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Introduction: Automatic sleep staging is a classification process with severe 
class imbalance and suffers from instability of scoring stage N1. Decreased 
accuracy in classifying stage N1 significantly impacts the staging of individuals 
with sleep disorders. We aim to achieve automatic sleep staging with expert-level 
performance in both N1 stage and overall scoring.

Methods: A neural network model combines an attention-based convolutional 
neural network and a classifier with two branches is developed. A transitive 
training strategy is employed to balance universal feature learning and contextual 
referencing. Parameter optimization and benchmark comparisons are conducted 
using a large-scale dataset, followed by evaluation on seven datasets in five cohorts.

Results: The proposed model achieves an accuracy of 88.16%, Cohen’s kappa of 0.836, 
and MF1 score of 0.818 on the SHHS1 test set, also with comparable performance 
to human scorers in scoring stage N1. Incorporating multiple cohort data improves 
its performance. Notably, the model maintains high performance when applied to 
unseen datasets and patients with neurological or psychiatric disorders.

Discussion: The proposed algorithm demonstrates strong performance and 
generalizablility, and its direct transferability is noteworthy among similar 
studies on automated sleep staging. It is publicly available, which is conducive 
to expanding access to sleep-related analysis, especially those associated with 
neurological or psychiatric disorders.
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1. Introduction

The sleep staging based on overnight polysomnography (PSG) plays an important role in 
diagnosing and treating the sleep disorders and performing research related to psychiatric 
diseases (Baglioni et al., 2016; Freeman et al., 2020). As the manual sleep staging process is 
laborious, tedious, and time-consuming, the inter-rater and intra-rater reliability are prone to 
subjective uncertainty (Rosenberg and Van Hout, 2014). The automatic scoring or at least 
automatic assistance of sleep staging has been studied for several decades and has attracted 
considerable attention. The traditional machine learning for performing PSG analysis usually 
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employs hand-tuned feature combinations (Diykh et al., 2016; Pillay 
et al., 2018; Sharma et al., 2018; Vallat and Walker, 2021). Due to an 
increase in the computing power, the dependence on the hand-tuned 
features has decreased rapidly for performing physiological signal 
analysis (Craik et  al., 2019; Buongiorno et  al., 2020). Significant 
progress has been reported in sleep staging based on deep learning.

The performance of deep learning-based methods approaches or 
exceeds human performance in terms of the implementation of PSG 
sleep staging. Patanaik et al. (2018) developed a scoring framework 
with accuracy comparable to that of human expert raters and validated 
it on data including Parkinson’s disease patients. Stephansen et al. 
(2018) achieved reliably scoring down to 5 second epoch sleep and 
performed better than any individual scorer. According to the staging 
rules, Qu et al. (2020) refinedly optimized the network structure to 
further improve the staging performance. Perslev et  al. (2021) 
developed a high-resolution sleep staging model on large-scale multi-
cohort data, achieving greater versatility on unseen datasets. Bakker 
et al. (2022) compared their automated sleep staging algorithms with 
the results of 6–12 human scorers, revealing an inherent relationship 
between the probabilities of sleep stages obtained by the two methods, 
thereby providing encouraging support for the potential of automated 
sleep staging. In a recent report, researchers recognized the 
importance of differentiating confusing stages and optimized their 
methods accordingly, providing a theoretical basis that partially 
supports our subsequent research method (Phyo et  al., 2022). 
However, there still exist various issues in this implementation that 
should be properly addressed. For instance, a well-known problem is 
the low agreement of stage N1 scoring.

The N1 sleep has short duration, less distinct features, and strong 
dependence on its pre- and post-epoch relations. In addition, it has 
the lowest agreement rate (63.0%) among different human scorers 
(Rosenberg and Van Hout, 2014; Younes et al., 2018). During the 
training process of sleep staging models, these characteristics make 
it more challenging to train N1 epochs than others. Recognizing 
stage N1 remains one of the biggest challenges when developing 
automatic sleep staging models. In some research areas, lower 
accuracy of stage N1 affects the results to a small extent. However, 
as the proportion of N1 sleep of the subject increases, it damages the 
agreement and applicability of scoring results. Studies have shown 
that N1 sleep is more prevalent during certain conditions or diseases. 
The frequent awakenings in sleep disorders, such as insomnia and 
sleep fragmentation lead to an increase in N1 sleep (Merica, 1998; 
Baglioni et al., 2014; Wei et al., 2017). Specific people, such as the 
elderly, alcoholics, and individuals suffering from chronic pain, were 
reported to have higher amount of N1 sleep (Ohayon et al., 2004; 
Gulia and Kumar, 2018; Mathias et al., 2018; Koob and Colrain, 
2020). Please note that this feature is more prominent in patients 
with neurological or psychiatric disorders. Therefore, in various 
studies, N3 replaces N1 as the least frequent stage of sleep in such 
patient groups. The Schizophrenia patients are reported to have 
higher rates of N1  in sleep as compared to the healthy controls 
ranging from 2.2 to 15.8% (Göder et al., 2004; Yang and Winkelman, 
2006; Sarkar et al., 2010; Chan et al., 2017). The Alzheimer’s disease 
(AD) significantly increases N1 sleep, i.e., more than 30% of the total 
sleep, due to the derangements of sleep–wake cycle regulatory 
pathways (Liguori et al., 2014). N1 sleep has also been reported as 
an influential node in sleep research focused on moderate depression 
(Elovainio et al., 2019). Therefore, accurate scoring stage N1 is of 

great significance for hospital-based research or patients with 
certain diseases.

The existing automated sleep stage scoring algorithms have not 
received sufficient attention due to the low impact of stage N1. It is 
noteworthy that most of the algorithms learn by using the public 
datasets derived from the population-based studies and not the 
disease-specific datasets. The proportion of stage N1 during the 
overnight PSG of healthy subjects is small. This does not affect the 
overall performance of the model. Some researchers have used 
oversampling or feature over-expression for improving the N1 
accuracy, however, this comes at an expense of identifying other stages 
(Supratak et  al., 2017; Chambon et  al., 2018; Johnson and 
Khoshgoftaar, 2019; Zhang et al., 2023). The diseased individuals have 
more complex sleep structures, and it is not clear whether these 
algorithms can be effectively utilized for overcoming diseases or in 
hospital-based studies.

In this work, we present an automatic sleep staging method and 
apply it to sleep PSG. The purpose of the proposed method is to 
address the identification difficulties of N1 sleep due to its 
low-resource in sleep staging, and accomplish accurate scoring tasks 
in other stages. The major contributions of this work are 
presented below.

1). The proposed model achieves high overall performance while 
realizing an N1 accuracy with the level of human scorers.

2). We propose a gradual transitional training scheme based on a 
two-branch trade-off network for coping with the feature relationship 
between one epoch and its context. This reduces the risk of class 
rebalancing in network training.

3). In contrast to most of the existing work, the generalization 
performance of the proposed model is evaluated in a mixed cohort 
test and in a cross-dataset test.

4). We  also extend the model for group benchmarking of 
psychiatric disorders to highlight its advantages for patients.

2. Materials and methods

2.1. Study datasets

In this work, we use seven publicly available datasets in five 
cohorts. The model is first trained and evaluated on a large-scale 
public dataset, i.e., the sleep heart health study (SHHS) database, 
which is approved by the National Sleep Research Resource 
(Quan et al., 1997; Zhang et al., 2018). Once the model is trained, 
the data from the other four cohorts, including Cleveland 
Children’s Sleep and Health Study (CCSHS, n = 515) (Rosen et al., 
2003), Study of Osteoporotic Fractures (SOF, n = 453) (Spira 
et  al., 2008), Cleveland Family Study (CFS, n = 730) (Redline 
et al., 1995), and MrOS Sleep Study (MrOS1, n = 2905 ; MrOS2, 
n =1026 ) (Blackwell et al., 2011) are adopted for two forms of 
multi-cohort evaluation.

The SHHS cohort comprises two rounds of PSG recordings 
named SHHS1 (n = 5,793) and SHHS2 (n = 2,651). SHHS1 is the 
largest dataset in this study, which is first used for algorithm 
development and comparison. SHHS2 comprises second acquisition 
time points for a subset of SHHS1 subjects and is only used along with 
the other cohorts for performing multi-cohort evaluation to prevent 
the potential self-reporting bias. CCSHS is a pediatric cohort that 
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differs significantly from other cohorts in terms of age distribution of 
the subjects. SOF and MrOS are gender-specific cohorts that include 
older subjects. CFS is a large family-based study cohort with a wider 
age range of subjects, and its fifth visit of the PSG is employed in this 
work. The stages of PSGs in the aforementioned datasets are scored 
and organized by using the prevalent AASM guidelines (Iber 
et al., 2007).

The demographic and general sleep characteristics for these 
datasets are presented in Table 1.

2.2. Data preparation

The raw time series comprising five channels (EEG: C3 and C4, 
EOG: left and right, EMG: chin) are filtered (EEG/EOG: High Pass 
0.3 Hz/Low Pass 35 Hz, EMG: High Pass 10 Hz), clipped 
(-500 ~ 500 μV), and resampled (125 Hz). Then, these signals are used 
as the training inputs without further pre-processing or artifact 
removal, as pre-processing does not improve the performance of the 
models significantly. Instead, more diverse data is commonly 
beneficial for enhancing the model’s robustness (Nazaré et al., 2018; 
Zhang et al., 2019; Olesen et al., 2020).

2.3. Network architecture

An end-to-end network is implemented for sleep staging. This 
network consists of two parts, i.e., a CNN comprising 1-d attention 
residual block for feature extraction and a classifier that not only 
considers the single epoch features but also looks back and forward 
through the consecutive epochs. An overview of this neural network 
architecture and algorithm flowchart for sleep epoch k is presented 
in Figure 1 (left). Three cascaded residual blocks, presented as 1-d 
attention block, are designed to construct this CNN. In each block,  
two soft attention layers, namely channel attention layer and 
temporal attention layer, are added behind the output of the 
convolutional layer. In each block, there are two one-dimensional 
convolutional layers with 1 × 7 kernels used for generating the 
intermediate feature, i.e., F C T∈ × , where C and T  represent the 
feature number of the channel and the temporal dimensions. 
Afterwards, the attention modules are applied on F  for emphasizing 
and suppressing the meaningful features in independent 

dimensions. In the channel dimension, as each channel is 
considered a feature detector, the relationships among channels are 
used to generate a channel attention map. In order to achieve this, 
a multi-layer preceptor (MLP) with squeeze-and-excitation 
structure is implemented to extract the relationships from the 
global pooled features (Hu et al., 2020; Huang et al., 2022). This 
module follows the channel attention scheme used in CBAM (Woo 
et al., 2018). The final channel attention map (MC ) is computed 
as follows:

 
M Softmax MLP AvgPool F MLP MaxPool FC = ( )( ) + ( )( )( )  (1)

where, F  denotes the input feature and is pooled in its 
temporal axis.

In the temporal dimension, a max-pooling operation along the 
channel axis is implemented to find the most attended waveform 
characteristics among all channels. A cascaded SoftMax layer is used 
to prevent the excessive gains caused by the temporal attention map. 
The proposed temporal attention map (MT ) is expressed as follows:

 
M Softmax MaxPool FT = + ( )( )1

 (2)

where, F  denotes the input feature and is pooled in its 
channel axis.

Figure 1 (right) shows that MC  and MT  are sequentially arranged 
after convolutional features to form a 1-d attention block, which is 
used to separately solve the what and where problems in attention 
tasks (Woo et al., 2018). A global average pooling layer is connected 
to these three cascaded blocks for extracting the features with a 
dimension of 256.

The classifier contains two separate branches with fully connected 
networks, namely epoch learning branch (ELB) and sequential 
learning branch (SLB). The ELB uses 256 features of epoch k as an 
input for learning the universal patterns. The SLB uses 256 × 5 features 
of N consecutive epochs before and after epoch k for sequential 
modeling. In this work, N is determined to be  2 based on the 
pre-experiment, since a larger N leads to less than 0.3% improvement 
in accuracy. The two branches separately output the probabilities p



 for 
five stages ( ˆepp  for ELB and ˆ seqp  for SLB). The main difference 
between the two branches lies in their contextual perspectives and the 

TABLE 1 Demographics and general sleep characteristics of datasets.

SHHS1 SHHS2 CCSHS SOF CFS MrOS1 MrOS2

N (female) 5,793 (3033) 2,651 (1425) 515 (255) 453 (453) 730 (401) 2,905 (0) 1,026 (0)

Age, years 63.1 ± 11.2 62.4 ± 10.5 17.7 ± 0.44 82.8 ± 3.13 41.4 ± 19.4 76.4 ± 5.5 81.0 ± 4.4

AHI, h 17.9 ± 16.1 18.4 ± 16.4 1.8 ± 5.1 16.3 ± 13.9 12.5 ± 17.0 – –

TRT, min 1012.1 ± 74.7 1204.3 ± 137.0 1342.4 ± 95.8 1194.5 ± 293.0 1186.8 ± 108.1 1296.7 ± 205.9 1569.3 ± 349.9

Wake, % 28.7 ± 12.3 37.4 ± 11.6 30.5 ± 10.4 39.7 ± 15.2 36.8 ± 12.7 44.5 ± 11.7 54.5 ± 13.3

N1, % 3.7 ± 2.6 3.5 ± 2.9 2.8 ± 1.6 3.0 ± 1.9 3.0 ± 2.3 3.6 ± 2.1 5.3 ± 3.7

N2, % 41.0 ± 11.4 36.2 ± 9.5 36.2 ± 7.4 33.6 ± 11.2 35.5 ± 10.3 34.9 ± 8.9 28.5 ± 10.1

N3, % 12.6 ± 8.8 9.9 ± 7.2 16.0 ± 5.9 12.5 ± 8.6 13.0 ± 9.3 6.3 ± 5.3 3.1 ± 3.5

REM, % 14.0 ± 5.8 13.0 ± 5.1 14.5 ± 4.5 11.2 ± 5.5 11.6 ± 5.5 10.7 ± 4.7 8.6 ± 4.2

N: number of recordings, AHI: apnea/hypopnea index, TRT: total recording time.

https://doi.org/10.3389/fnins.2023.1176551
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1176551

Frontiers in Neuroscience 04 frontiersin.org

training difficulty determined by the number of trainable parameters. 
We also present a novel transitive training strategy to merge ˆepp  and 
ˆ seqp . Finally, the predicted sleep/wake stage of epoch k is obtained 

by a weighted average of the two branches.

2.4. Transitive training strategy and model 
training

The recognition of stage N1 is considered a low-resource 
problem (Morfi and Stowell, 2018). There are three reasons why 
stage N1 identification is challenging as we examined. Firstly, the 
N1 epochs are underrepresented (the long-tail problem), which 
accounts for a small proportion in sleep/wake stages. Secondly, 
N1 is the only stage with almost no characteristic grapho-
elements (Deng et al., 2019). The features of N1 are more easily 
confused (such as the variability in EOG and EMG, the possible 
presence of alpha rhythms similar to those observed during 
Wake, and the occurrence of V-waves with a certain probability), 
and for this reason we utilized the low occurrence of N1 to allow 
the initial training to be less focus on N1 features to reduce the 
cost. Finally, the decision of N1 is more significantly context-
dependent, especially people who generated little or no α activity 
(Danker-Hopfe et al., 2009). Therefore, the use of simple model 
rebalancing may lead to the learning of more confounding 
features, which can potentially harm the overall performance of 
the model.

We propose a novel transitive training strategy for minimizing the 
impact of rebalancing N1 on the overall performance. In order to 
accomplish this, in the training process, a decreasing factor α is 
automatically generated in the training phase, and the classification 
loss  is calculated as follows:

 
  = + −( )α αep seq1

 (3)

where, ep denotes the unweighted cross-entropy of ˆepp  and y, 
and seq denotes the weighted cross-entropy of ˆ seqp  and y. The 
weights of each class are equally proportional to the inverse of the 
number of samples in that class.

During the training process, the learning attention gradually shifts 
from ELB to SLB. This means that the model first learns the universal 
patterns with less influence of the weak characteristics, and then 
gradually improves the performance of the minority classes under 
these universal patterns and sequential information from context. 
Here the universal pattern represents the features from original signals 
learned from the actual data distribution. Notably, seq is set to back-
propagate only in the sequential learning branch and does not affect 
the CNN parameters, thereby making the training difficulties of both 
branches comparable. Inspired by the cumulative learning (Zhou 
et al., 2020), α is calculated as follows:

 
α = − ( )1

2T T/ max  (4)

where, Tmax  denotes the total number of training epochs and T  
denotes the current epoch. The value of α during the training process 
are shown in Supplementary Figure S1A.

2.5. Evaluation metrics

We use accuracy, F1 score, and Cohen’s kappa for assessing the 
performance of the model. Specifically, we use accuracy to evaluate 
the overall performance of the model scoring, Cohen’s kappa to assess 

FIGURE 1

Overall architecture of the neural network and its feature extractor. The left part shows the workflow of the proposed neural network. A 30-s epoch k 
of multi-channel polysomnography (PSG) and its two consecutive epochs before and after are simultaneously input to the feature extractor. The 
proposed two-branch classifier then computes the sleep/wake stage of epoch k; The right part shows a basic unit of the shared CNN structure, which 
includes the proposed 1d attention block. CNN = convolutional neural network.
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the inter-rater agreement between the manual and automatic scoring, 
macro-averaged F1 (MF1) to assess the impact of class imbalance on 
model’s performance and for selecting the best model. The accuracies 
for each class are presented, which are calculated as the proportion of 
the samples detected correctly for each class (recall). In order to 
present additional test details, we also calculate the confusion matrix, 
in which each element i j,( ). represents the empirical probability, i.e., 
class i is predicted to be class j .

If not specified, the metrics are reported through by-epoch 
statistics (each epoch is an independent sample in the dataset). 
Furthermore, boxplots in this paper demonstrate the metrics through 
by-record statistics (for each PSG separately).

2.6. Experimental setups

In this study, we conducted four experiments as follows:

A. We first develop the proposed algorithm based on 5,793 subjects 
from SHHS1 dataset to determine the hyperparameters of the model 
and compare it with other algorithms. The PSG records are randomly 
split into training, validation, and test sets by ratios of 80, 10, and 10%, 
respectively. As shown in Table 2, there are no significant differences in 
demographics or class proportions for the three split subsets. The 
model developed on training set and achieving the highest MF1 on 
validation set is used for evaluation on test set. We conduct moderator 
analyses on SHHS1 data and investigate how different subgroups, 
training methods, and α settings influence the results.

B. The model training and testing are performed on mixed 
cohorts. We adopt 14,118 PSGs from seven datasets (SHHS1, SHHS2, 
CCSHS, SOF, CFS, MrOS1, MrOS2) in five cohorts for conducting a 
mixed-cohort evaluation. Please note that we  use the same 
experimental settings and hyperparameters as experiment (A).

C. We use leave-one-set-out validation approach to estimate the 
generalizability of the proposed algorithm. The algorithm is applied 
once for each dataset, where all other datasets are used as training/
validation sets and the selected dataset or cohort is used as the test set. 
For performing this validation, the model is trained several times with 
the same hyperparameters as discussed in experiment (A).

D. We accomplish a performance comparison of disease-related 
sleep staging. A study with similar cohort size and similar experiments 
as presented in this work is introduced as a benchmark (Olesen et al., 
2020). Please note that the CFS is selected as the test set due to its 
significant variability in terms of N1 sleep. In addition, it is not used 
as the training set in the trained benchmark model. We evaluate the 

two algorithms using two subgroups, divided according to whether 
the subjects had significant neurological or psychiatric disease.

During the training process, a mini-batch size of 200 is used. The 
initial learning rate is set to 0.001 for Adam optimizer (Kingma and 
Ba, 2014). Each model is trained for 140,000 iterations with a 10% 
learning rate decay after 70% of the training process is completed.

3. Results

3.1. Model training and testing on SHHS1 
cohort

In each data input operation during the training process, a thirty-
second epoch of PSG and two succeeding and preceding epochs are 
simultaneously fed into the network. In Supplementary Figures S1B,C, 
we show the training curves of the model in experiment (A), where 
each epoch contains 3,500 mini-batch training iterations. After 
approximately thirty training epochs, the curves of the training loss, 
validation loss, and MF1 begin to plateau. However, the training MF1 
curve decreases significantly. Supplementary Figures S1D–F 
illustrates that predicting the sleep/wake stages with the average 
output of two branches is better instead of only using one branch in 
our experiment.

On the SHHS1 test set, the model achieves an accuracy of 88.16%, 
Cohen’s kappa of 0.836, and MF1 score of 0.818. The confusion matrix 
presented in Figure  2 shows that the proposed network correctly 
classifies 91.9, 61.7, 86.6, 86.9, and 93.3% of Wake, N1, N2, N3, and 
REM stages in the test set, respectively. Table 3 presents a comparison 
of proposed method and other automatic sleep staging approaches 
developed and evaluated on SHHS datasets (Sors et al., 2018; Zhang 
et al., 2019; Fernandez-Blanco et al., 2020; Seo et al., 2020; Xu et al., 
2020, 2022; Eldele et al., 2021; Pathak et al., 2021; Vallat and Walker, 
2021; Sharma et al., 2022; Zhao et al., 2022; Zhang et al., 2023). Most 
reported values represent the best performance reported in their 
original publications, and we added a few missing metrics based on 
their reported results. It should be  noted that the comparison is 
approximate due to variations in data splitting or channel selection 
across the compared methods. Furthermore, there are several other 
recent studies not included in Table  3 due to differences in their 
datasets or experimental designs (Jia et al., 2022; Phyo et al., 2022; 
Zhao et al., 2022). These studies showed agreements ranging from 86.4 
to 87.7% in terms of overall accuracy, with the best reported results 
achieved under their respective study designs, but also demonstrated 
a need for further improvement in N1 classifications.

TABLE 2 Overview of SHHS1 dataset splitting in Experiment A.

SHHS1 M/F, % Age AHI BMI Wake 
epoch

N1 epoch N2 
epoch

N3 
epoch

REM 
epoch

Training set 47/53 63.1 ± 11.3 17.8 ± 16.0 28.1 ± 5.1
1,335,339 

(28.6%)

174,749 

(3.7%)

1,915,026 

(41.0%)

589,641 

(12.6%)

652,788 

(14.0%)

Validation set 48/52 62.9 ± 11.5 18.9 ± 17.3 28.2 ± 5.0
166,318 

(28.7%)

20,415 (3.5%) 237,214 

(40.9%)

74,517 

(12.8%)

81,905 

(14.1%)

Test set 48/52 63.6 ± 10.7 18.2 ± 16.0 28.1 ± 5.0
166,906 

(28.5%)

21,817 (3.7%) 240,713 

(41.1%)

74,543 

(12.7%)

81,339 

(13.9%)

Age, AHI, and BMI distributions were not significantly different among the three split subsets, as determined by one-way ANOVA. M/F: male/female, AHI: apnea/hypopnea index, BMI: body 
mass index.
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In order to validate the effectiveness of the proposed two-branch 
rebalancing strategy, we train the network after removing the ELB 
branch with a no rebalancing strategy and a weighted rebalancing 
strategy with weights being inversely proportional to the scale of each 
class (Goshtasbi et al., 2022). The performance metrics of the three 
models are presented in Supplementary Figure S2. Please note that 
each confusion matrix is significantly correlated with that of the 
human raters presented in Rosenberg and Van Hout (2014) with 
Pearson correlation coefficients of 0.975 (no rebalancing), 0.984 
(proposed), and 0.975 (weighted rebalancing). In summary, the 
proposed algorithm serves as a trade-off between the other two 
methods, and the resulting model scored more closely to human 
scoring in terms of the correctness of each class. More specifically, as 
compared to no rebalancing strategy, the weighted strategy sacrificed 
the agreement of 23,256 (9.7%) N2 epochs in exchange for 7,895 
(36%) N1 epochs, and the proposed strategy sacrificed the agreement 
of 5,476 (2.3%) N2 epochs in exchange for 4,325 (25%) N1 epochs.

3.2. Moderator analyses

The inter-rater agreement of the transition segment staging is 
generally lower as compared to the stable segments (Rosenberg and 
Van Hout, 2013). We evaluate the performance of the proposed model 
for stable and transitional epochs in the test set. An epoch is defined 
as a stable epoch if its label is the same as its preceding and following 
epochs; otherwise it is regarded as the transitional epoch. The 

proposed model is used to separately score the stable epochs 
(n = 472,658) and the transitional epochs (n = 113,240). Two confusion 
matrices are presented in Supplementary Figure S3. The performance 
of the proposed model during stable epochs (accuracy = 91.62%, 
Cohen’s kappa = 0.882, MF1 = 0.813) is much higher as compared to 
the transitional epochs (accuracy = 73.69%, Cohen’s kappa = 0.649, 
MF1 = 0.724).

We also investigate the effect of different settings of α on the 
testing results. Supplementary Figure S4 shows the test results of stable 
epochs and transitional epochs under different values of α. It is 
noteworthy that a higher α helps to further increase the accuracy and 
Cohen’s kappa of the results. This effect is more pronounced in testing 
stable epochs as compared to testing transitional epochs.

This proposed model is additionally evaluated based on the 
subgroups of SHHS1 test set that contains no (Apnea-Hypopnea 
Index, AHI <5), mild to moderate (5 ≤ AHI ≤30), and severe (AHI 
>30) obstructive sleep apnea (OSA). Similar to the experiment 
discussed in the previous section, the PSG records in three subgroups 
are directly input in the trained model without additional finetuning 
within each group. This model achieves an accuracy of 89.33% (no 
OSA), 88.26% (mild to moderate OSA), and 86.58% (severe OSA); 
Cohen’s kappa of 0.854 (no OSA), 0.837 (mild to moderate OSA), and 
0.809 (severe OSA); the MF1 score of 0.832 (no OSA), 0.818 (mild to 
moderate OSA) and 0.801 (severe OSA). Three confusion matrices are 
presented in Supplementary Figure S5. The three subgroups have 
minor differences in the performance curves at different values of α, 
as shown in Supplementary Figure S6.

FIGURE 2

Confusion matrix of the classification result on the SHHS1 test set. Each row represents the instances with human-scored labels in this matrix, and 
each column represents instances with machine-scored labels.
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TABLE 3 Model performance compared to other studies on SHHS dataset.

Method Dataset Record Channel Train/(Validation)/
Test

Wake 
Acc (%)

N1 
Acc 
(%)

N2 
Acc 
(%)

N3 Acc 
(%)

REM 
Acc (%)

Overall 
Acc (%)

Cohen’s 
Kappa

MF1

(Sors et al., 2018) SHHS1 5,728 1EEG 0.5/0.2/0.3 91 35 89 85 86 87 0.81 0.78

IITNet (Seo et al., 2020) SHHS1 5,791 1EEG 0.5/0.2/0.3 92 42 88 85 87 86.7 0.81 –

(Eldele et al., 2021) SHHS1 SHHS2 329 1EEG 20 folds 88.3 46.3 88.7 87.6 87.4 86.6 0.81 0.797

SleepContextNet (Zhao 

et al., 2022)
SHHS1 329 1EEG 20folds 89.6 52.0 87.6 84.3 89.6 86.4 0.81 0.805

(Fernandez-Blanco et al., 

2020)
SHHS1 5,804 2EEG 0.7/0.1/0.2 91.2 22.1 91.6 82.1 82.8 85.2 0.79 0.76

(Xu et al., 2020) SHHS1 SHHS2 8,444 2EEG, 2EOG, 1EMG 5793/2651 94.2 44.2 88.6 77.5 89.6 87.6 0.825 –

(Zhang et al., 2019) 

imbalanced
SHHS1 5,793

2EEG, 2EOG, 1EMG
0.9/0.1 92 37 91 77 88 87 0.82 –

(Zhang et al., 2019) 

balanced
SHHS1 5,793

2EEG, 2EOG, 1EMG
0.9/0.1 91 46 89 77 88 86 0.82 0.81

STQS (Pathak et al., 

2021)
SHHS1 5,793

2EEG, 2EOG, 1EMG
0.81/0.09/0.1 92.5 40.3 84.4 76.0 89.1 84.9 0.765 0.79

(Vallat and Walker, 

2021)a
SHHS1 689

2EEG, 2EOG, 1EMG
590/99 91 44 86 81 89 - - –

(Xu et al., 2022) SHHS1 SHHS2 8,444 2EEG, 2EOG, 1EMG 5793/2651 92.35 24.39 89.10 79.18 87.49 86.85 0.8115 –

(Sharma et al., 2022) SHHS1 5,791 2EEG, 2EOG, 1EMG 0.82/0.02/0.1 93 12 90 77 75 84.30 0.7746 -

(Zhang et al., 2023)b SHHS1 5,793 2EEG, 2EOG, 1EMG 0.8/0.1/0.1 92.5 42.1 90.2 79.0 91.8 87.88 0.829 0.803

Proposed SHHS1 5,793 2EEG, 2EOG, 1EMG 0.8/0.1/0.1 91.9 61.7 86.6 86.9 93.3 88.16 0.836 0.818

The bold values indicate the highest values within each column. aModel in this study was not only trained on the SHHS dataset.
bReproduced and fine-tuned the model using the code and hyperparameters from the original authors.
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3.3. Model training and testing on mixed 
cohorts

We train and test the proposed model by using 14,118 PSG 
records obtained from five cohorts. The proposed model predicted 
1,645,979 epochs of the test set with an accuracy of 89.16%, Cohen’s 
kappa of 0.846, and MF1 score of 0.819. Figure  3 presents the 
model’s classification confusion matrix in this test, which is 
comparable to or better than the results evaluated in SHHS1.

The distribution of testing metrics for PSG recordings from 
each dataset is presented in Figure  4. Please note that the 
performance of this model varies significantly across subjects in N1 
and N3 stages and is broadly similar across datasets.

3.4. Cross-dataset validation

In order to investigate the performance of the proposed 
algorithm on unseen data, we  adopt leave-one-set-out cross 
validation for evaluating the model. We separately hold out one 
dataset for testing and use the combined data from other datasets 
for training the model. Considering the existence of two visits for 
the same subjects (SHHS, MrOS), and the need to test the unseen 
subjects in practical application of the model, we  left the two 
cohorts separate for performing additional validation. The cross-
dataset validation results are presented in Table 4. In short, the 

performance of the proposed model varies little for different unseen 
datasets. Leaving out one cohort performed worse as compared to 
leaving out only one visit of it.

3.5. Benchmark comparison in 
disease-related sleep

We state a participant as “having significant neuro-logical or 
psychiatric disease” when they had at least one neurological or 
psychiatric diagnosis in the medical record (See the footnote of 
Table 5 for details). The CFS is divided into two subgroups based 
on the aforementioned standards, the psychiatric group (PSY), and 
the healthy control group (HC). As presented in 
Supplementary Figure S7, significant differences are observed for 
the stage proportions in sleep between PSY and HC groups. Please 
note that the PSY group has more light sleep as compared to HC 
group. For performing comparative evaluation, the benchmark 
algorithm (Olesen et al., 2020) uses the trained model available at 
https://github.com/neergaard/deep-sleep-pytorch, and ours used 
the best model in the leave-CFS-out evaluation. Note that the input 
sequence duration of the benchmark model is 5 min, while ours is 
2.5 min.

Table 5 demonstrates that two algorithms have significantly 
different predictive propensities. As compared with the HC group, 
both algorithms achieve significantly worse N3 accuracy and 

FIGURE 3

Confusion matrix of the classification result on the mixed-cohort test set. Each row represents the instances with human-scored labels in this matrix, 
and each column represents instances with machine-scored labels.
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comparable overall performance on PSY group. The benchmark 
algorithm more accurately predicted Wake, REM, and worse 
predicted light sleep stages (N1, N2) for the PSY group, while the 
proposed algorithm did the opposite. For both groups, the 
proposed model obtains lower N2 accuracy but achieved higher 
N1, N3, REM and overall performance as compared to the 
benchmark algorithm.

4. Discussion

A challenge with sleep staging in previous studies is that they tend 
to suffer from lower agreement of stage N1, as it only occupies about 

5% of healthy individuals’ overnight sleep. In addition, its recognition 
is more likely confused with other stages (Basner et al., 2008; Suzuki 
et al., 2019). The low N1 accuracy usually has a minor impact on the 
overall agreement of the scorers. However, certain diseases result in 
more N1 sleep. Therefore, more accurate stage N1 identification is 
necessary for specific studies. Balancing or oversampling has been 
used in other literature. However, increasing N1 accuracy leads to 
decreasing the overall performance, which is difficult to address 
(Chambon et al., 2018; Zhang et al., 2019). In this work, we propose a 
neural network-based automated sleep staging model for 
polysomnography to address the low-resource problem of N1 sleep 
staging, which is characterized by limited samples and 
ambiguous features.

FIGURE 4

Boxplots illustrating the distributions of the metrics on mixed-cohorts test subjects. In (A,B), metrics for each class are shown along with their overall 
metrics, where the overall F1 is calculated as macro-F1. (C) shows Cohen’s kappa values for the five classes. Note that some PSG recordings were 
manually scored with one or more stages having a count of zero and are not included in the corresponding accuracy calculation.
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We observe that preprocessing steps such as denoising, 
detrending, and normalization have negligible impact on the model’s 
performance. Instead, using a large-scale dataset enables us to 
develop a robust model that can handle signal variability. To enhance 
feature representation, we implement an attention mechanism based 
on 1-D feature layers. This approach enables a CNN model with only 
three residual blocks to effectively extract PSG features without 
compromising classification results. We also explore the ablatively 
use of recurrent neural networks and transformers for classification 
and observe performance metric increases by −0.2% ~ 0.7% for 
testing based on SHHS1, but by −0.5% ~ 0.0% for testing based on 
mixed cohort.

Scoring accuracy of N1, a minority and challenging class, is 
significantly improved in this study and has reached the level of 
human scorers (Rosenberg and Van Hout, 2013, 2014). Considering 
that there are fewer distinctive features in stage N1, and the decision 
of N1 epochs is more dependent on the consecutive epochs before 
and after them, the proposed ELB without class rebalance is first 
trained to extract the universal features. In the later training process, 
the proposed SLB with class rebalancing gradually dominates the 
training. The training focus of the two branches is gradually adjusted 
by a decreasing adapter. This strategy enables the feature extractor 
to learn from the majority class first, which can prevent the model 
from struggling with difficult feature learning. It then enhances the 
recognition of stage N1 by incorporating contextual information and 

minimizing the risk of interference from confused features. This 
training strategy leverages the N1 scoring experience of human 
scorers by relying more on contextual features and fewer epoch 
features, thereby minimizing the risk of universal patterns interfering 
with N1 epoch recognition during training.

During the testing phase, the two-branch trade-off parameter α 
is fixed to 0.5 as the assumption that two branches are equally 
important. When changing the testing α with grid search, we observe 
that the overall accuracy improves by 0.2% when α is changed to 
0.65, Cohen’s kappa enhances by 3%, but accuracy of stage N1 
decreases from 62 to 55%. We also divide the test data into two 
groups, namely stable epochs group and transitional epochs group. 
These groups present different optimal testing α. We infer that a 
minor α can make the model focus more on the SLB, thereby 
improving the performance of the model on transitive epochs, which 
contains fewer deterministic features. From a practical standpoint, 
if stage shifting is more concerned, set α < 0.5 during the testing 
phase. Conversely, if macroscopic sleep information is of greater 
interest, α can be set equal to or greater than 0.5. The subjects with 
varying degrees of obstructive sleep apnea have an insignificant 
effect on the model performance curves.

The cohorts used in this work have demographic diversity, 
consider a significant factor contributing to the statistical variability 
of sleep architectures, and are a challenge for model generalization. 
As discussed in (Olesen et al., 2020), more data is good and diverse 

TABLE 4 Cross-dataset validation results of proposed model.

Dataseta Number of 
test epoch

Wake 
Acc %

N1 
Acc %

N2 
Acc %

N3 
Acc %

REM 
Acc %

Overall 
Acc %

Cohen’s 
Kappa

MF1

Test Training

1,2 3,4,5,6,7 9,019,609 93 56 86 70 86 85.35 0.794 0.772

1 2,3,4,5,6,7 5,839,022 92 59 86 71 94 85.94 0.804 0.789

2 1,3,4,5,6,7 3,180,587 93 60 88 91 93 89.78 0.856 0.822

3 1,2,4,5,6,7 687,960 94 69 87 93 93 90.36 0.869 0.845

4 1,2,3,5,6,7 538,071 96 62 85 82 93 89.13 0.844 0.809

5 1,2,3,4,6,7 862,228 95 61 85 88 92 89.04 0.847 0.817

6,7 1,2,3,4,5 5,358,310 95 60 81 86 89 87.95 0.817 0.778

6 1,2,3,4,5,7 3,753,884 95 68 82 79 92 88.25 0.826 0.789

7 1,2,3,4,5,6 1,604,426 94 53 87 78 89 89.34 0.825 0.779

Leave 1–7 arithmetic mean 94.1 61.7 85.7 83.1 92.3 88.834 0.839 0.807

Leave 1–7 weighted mean 93.4 61.3 85.5 79.5 92.7 87.991 0.827 0.799

aDatasets are represented by numbers: 1 = SHHS1, 2 = SHHS2, 3 = CCSHS, 4 = SOF, 5 = CFS, 6 = MrOS1, 7 = MrOS2.

TABLE 5 Benchmark comparison results on two CFS subgroups, divided by psychiatric disorders.

Method Subgroup Record Wake 
Acc

N1 
Acc

N2 
Acc

N3 
Acc

REM 
Acc

Overall 
Acc

Cohen’s 
Kappa

MF1

(Olesen et al., 

2020)

HC 549 94.7% 41.0% 91.2% 69.8% 86.7% 87.5% 0.822 0.785

PSY 181 95.6% 38.7%* 90.6% 66.8%* 88.6% 87.9% 0.824 0.781

Proposed
HC 549 95.0% 61.1% 84.4% 88.8% 92.0% 89.1% 0.847 0.818

PSY 181 94.7% 62.4% 85.3% 85.7%* 91.7% 88.9% 0.841 0.813

Groupings were based on psychiatric-related medical history records from the CFS publicly available PSG dictionaries. The variable names are psydiag, strodiag, adddiag, anxdiag, depdiag, 
cerebdisease, parkdiag, dementia, and mscldiag in their version 0.5.0 archive. HC = healthy control. PSY = Psychiatric Disorders. Significance (*): p < 0.05, independent t-test for HC vs. PSY 
mean difference.
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data is better. This is confirmed by comparing the proposed model 
evaluation on SHHS and mixed-cohort. The mixed-cohort 
evaluation shows that the model performance does not deteriorate 
with the introduction of diverse data, but outperforms the result of 
the SHHS1 test. It is also demonstrated that the proposed model 
does not underfit due to the network structure limitations. As 
compared to other cohorts, MROS has significantly lower F1 scores 
for N3 which we considered that elder males have minimal N3 
sleep, leading to high statistical fluctuations.

In clinical applications, machine learning models are generally 
required to process unseen data from different devices, subjects, 
and operating conditions. However, due to the homogenized 
model comparison framework and study datasets, cross-dataset 
validation has been overlooked by many methodological studies 
in the literatures, which is an effective means of assessing the 
generalization and robustness of a model by evaluating its 
performance on unseen datasets. We examined several studies 
that included cross-dataset validation. Zhang et  al. (2019) 
achieved MF1 scores of 0.66 to 0.79 and Cohen’s Kappa of 0.53 to 
0.70  in cross-dataset validation. Guillot and Thorey (2021) 
obtained direct transfer MF1 scores of 0.726 and 0.763 on MROS 
and SHHS, respectively. Xu et  al. (2022) achieved the highest 
accuracy of 67.68% and Cohen’s Kappa of 0.4987 on unseen 
datasets. Even though a method developed on one cohort shows 
better performance as compared to human scoring agreement, its 
performance is significantly lower in cross-dataset/cohort tests 
(direct transfer), which typically requires fine-tuning with samples 
from the target cohorts. Encouragingly, in a recent similar study 
based on large-scale research subjects (Perslev et al., 2021), MF1 
scores of 0.73 to 0.82 on eight hold-out datasets were obtained, 
with comparable direct transfer performance to ours. In our cross-
dataset validation experiment, the proposed model achieves much 
higher MF1 scores on unseen cohorts as compared to other 
previous attempts discussed in literature and predicted higher 
levels of agreement as compared to human scores for each dataset.

The pathological differences also exist between subjects in a 
certain cohort. In the benchmark comparison for CFS, PSY group 
contains more light sleep (N1, N2), less deep sleep (N3), and 
almost the same REM sleep as compared to the HC group (Wake 
is not involved in statistics considering the operational differences 
of PSGs). More N1 sleep leads to an amplified problem of 
unbalanced prediction by the benchmark algorithm. When a 
biased predictor is applied on the PSG of psychiatric disorders, it 
leads to a more dysfunctional sleep structure for the whole night 
and affects the subsequent diagnosis. Contrary to the benchmark 
algorithm, the proposed algorithm achieves higher accuracy for 
the light sleep stages in PSY group, which is more applicable to the 
subjects with psychiatric disorders increasing light sleep and 
making the prediction results more informative.

This study also provides an idea of physiological signal 
processing oriented for difficult classes or low resource problems. 
Please note that abnormal or minority physiological features can 
be easily confused with other features, and are often difficult to 
obtain, such as the N1 sleep feature in sleep staging. The naive 
resampling causes the classifier to be trapped in its sensitivity and 
specificity balance. The transitive learning strategy proposed in 
this work gradually favors the low-resource features after fully 
trained universal features, using an end-to-end model.

The proposed work has several limitations. This study is 
conducted on publicly available cohorts derived from population-
based studies and not disease-specific ones. The proposed algorithm 
is applicable to disease-related clinical data due to its more accurate 
N1 prediction. Although we perform a subgroup evaluation at CFS 
based on medical history, it still lacks a disease-specific dataset to 
support it. If there is a clinical sleep dataset with significant increase 
in N1 sleep, we can further validate the effectiveness of the proposed 
method on differentiated sleep structures. In this work, five specific 
PSG channels have been used as the input. It is expected that the 
model performance will be further improved, especially for scoring 
light sleep, by introducing frontal (spindle wave and K-complex 
predominate) and occipital (alpha wave predominate) 
regional EEGs.

In conclusion, this work provides a powerful tool for automatic 
sleep staging, which performs at the level of human scorers in each 
sleep/wake stage. It achieves more accurate stage N1 predictions with 
minimal impact on the overall performance. The pre-trained model is 
capable of directly performing sleep staging on unseen PSG and 
exhibits exceptional performance. The proposed method is conducive 
to expanding access to sleep-related diagnostics, especially those 
associated with increased N1 sleep.
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