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Editorial on the Research Topic

Automatic methods for multiple sclerosis new lesions detection

and segmentation

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system

(CNS) affecting more than half a million persons in Europe, with a prevalence rate of 83 per

100,000 with higher rates in northern countries and a female/male ratio around 2.0 (Pugliatti

et al., 2006). Today, conventional MR imaging (MRI) is widely used for the patient follow-

up, the monitoring of the therapy effects, and more generally in a perspective of personalized

medicine, for the understanding of the individual MS progression (Thompson et al., 2018).

One of the major challenges in using MRI for MS is the segmentation of lesions whose

number, location and appearance at a given time point, are crucial indicators for diagnostic

and to tailor treatment to the specific individual disease’s evolution.

To cope with inter- and intra-observer variability and reduce the burden and complexity

of lesions identification for clinicians, a large number of techniques have been proposed

in the literature for the automatic segmentation of MS lesions (see Garcia-Lorenzo et al.,

2013; Valverde et al., 2017; Danelakis et al., 2018 for reviews). Several challenges have

been proposed to evaluate the performances of these methods (e.g., Carass et al., 2017;

Commowick et al., 2021 to cite the most recent ones). Moreover, recently Bonacchi et al.

(2022) proposed an overview of Artificial Intelligence applications for MS clinical practice.

A growing literature focuses on the delineation of new MS lesions on T2/FLAIR

occurring between two consecutive exams. Detecting the apparition of new MS lesions is

of central interest in clinical practice. Indeed, while the palette of Disease Modifying Drugs

(DMDs) approved for MS has presently an unknown impact on the compartmentalized

neurodegenerative process within the CNS, they aim to substantially reduce, or even stop,

the accumulation of new lesions. Consequently, the assessment of such an accumulation

allows the clinician to monitor the efficiency of a given DMD on each patient it follows,

and therefore to consider a change of treatment in case of insufficient efficiency. Moreover,

there is a direct link between accumulation of new lesions and increasing handicap (Sormani

et al., 2013). Automating the detection of these new lesions or helping clinicians to identify

them would therefore be a major advance for evaluating the patient disease progression and

response to treatment.
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In 2021, we launched a MICCAI challenge, MSSEG-II (see

https://www.ofsep.org/fr/etudes/msseg-ii-challenge-miccai-2021),

to compare automated solutions for this specific task i.e., the

detection of new lesions appearing at the second time point

of two T2/FLAIR images of the patient. For that purpose, we

used a large database: 100 patients, each with two time points,

the time between the two time points varying between 1 and

3 years. Data were extracted from the national OFSEP cohort

(Vukusic et al., 2020), the national French MS registry (https://

clinicaltrials.gov/ct2/show/NCT03603457), with 3D FLAIR images

from different centers and scanners (15 different scanners in

total) using the OFSEP specific protocol (Cotton et al., 2015;

Brisset et al., 2020). Only 3D FLAIR images—that is the mostly

used clinical sequence for MS brain—were considered. As in our

previous challenge (Commowick et al., 2021), the evaluation of

solutions was performed on the dedicated FLI-IAM infrastructure

(https://www.francelifeimaging.fr/en/about/noeuds/iam/), which

comprises Shanoir, a web-oriented solution for imaging data

storage and sharing for preclinical and clinical research studies

(Barillot et al., 2016; Kain et al., 2020); and the VIP platform

(Glatard et al., 2013) for the execution of the corresponding docker

of each image processing algorithm/pipeline on EGI infrastructures

(https://www.egi.eu/). The use of FLI-IAM allows to automate the

competition’s process through a sustainable framework and remove

the potential biases (e.g., challengers manually optimizing their

parameters for each provided case). The ground truth was defined

based on the manual delineation, using ITK Snap, of the 100 cases

by four neuroradiologists with an MS expertise. Then, a consensus

was formed in two steps: a senior expert neuroradiologist examined

and confirmed (or declined) disputed lesions among the experts;

then a fusion using the STAPLE (Warfield et al., 2004) algorithm

was performed. This consensus was then the reference for the

evaluation procedure. Forty cases were provided to challengers

(e.g., for algorithm training) and 60 cases for algorithm testing.

The manual segmentations were provided with the former and

unknown to the challengers for the latter.

The present RT gathers 10 papers about solutions for the

automatized detection of new lesions in MS subsequent images.

All but one (Dufresne et al.) competed during MSSEG-II challenge

and were executed on FLI-IAM infrastructure. They are based on a

deep learning approach, the U-net architecture (Ronneberger et al.,

2015) with its 2D or 3D versions. Wemay distinguish two classes of

approaches, ones that use exclusively the examples provided by the

Miccai challenge organizers and those which introduce additional

real (Hitziger et al.) or synthetic (Andresen et al.; Kamraoui et al.;

Valencia et al.) datasets. Finally, joint modeling, mixing both

a registration and a segmentation task, have been investigated

(Andresen et al.; Dufresne et al.; Salem et al.).

Then, Hitziger et al. train a 2D U-net with residual units with

axial, coronal and sagittal slices. The corresponding slices from the

two time-point volumes are paired and introduced to the system

as a two-channel input. The predictions from each orientation

are then merged with different strategies. The best performances

are obtained for the unanimous voting strategy where lesions

are confirmed in each orientation. The gain in performance by

introducing additional datasets (25 supplementary patients to the

initial 40 patients training set) seems weak.

In the same line, Sarica and Seker propose a 2D U-net solution

where the standard plain blocks are replaced by residual units and

attention gates are introduced to, respectively, enhance the model

performances and focalize on new MS lesions on each 2D slice. A

majority voting generates the final 3D binary output.

Similarly, Ashtari et al. introduce residual units, this time in

a 3D U-net version and data augmentation methods to improve

robustness and generalizability of the obtained model.

Basaran et al. consider the recent 3D U-Net version (“No-

NewU-Net”) combined with several image preprocessing step

brain extraction, bias correction, registration and multiple data

augmentation methods.

To overcome the difficulty of a supervised training based on

scarce new lesion annotated examples, Kamraoui et al. interestingly

propose to first pretrain a 3D U-Net on a large one time-point MS

dataset (transfer learning), second to pretrain the model used for

time-points by introducing realistic synthetic data, and finally to

fine-tune the obtained network with the real two time-points data

as provided by MSSEG-II.

To tackle class imbalance between voxels belonging to new

lesions or not, Schmidt-Mengin et al. introduce a two-stage training

strategy to iteratively define a fixed number of patches (30%)

containing lesions. This “online hard example mining” strategy is

implemented with two 3D U-Nets applied patch-wise in cascade.

Such a strategy, applied for the first time on 3D brain scans, seems

to emphasize false positive rate.

Instead of using a unique intensity-based approach, Andresen

et al., Salem et al., and Dufresne et al. propose to consider a

deformation-based approach. Maps of non-corresponding regions

between subsequent images are generated during the registration

process. In Andresen et al. such maps are then used by a fully

convolutional network to segment new lesions that occur across

time. Offset maps with baseline allow exploring morphology

appearance of new lesions. New lesions are rare and similarly

to the previous paper (Kamraoui et al.) the authors insert

synthetic lesions during the network training. In Salem et al.

the authors introduce a cascade of two 3D U-net patch-

wise fully convolutional neural networks. The first registration

network learns the deformation field to register the individual

sequence of FLAIR images, while the second performs new

lesions segmentation. The latter is fed by registered FLAIR images

and the deformation maps. Indeed, the first network allows to

filter the majority of non-lesion voxels and reveals the possible

new lesion candidates, while the second refine the detection

in reducing misclassified voxels. The simultaneous training of

registration and segmentation modules improves the performances

compared to a sequential learning. Valencia et al. propose to

improve the previous results in adding synthetic images. The

hypothesis is that the introduction of T1-weighted images (T1w),

artificially generated, in addition to the FLAIR images improves

new MS lesions detection. They use a generative adversarial

network (GAN) with an additional MS FLAIR dataset (136 cases)

in order to generate T1w corresponding images. The trained

GAN is then used to generate the T1w corresponding to the

provided MSSEG-II FLAIR images. They show an improvement

of the sensitivity performance compared to the only use of

FLAIR images.
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TABLE 1 Averaged (patient-wise) score for the four experts.

New lesion cases
(n = 32)

No new lesion
(n = 28)

DSC F1 Sensitivity Specificity PPV ηTP ηFP ηFN ηFP ηFP

Expert 1 0.629 0.709 0.650 1.000 0.707 6.063 1.281 1.094 0.036 1.453

Expert 2 0.597 0.601 0.526 1.000 0.813 4.500 0.844 2.375 0.000 0.000

Expert 3 0.535 0.637 0.580 1.000 0.760 4.313 1.094 2.500 0.107 3.981

Expert 4 0.459 0.519 0.407 1.000 0.801 4.469 0.594 2.375 0.036 0.623

DSC, dice score; PPV, positive predictive value; ηTP, mean number of true positives; ηFP, mean number of false positive; ηFN, mean number of false negative. The provided sensitivity, precision,

and PPV are computed at the voxel scale.

Finally, in Dufresne et al., a different deformation-based

approach is proposed where deformable registration and

local intensity change detection are jointly estimated as a

unified optimization problem solving. The joint method is

evaluated on synthetic and real MS datasets and compared

to the sequential version, where registration and change

detection are performed successively, to demonstrate the

performance improvement obtained by the former. Such

an optimization approach cannot discriminate between new

lesions from evolving lesions. It is interesting to note that this

is the only non-Deep Learning-based method presented in

this RT.

In Table 1, we provide several indexes for the readers in order to

have a flavor of the current performances reached by the different

solutions described in this RT compared to human experts.

To conclude, MS new lesions detection and segmentation

remain very difficult tasks. Presently, automatic methods can

be more sensitive for detecting new lesions, but produce more

false positive compare to manual delineation by experts. Thus,

in spite of slight persistent differences, performances between

automatic solutions and human experts are closer than in the

previous challenge (see Commowick et al., 2021). However, in

order to be used in clinical routine, several steps need to be

completed, such as the integration of computerized solutions

in the hospital information flow and the quantification of the

uncertainty associated to the automatic lesion detection, in

place of the standard binary output, to leverage the clinician’s

work for obvious lesion and requiring his/her expertise only

for difficult cases (Lambert et al., 2022). This will lead to the

design of a new family of computerized medical assistants for

care improvement.

Data from the MSSEG challenges are available here https://

shanoir.irisa.fr/shanoir-ng/welcome and can be used to evaluate

new solutions.
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