affordable for many 
clinics or researchers. In addition, the 2D fundus images can provide 
sufficient information for segmenting retinal atrophy areas, which are 
mainly located on the surface of the retina.

In previous studies, most segmentation models are based on 
traditional image segmentation algorithms with manually designed 
features. Lu et al. (2010) segmented and quantified the optic disc and 
parapapillary area automatically using a combination of techniques, 
such as scanning filter, thresholding, region growing, and a modified 
Chan-Vese model (Chan and Vese, 2001) with a shape constraint. Li 
et al. (2018) proposed a novel parapapillary atrophy segmentation 
algorithm that utilizes evenly-oriented radial line segments and ellipse 
fitting. Although the traditional methods utilize machine learning to 
implement the image segmentation algorithm, most of them require 
manual feature selection and are not end-to-end solutions. Recent 
strides in deep learning have enabled the utilization of deep learning-
based techniques in the medical domain, surpassing traditional 
methods in image segmentation with a higher degree of accuracy. 
Current mainstream deep learning methods for object segmentation 
can be  divided into convolution-based and transformer-based 
methods. Long et al. (2014) proposed full convolutional networks 
(FCN), a model foundation of many segmentation networks for pixel-
wise semantic segmentation tasks. Transformer-based (Vaswani et al., 
2017) image segmentation models have emerged because they learn a 
global understanding of images which facilitates image segmentation 
models to achieve accurate segmentation results.

Deep learning models, especially UNet, have been widely adopted 
in various studies for segmenting areas of retinal atrophy based on 

fundus images. The UNet is a convolutional neural network designed 
for biomedical applications (Ronneberger et  al., 2015). The core 
module, the FCN, utilizes the skip connections between the encoder 
and decoder to improve model performance. Due to its low demand 
on dataset size and the U-shaped structure containing contextual 
information, UNet has become a prevalent choice for medical 
segmentation and yields promising results. Furthermore, variations of 
UNet have been proposed to enhance the model performance. Zhou 
et al. (2018) proposed UNet++ and re-designed the skip pathways to 
reduce the semantic gap between the feature maps of the encoder and 
decoder networks. Guo et al. (2020) proposed a novel Lesion-aware 
segmentation network inspired by the UNet encoder-decoder 
structure and contained a binary classifier. The feature flows were 
integrated into the decoder to absorb various scales of feature maps. 
Ruben et al. (2020) evaluated the detection of pathological myopia 
(PM) using deep learning and the semantic segmentation of myopia-
related lesions from fundus images. They used UNet++ as their 
network and used ResNet-18 as encoders. Chai et al. (2020) proposed 
a novel multi-task fully convolutional network (MFCN) model for 
peripapillary atrophy area segmentation from retinal images by 
transforming the atrophic area into two regions with relatively regular 
and uniform shapes. Wan et al. (2021) proposed OT-Unet, combining 
parallel partial decoder, edge attention, and reverse attention modules 
to enhance the segmentation accuracy.

Although the existing UNet-based retinal area segmentation 
algorithms achieved good results, the performance of the segmentation 
model is challenged by the following characteristics of retinal atrophic 
regions in the 2D fundus image, such as blurred boundaries, irregular 
shape, and size variation. These characteristics can make the 
segmentation models challenging to segment the areas accurately. As 
depicted in Figure 1, the top and bottom parts show a 2D fundus 
image and the corresponding retinal atrophy areas (i.e., areas in 
white), respectively. The bottom parts of subfigures (a) and (b) exhibit 
larger areas of retinal atrophy, while the bottom parts of subfigures (c), 
(d), and (e) show significantly reduced areas of atrophy. From the 
figure, we know that retinal atrophic areas can vary significantly in size 
from patient to patient, and the areas of each patient are randomly 
distributed in the fundus image. In addition, the model’s generalization 
ability is restricted by the limited availability of annotated fundus 
image datasets.

To overcome these challenges, we proposed an attention-aware 
retinal atrophy segmentation network based on UNet structure, 
containing an encoder, a decoder, skip self-attention (SSA) 
connection blocks and multi-scale feature flow (MSFF), to segment 
retinal atrophic areas from 2D fundus image. The SSA connection 
block contains two distinct components: a shortcut and a parallel 
polarized self-attention (PPSA) block. The shortcut helps to 
preserve the original features, while the PPSA block can enhance 
feature learning capabilities. The PPSA block can capture 
contextual information over long distances and map semantic 
information from the encoder in both channel and spatial 
dimensions. Thus, it enables the model to learn features more 
robustly for alleviating the challenges, such as blurred boundaries 
and irregular shapes of the retinal atrophy region. Furthermore, a 
MSFF is added between the SSA connection blocks to address the 
challenge of size diversity in the retinal atrophy region. In addition, 
the transfer learning strategy and data augmentation are 
introduced to improve the performance and generalization ability 
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of the model. Due to the significant time and computational 
resources required for developing effective deep learning models, 
transfer learning has become a widely used strategy. Transfer 
learning uses the knowledge gained from pre-trained models to 
improve the performance of new tasks. Pre-trained models can 
train models efficiently for new segmentation tasks, reducing time 
and computational costs. And the transfer learning can help 
combat overfitting by providing a starting point for the model and 
reducing the reliance on training data. To improve the sensitivity 
rate of the retinal atrophy segmentation, a customized hybrid loss 
was employed to assign a higher weight to false negative detections. 
It enabled the algorithm to be  more sensitive to false negative 
detections, thus leading to more precise segmentation results. The 
main contributions of our work can be enumerated as follows:

 1. We proposed a novel skip connection block named the SSA 
connection block, which can be easily integrated into existing 
UNet-based architectures. The SSA connection block can 
better capture the global structure of the retinal atrophy, 
allowing the model to learn features more robustly. It is capable 
of dealing with blurred boundaries and irregular shapes of the 
retinal atrophic region. Additionally, it only requires a minimal 
increase in computational overheads.

 2. We proposed an MSFF between the SSA connection blocks, 
allowing the network to capture multi-scale semantic 
information and significantly enhancing the self-attention 
mechanism’s ability to capture multi-scale spatial and channel 
features. Thus, it improves the segmentation performance and 
more accurate detection of retinal atrophy and effectively 
addresses the challenge of size diversity in the retinal 
atrophic region.

 3. We introduced a learning strategy to improve the performance 
and generalization of the model. By employing pre-trained 
models with large datasets to initialize the model weights, 
adaptation to new datasets with reduced training data is 
expedited. This improves segmentation accuracy, shortens 
training time, and reduces computing resources.

2. Materials and methods

2.1. Data preparation

Retinal images were obtained from the “Detection of Pathological 
Myopia from Retinal Images” challenge (iChallenge-PALM) held at 
the IEEE International Symposium on Biomedical Imaging, organized 
in 2019 (Fu et al., 2019). The training and validation datasets contain 
311 fundus images and 271 fundus images, respectively. The Zeiss 
VISUCAM device took these fundus images at an angle of 45° with a 
resolution of 2,124 × 2,056, or 30 ° angle with a resolution of 
1,444 × 1,444. To improve the computational efficiency and conserve 
computing resources, all fundus images were resized to 512 × 512 and 
normalized to facilitate faster and more stable processing by the neural 
network. Finally, a logical AND operation of the network’s predicted 
mask and the original image was performed to generate the resulting 
color output.

2.2. Model architecture

Figure  2 illustrates the proposed deep learning network for 
segmenting retinal atrophic areas from 2D fundus images. The 
proposed network consists of an encoder, a decoder, and the PPSA 
block. The encoder is responsible for extracting the features of an 
input image, while the decoder is responsible for recovering the image 
details and capturing the boundaries of the retinal atrophy region. The 
PPSA blocks act as a bridge between the encoder and decoder, 
providing a source of feature information to the decoder. This 
connection is essential in allowing the network to reconstruct high-
frequency details.

2.2.1. UNet backbone
UNet is a fully convolutional network architecture for medical 

research applications such as segmentation and classification. It 
consists of an encoder and a decoder based on convolutional neural 
networks (CNNs). The encoder utilizes 3 × 3 convolutional layers, 

FIGURE 1

2D fundus images (top part) and the corresponding retinal atrophic areas (bottom part). Subfigures (A–D) are fundus images of patients with PM. 
Subfigure (E) is a fundus image of patients with non-pathological myopia. PM images have more significant retinal atrophic regions than non-
pathological myopia images.
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batch normalization, 2 × 2 max-pooling layers, and ReLu activation 
functions to extract features from the input image. In contrast, the 
decoder contains transposed convolutional layers (bilinear 
interpolation), 3 × 3 convolutional layers, batch normalization, 2 × 2 
max-pooling layers, and ReLu activation functions to reduce the 
number of channels and to segment pixels into different regions. The 
skip connections between the encoder and decoder networks further 
facilitate the flow of low-level features from the encoder to the decoder 
and improve segmentation performance. UNet can learn complex 
feature representations and provide high-quality performance in 
biomedical image segmentation tasks.

2.2.2. SSA connection block
In the original UNet architecture, features from the encoder flow 

directly to the decoder via a skip connection. However, the features 
received by the decoder are mostly background information, do not 
provide meaningful semantic information, and are not on the same 
semantic level as the encoder. To overcome this problem and make the 
network more attentive to atrophic region edges and shape 
information, we propose the SSA Connection block, which can better 
capture long-range dependencies in the feature maps. In addition, the 
parallel polarization design of the self-attention mechanism allows the 
block to learn feature maps in both the spatial and channel dimensions, 
allowing it to capture features of the retinal atrophy region effectively.

Our skip self attention blocks not only retain the original Unet skip 
connection which allow direct connections between the encoder and 
decoder layers, preserving low-level features that can then be combined 
with high-level features, but also include a PPSA branch in which 
contains two key modules: polarized self-attention and mapping 
enhancement. Figure 3 shows the proposed SSA block, subfigure (a) 
gives a shortcut path and PPSA block paths, and subfigure (b) 
introduces the detailed structure of the PPSA block. As shown in 

subfigure (b), the PPSA block has two convolution layers, followed by 
polarized self-attention, which contains two branches: Spatial-only self-
attention and Channel-only self-attention. Polarized filtering is a 
design technique in deep learning that involves maintaining the 
internal resolution of both the channel and spatial attention 
computations, while reducing the dimensionality of the input data. 
This helps to filter out irrelevant data and preserve important details, 
allowing the model to focus on the most important features. Mapping 
enhancement is a design strategy that involves mapping the output of 
the model to a distribution that more closely resembles a typical fine-
grained regression. In retinal atrophy segmentation, the output can 
be mapped to a 2D Binomial distribution that represents the probability 
of each pixel belonging to the segmented object. This design helps the 
model to better fit the output to the desired distribution, resulting in 
more accurate predictions. The computation method of the spatial-
only self-attention is given as follows:

 

Out X Sigmoid

Softmax GP Conv X Conv X

sp

R R

( ) =

( )( )( ) × ( )( )

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× ×1 1 1 1
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









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R
,

 
(1)

where Conv1 1×  is standard convolutional layer using 1 1×  
convolution, Softmax and Sigmoid are activation functions, R is tensor 
reshape operation, and GP is global average operation. The 
computation method of the channel-only self-attention is described 
as follows:
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R
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FIGURE 2

The structure of the proposed deep learning network for segmenting retinal atrophic areas from 2D fundus images. The encoder on the left extracts 
features, and the decoder on the right recovers image details. The SSA connection block represented by purple rectangular flows the feature from the 
encoder to the decoder.
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where LN means layer normalization. The final output of the 
PPSA block is listed as follows:

 
PPSA X CBR CBR Out X X Out X Xsp

sp
ch

ch
( ) = ( ) + ( )

















  ,

 
(3)

where CBR is a combination of the convolution layer, BatchNorm, 
and ReLu activation function, 

sp
 and 

ch
 are multiplication operators 

in spital and channel dimensions, respectively. The output of the skip 
connection block is given as follows:

 
Block X X PPSA Xskip ( ) = + ( ).  

(4)

2.2.3. Multi-scale feature flow
The MSFF is a critical component of our proposed model, as it 

integrates features from multiple resolutions to understand the input 
data comprehensively. It enhances the ability of the self-attention 
mechanism to capture spatial and channel features at different 
resolutions. This is especially important in retinal atrophy 
segmentation, where the size and shape of the atrophic lesions can 
vary greatly. MSFF is implemented using a 1 × 1 convolutional layer 
followed by a 2 × 2 average pooling layer that downsamples the high-
resolution feature map to a low-resolution feature map. This affects the 
resolution of the feature maps, but by inserting MSFF blocks between 
SSA blocks to enhance the model’s ability to perceive multi-scale 
semantic information. In this case, the MSFF blocks reduce the 
resolution of the feature maps without affecting the overall perceptual 

capability of the network, as the feature maps from different scales are 
already fused together. This ultimately improves the model’s 
segmentation accuracy, thus mitigating information loss and 
distortion. The output of the skip connection block is given as follows:

 
MSFF X Conv X( ) = ( )( )∗ ∗AP2 2 1 1 .

 
(5)

2.3. Loss function

The image segmentation task can be viewed as a pixel-level 
classification problem, which refers to the process of categorizing 
every pixel in an image into its corresponding semantic class, such 
as atrophic regions or healthy tissue. In the context of retinal 
atrophy segmentation, pixel-level prediction enables the 
identification and localization of atrophic regions with high 
precision. This is achieved by assigning every pixel in the image a 
label based on its semantic class (i.e., atrophic or healthy tissue), 
allowing for the creation of a segmented image highlighting the 
area of atrophic regions. Therefore, we used binary cross-entropy 
loss (BCE), shown in Eq. 6, as a part of the loss function. However, 
since the pixel number of the region of interest (ROI) generally 
accounts for less than 20% of the total pixel number in an image, 
only using the BCE loss function alone may not be sufficient for 
accurate ROI classification as it prioritizes overall accuracy over 
foreground or background classification. In addition, the 
foreground pixels in the most fundus images, which includes the 
retina and blood vessels, makes up about 90% of the image. The 

FIGURE 3

The proposed novel SSA connection block. As shown in subfigure (A), it contains a shortcut path and PPSA block paths. The PPSA block is shown in 
subfigure (B).
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pixels of atrophic area, makes up less than 10% of the image. The 
problem with this sample imbalance is that if a model is trained 
using a simple cross-entropy loss function, which is a common 
loss function used in image classification tasks, the model may 
learn to predict the outcome tendency as the foreground. In other 
words, the model may learn to ignore the atrophic area and only 
focus on the larger, more prominent foreground. This might be a 
problem in medical image analysis, because it may lead to false 
negatives or missed diagnosis. The Tversky Loss introduces the 
Tversky Index, with two adjustable parameters, α and β, that 
balance false positives and false negatives while prioritizing false 
negatives for small ROIs. Incorporating the Tversky Loss into the 
loss function can improve the accuracy of ROI classification, 
leading to better overall performance in the task. Therefore, 
we introduce the Tversky Loss ( LTL ) (Abraham and Khan, 2018), 
shown in Eq. 7, in the loss function to improve sensitivity for 
small ROIs. The Tversky Loss introduces the Tversky Index, with 
two adjustable parameters, α and β, that balance false positives 
and false negatives while prioritizing false negatives for small 
ROIs. The final combination loss function is shown in Eq. 8,
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L L Lf BCE TL= × + −( )×µ µ1 ,

 
(8)

where the total number of pixels is represented by N, and the 
pixels yi are labeled by 1 to represent the pixels located in the 
atrophic area. The pixels in the image background are labeled by 
0. pa(yi) is the probability of the pixel belonging to the atrophic 
area, and pb(yi) is used to denote the probability of the pixel in the 
image background. ga(yi) is the probability of the pixel in ground 
truth belonging to the atrophied area, and gb(yi) is the probability 
of the pixel in ground truth belonging to the background. We set 
∝  to 0.75, α to 0.6 and β  to 0.4.

3. Experiments and results

3.1. Evaluation metric

To evaluate the performance of our model and compare it with 
other models, we use six evaluation metrics: Dice coefficient (DICE) 
(Dice, 1945), Jaccard index (JAC, IoU) (Jaccard, 1912), Precision 
(PRE), Sensitivity (SEN, also known as recall), Accuracy (ACC) and 
F1-score. The six metrics are defined as follows:

 DICE G P
G P
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FP FN TP
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+

=
+ +

2 2

2

· ·

·
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| |

| |  | |
 (9)

 
JAC G P

G P
TP

FP FN TP
=

∩
∪

=
+ +

| |

| |
,

 
(10)
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SEN TP
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F score PRE SEN

PRE SEN
1

2
− =

+
· ·

,

 
(14)

where G and P refer to ground truth and predicted mask, 
respectively, TP, TN, FP, and FN represent the number of true 
positives, true negatives, false positives, and false negatives, 
respectively. The DICE and JAC metrics are used to measure how 
accurate the predicted segmentation produced by a model is when 
compared to the ground truth. The scores range from 0 to 1, with 
higher scores indicating a higher level of accuracy. These metrics are 
useful for evaluating model performance and comparing different 
models against each other. The F1-score is a combination of PRE and 
SEN. PRE measures how often the model accurately identifies 
positives, while SEN measures how often the model identifies true 
positives and is a measure of sensitivity. The F1-score ranges from 0 
to 1, with higher scores indicating a better balance between precision 
and sensitivity. This metric is important because it provides an overall 
assessment of how well the model is able to identify true positives and 
true negatives while minimizing false positives and false negatives. 
Overall, these metrics are important for evaluating a model’s ability to 
accurately identify the target object without including false positives 
or false negatives.

3.2. Implementation details

The implementation of the proposed network is based on the 
Pytorch computing library and was performed on a system equipped 
with RTX A5000, offering 24 GB of memory, and Tesla P100 with 
16 GB of memory. To improve the generalization performance and 
prevent overfitting of our model, we  employed various data 
augmentation techniques, including random flipping and image 
cropping. By setting a horizontal and vertical flip probability of 0.5, 
we randomly flip each image, while cropping the training images to 
320 × 320 allows us to extract multiple sub-images from a single image, 
increasing the quantity and variability of our training data. To 
optimize the network, the initial learning rate of the AdamW 
optimizer was set to 0.008, the betas to (0.9, 0.999) and the weights 
decayed to 1e-4. Mini-batch is a popular optimization algorithm used 
for the training of deep neural networks. It works by dividing the 
training data into smaller batches and updating the model parameters 
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based on the gradients computed from each batch. The batch size in 
our experiment was set to 32, ensuring comparable training and 
consistency from all experiments.

3.3. Ablation study

3.3.1. Effectiveness of blocks
We conducted an ablation study to investigate the contribution 

of each block to the model performance. We began with the native 
UNet and then sequentially added novel SSA connection blocks 
and MSFF to the architecture to show the effectiveness of each of 
our proposed blocks. For the experiments conducted, four groups 
of models were developed, each consisting of an ARA-Net model 
combined with a different backbone ResNet18 
(ARA-Net(ResNet18)), MobileNet-v3 (ARA-Net(MobileNet-v3)), 
and EfficientNet-b3 (ARA-Net(EfficientNet-b3)). ResNet18, with 
its 18 layers and residual connections, allows the network to learn 
deeper features and prevent vanishing gradients. MobileNet-v3, on 
the other hand, uses depth wise separable convolutions to reduce 
the number of parameters and computation needed while 
maintaining good accuracy. EfficientNet-b3 uses a compound 
scaling method to optimize the network architecture for different 
resource constraints, making it a relatively lightweight choice for 
real-time applications. Three ablation experiments were conducted 
for each group, namely type a (as the blank control group), type b 
(with novel SSA connection blocks added), and type c (with multi-
scale feature flows added on top of type b). The results are 
presented in Table 1. The computation is calculated regarding the 
number of floating point operators (FLOPs). In all these 
experiments, we used the loss function defined in Eq. 8.

As illustrated in Table 1, among the four experimental groups, the 
type c model has higher performance metrics in DICE, JAC, and 
F1-score, yielding a uniform 0.5% improvement compared to type b 
and a significant improvement compared to the control group, type a. 
The superior performance achieved by the proposed method with 
minimal computational overhead increase demonstrates that the 
novel SSA connection block and MSFF can provide a better solution 
to the difficulties of segmenting retinal atrophy.

3.3.2. Effectiveness of transfer learning
To measure the effectiveness of using transfer learning, we also set 

up three groups of experiments, and the results are shown in Table 2. 
The results show that using transfer learning achieves the best results. 
Type ‘a’ represents the control groups without transfer learning, and 
type ‘b’ represents groups that use transfer learning. Note that, in all 
these experiments, we use the loss function defined in Eq. 8. The 
application of transfer learning to segmentation methods has been 
proven to produce significant performance gains.

Specifically, when this strategy was implemented in segmentation 
tasks, the DICE, JAC, and F1-score realized an average improvement 
of 4, 6, and 4%, respectively. This demonstrates the potential of 
transfer learning to develop more accurate segmentation models. 
Moreover, the boost in performance can result in higher quality 
predictions of segmentation masks and increased usability in 
medical applications.

3.3.3. Effectiveness of loss functions
To show the model performance affected by the loss function, 

we  utilize three backbones (ResNet18, MobileNet-v3, and 
EfficientNet-b3) to build and compare their model performance across 
three loss functions (BCE loss, Tversky loss, and their combination). 
The results obtained are shown in Table  3. There is about a 2% 
improvement of DICE and F1-score when combining the two loss 
functions compared to using any one of the two loss functions alone.

3.4. Comparison study

We compare our proposed method with other UNet-based 
methods, including UNet++ (Zhou et  al., 2018), AttentionUNet 
(Oktay et  al., 2018), R2UNet (Alom et  al., 2018), and UNeXt 
(Valanarasu and Patel, 2022). Table 4 shows the comparison results, 
demonstrating that our model performs better than the comparison 
methods. Results from Table 4 indicate that ARA-Net (EfficientNet-b3) 
performed best among all architectures, achieving a DICE of 84.57%, 
a JAC of 72.80%, an ACC of 96.95%, a PRE of 89.09%, an SEN of 
80.49%, and an F1-score of 84.57%. Further, this was followed by 
ARA-Net (MobileNet-v3) and UNeXt. However, their performance is 

TABLE 1 Performance comparison, number of parameters, and FLOPs of different models for ablation experiments.

Methods Type DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score (%) Param (M) FLOPs (G)

ARA-Net a 10.31 5.43 88.67 40.52 45.00 42.64 16.47 40.29

b 71.29 55.38 95.13 75.35 68.01 71.49 2.78 30.77

c 71.63 55.80 95.00 76.25 68.26 72.03 2.78 30.77

ARA-Net (ResNet18) a 70.40 54.32 94.50 73.60 68.87 71.16 81.53 15.71

b 73.33 57.90 95.16 73.40 74.32 73.86 108.79 21.07

c 74.27 59.06 95.17 77.93 72.39 75.06 108.79 21.07

ARA-Net 

(MobileNet-v3)

a 76.37 61.77 95.51 75.36 78.24 76.77 13.18 3.24

b 76.15 61.49 95.12 77.66 77.48 77.57 14.35 4.16

c 77.27 62.96 95.54 83.09 73.94 78.25 14.35 4.16

ARA-Net 

(EfficientNet-b3)

a 76.64 62.13 95.49 81.50 74.19 77.67 44.51 5.51

b 77.03 62.65 95.65 82.62 73.18 77.62 57.68 7.17

c 78.60 64.74 95.82 81.53 77.08 79.24 57.68 7.17
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commendable due to fewer parameters and computation resources 
compared to EfficientNet-b3.

Figure  4 compares DICE scores for various segmentation 
methods, where the parameters and GLOPs utilized in each method 
are varied. It can be  seen from the results that the ARA-Net 
(EfficientNet-b3) performs most efficiently in terms of segmentation 
performance. This is due to the comparatively low GLOPs requirement 
and the number of parameters needed for this model compared to 
other methods. UNeXt and ARA-Net (MobileNet-v3) perform 
significantly better than any other networks in terms of computational 
complexity and parameter count, which are crucial considerations for 
practical applications. Figure 5 depicts the change in loss function 
values during training and DICE values on the validation set. As 
illustrated in Figure 5, the training process of the networks proceeded 
gradually, except for R2Unet, which had a more stable loss. On the 
validation set, the Dice scores for ARA-Net (EfficientNet-b3) and 
ARA-Net (MobileNet-v3) were both favorable, with ARA-Net 

(EfficientNet-b3) displaying a more consistent result. Sample 
qualitative results from various methods are shown in Figure  6. 
ARA-Net (EfficientNet-b3) and ARA-Net (MobileNet-v3) effectively 
segment both large and tiny atrophic regions of the retina, as shown 
in Figure 6. On the other hand, the other networks either produced 
excessive segmentation of smaller areas or failed to detect more 
expansive areas of atrophy effectively. Compared to other techniques, 
ARA-Net (EfficientNet-b3) generates high-quality segmentation 
predictions, making it a viable option for atrophic area segmentation.

4. Discussion

The automated segmentation of the retinal atrophy in fundus 
images is a valuable tool for ophthalmologists in detecting and 
diagnosing myopia, as the size of the retinal atrophy is positively 
correlated with the severity of the condition. Automated 

TABLE 4 Comparison of segmentation performance, number of parameters, and FLOPs of different methods.

Methods DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score 
(%)

Param (M) FLOPs (G)

UNet++(ResNet-18) 76.84 62.39 96.12 86.67 69.66 77.24 60.92 64.05

AttentionUNet 71.00 55.04 94.50 67.79 78.97 72.95 54.56 67.21

R2UNet 68.13 51.67 94.10 78.29 66.06 71.65 388.88 262.76

UNeXt 77.01 62.62 95.58 80.00 74.71 77.26 5.61 0.57

ARA-Net (ResNet18) 76.47 61.90 95.75 79.29 75.66 77.43 108.79 21.07

ARA-Net (MobileNet-v3) 82.30 69.91 96.37 86.96 79.17 82.88 14.35 4.16

ARA-Net (EfficientNet-b3) 84.57 72.80 96.95 89.09 80.49 84.57 57.68 7.17

TABLE 2 Performance comparison of the proposed method with and without using transfer learning.

Methods Type DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score (%)

ARA-Net (ResNet18)
a 74.27 59.06 95.17 77.93 72.39 75.06

b 76.47 61.90 95.75 79.29 75.66 77.43

ARA-Net (MobileNet-v3)
a 77.27 62.96 95.54 83.09 73.94 78.25

b 82.30 69.91 96.37 86.96 79.17 82.88

ARA-Net (EfficientNet-b3)
a 78.60 64.74 95.82 81.53 77.08 79.24

b 84.57 72.80 96.95 89.09 80.49 84.57

TABLE 3 Performance comparison of the methods across different loss functions.

Methods Loss function DICE (%) JAC (%) ACC (%) PRE (%) SEN (%) F1-score 
(%)

ARA-Net (ResNet18)

BCE 68.74 52.36 94.61 68.97 68.30 68.63

Tversky Loss 74.91 59.89 94.83 77.28 73.92 75.56

BCE + Tversky Loss 76.47 61.90 95.75 79.29 75.66 77.43

ARA-Net (MobileNet-v3)

BCE 76.56 62.02 96.18 84.82 69.94 76.66

Tversky Loss 78.03 63.97 94.81 75.42 84.07 79.51

BCE + Tversky Loss 82.30 69.91 96.37 86.96 79.17 82.88

ARA-Net 

(EfficientNet-b3)

BCE 82.39 70.05 96.66 89.43 76.38 82.39

Tversky Loss 82.99 70.93 96.57 90.37 77.23 83.29

BCE + Tversky Loss 84.57 72.80 96.95 89.09 80.49 84.57
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segmentation techniques allow for efficient extraction and 
representation of image features, reducing the need for 
human intervention.

The advance of deep learning has the potential to further enhance 
segmentation accuracy through the development of advanced 
segmentation network models and improved hardware performance. 

FIGURE 4

Comparison charts. X-axis corresponds to FLOPs(G) and the number of parameters (lower the better). Y-axis corresponds to DICE (higher the better).

FIGURE 5

(A) The value of the loss function during training. (B) The DICE value during validation.

https://doi.org/10.3389/fnins.2023.1174937
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1174937

Frontiers in Neuroscience 10 frontiersin.org

FIGURE 6

Visual segmentation results for myopic parapapillary atrophy. It shows the color fundus input images, the ground truth masks, and the segmentation 
results for UNet++ (ResNet18), AttentionUNet, R2UNet, UNeXt, ARA-Net (ResNet18), ARA-Net (MobileNet-v3) and ARA- Net (EfficientNet-b3).
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However, the field of automated retinal atrophy segmentation is 
currently under-researched, with the majority of studies utilizing optical 
coherence tomography (OCT) images (Fang et al., 2017; He et al., 2021; 
Szeskin et  al., 2021) due to their high image resolution and cross-
sectional tissue structure. The limited availability of appropriate datasets, 
the significant variations in retinal atrophy shape and size among 
patients, and the interference of blood vessels present significant 
challenges for applying deep learning approaches to retinal atrophy 
segmentation. Additionally, the proximity of the retinal atrophy to the 
optic disc, which can be a source of brightness that can mask the retinal 
atrophy, further complicates the task. These challenges must 
be addressed to facilitate progress in retinal atrophy segmentation using 
deep learning.

The experimental results indicate that other Unet-based 
models struggle to accurately segment retinal atrophic areas of 
varying sizes, and the segmentation boundaries are not distinct. To 
address this challenge, novel SSA connection blocks and multi-
scale feature flows were incorporated into the model to extract 
boundary information and shape features of the atrophic regions. 
The SSA block includes the initial skip connection as well as the 
PPSA branch. The polarized filtration and enhancement are two 
crucial modules. By reducing the dimensions of the inputting data 
while maintaining the accuracy of the channel and spatial 
attention, our model can focus on the most critical features and 
retaining critical details, leading to better feature extraction and 
more accurate predictions. In addition, the enhancement strategy 
maps the model’s results to a desired distribution, resulting in more 
accurate predictions.

The proposed model demonstrated superior segmentation results 
on atrophic regions of different sizes, as shown in Figure 6. Additionally, 
during the training phase, the ARA-Net model utilized three 
pre-training models (ResNet, MobileNet-v3, and EfficientNet-b3) to 
extract richer feature information, resulting in improved performance. 
This approach leverages pre-trained models on large datasets to initialize 
the model weights, allowing the model to adapt to new datasets with 
limited training data quickly. Furthermore, using a combination of BCE 
loss and TVERSKY loss during training enabled the model to focus 
more on small ROIs, reducing the likelihood of predicting small-size 
retinal atrophy areas as background.

Due to the scarcity of data, the proposed method can achieve 
better results to some extent depending on the pre-trained model 
of ImageNet. In the training phase, we use pre-trained model of 
ImageNet for training the ARA-Net. As we known, the pre-trained 
model of ImageNet is trained on the images collected from natural 
environment, and the model is not specific to the medical domain. 
Thus, we  might use some pre-trained model based on medical 
images to substitute the pre-trained model of ImageNet, and 
investigate the effect of different image domain based pre-trained 
model on the segmentation performance for retinal atrophy areas. 
Meanwhile, future study might consider utilizing other data 
improvement methods, such as the use of generative models for 
data augmentation or the integration of multimodal imaging. 
Additionally, further improvements can consider few-shot learning 
methods and design segmentation networks for different myopic 
stages of retinal atrophy. As retinal atrophy can vary in size and 
shape across different stages, it is crucial to develop segmentation 
techniques tailored to each stage. These enhancements hold the 

potential to improve the accuracy of retinal atrophy segmentation, 
leading to more precise diagnosis and treatment.

5. Conclusion

In this work, we proposed an ARA-Net model for segmenting 
the retinal atrophic area from 2D fundus images. In particular, our 
proposed novel skip-connect blocks named PPSA effectively fuse 
the feature maps between the encoder and decoder, enabling the 
network to learn representational feature maps from both channel 
and spatial dimensions. The MSFF utilized by our model also help 
to enhance the semantic information of the images, and the 
combined Tversky and BCE loss functions further improve the 
model performance. Comprehensive experimental results 
demonstrate that our proposed ARA-Net model achieves awesome 
performance on retinal atrophy segmentation, especially in 
challenging scenarios with blurred boundaries and irregular 
shapes. Our work has made significant contributions in solving the 
retinal atrophy segmentation challenges and introducing the PPSA 
blocks as a new technique for feature fusion in medical image 
segmentation. Comprehensive experimental results demonstrate 
the effectiveness of ARA-Net and its potential clinical value in 
retinal atrophic area segmentation applications.
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