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Introduction: Resting-state EEG (rsEEG) characteristics, such as functional 
connectivity and network topology, are studied as potential biomarkers in 
psychiatric research. However, the presence of psychopharmacological treatment 
in study participants poses a potential confounding factor in biomarker research. 
To address this concern, our study aims to explore the impact of both single and 
multi-class psychotropic treatments on aforementioned rsEEG characteristics in 
a psychiatric population.

Methods: RsEEG was analyzed in a real-world cross-sectional sample of 900 
hospital-admitted psychiatric patients. Patients were clustered into eight 
psychopharmacological groups: unmedicated, single-class treatment with 
antipsychotics (AP), antidepressants (AD) or benzodiazepines (BDZ), and multi-
class combinations of these treatments. To assess the associations between 
psychotropic treatments and the macroscale rsEEG characteristics mentioned 
above, we  employed a general linear model with post-hoc tests. Additionally, 
Spearman’s rank correlation analyses were performed to explore potential dosage 
effects.

Results: Compared to unmedicated patients, single-class use of AD was 
associated with lower functional connectivity in the delta band, while AP was 
associated with lower functional connectivity in both the delta and alpha bands. 
Single-class use of BDZ was associated with widespread rsEEG differences, 
including lower functional connectivity across frequency bands and a different 
network topology within the beta band relative to unmedicated patients. All of the 
multi-class groups showed associations with functional connectivity or topology 
measures, but effects were most pronounced for concomitant use of all three 
classes of psychotropics. Differences were not only observed in comparison 
with unmedicated patients, but were also evident in comparisons between 
single-class, multi-class, and single/multi-class groups. Importantly, multi-
class associations with rsEEG characteristics were found even in the absence of 
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single-class associations, suggesting potential cumulative or interaction effects 
of different classes of psychotropics. Dosage correlations were only found for 
antipsychotics.

Conclusion: Our exploratory, cross-sectional study suggests small but significant 
associations between single and multi-class use of antidepressants, antipsychotics 
and benzodiazepines and macroscale rsEEG functional connectivity and network 
topology characteristics. These findings highlight the importance of considering 
the effects of specific psychotropics, as well as their interactions, when 
investigating rsEEG biomarkers in a medicated psychiatric population.

KEYWORDS

electroencephalogram (EEG), psychotropic drugs, multi-class polypharmacy, functional 
connectivity, network organization, antipsychotics, antidepressants, benzodiazepines

1. Introduction

Precision psychiatry aims to shift current “one-size-fits-all” 
approaches based on categorical classifications, to a more targeted and 
individualistic approach (Fernandes et al., 2017). The key goal of this field 
is to develop tools that integrate an individual’s clinical and biological 
characteristics in order to more objectively inform clinical issues such as 
diagnosis, prognosis and treatment. One promising technique that could 
aid in this is quantitative electroencephalography (qEEG, Olbrich et al., 
2015; Dharmadhikari et al., 2018; Widge et al., 2019). The technique is 
appealing due to its ability to analyze the brain at its core functional level, 
its broad availability and its cost-effectiveness.

EEG is typically comprised of delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), beta (12–30 Hz), and gamma (>30 Hz) frequency bands 
(Canolty and Knight, 2010). Various psychiatric disorders have been 
associated with specific alterations in these frequency bands at rest 
(resting-state EEG or rsEEG). For instance, schizophrenia has been 
associated with consistent and reliable increases in slow frequency 
bands (delta and theta) and decreases in the alpha band, while 
depressive disorders are mainly associated with increased theta and 
beta power (Newson et al., 2019).

However, a critical consideration in rsEEG biomarker research is 
the potential confounding effects of medication commonly used to 
treat those disorders. Psychotropic medications, including 
antidepressants, antipsychotics, and benzodiazepines, exert diverse 
pharmacological actions that directly or indirectly modulate 
neurotransmitter systems. These actions can influence the excitability 
of neurons, synaptic connectivity, and overall brain function, thereby 
impacting EEG readings. This concern has been recognized since the 
early days of EEG research when Hans Berger discovered in 1933 that 
substances like barbiturates, scopolamine, and morphine could affect 
EEG readings (Berger, 1933).

Confounding effects of psychotropic agents on rsEEG readings 
hampers its application in clinical practice. For instance, in the 
context of clinical diagnosis, it becomes crucial to distinguish 
whether observed alterations in EEG patterns are primarily driven by 
the underlying psychiatric disorder or whether they can be attributed 
to the confounding effects of psychotropic medication. Moreover, it 
is important to disentangle the effects of the medication of interest 
from those of concomitant psychotropics, as combination therapy is 

common in psychiatric treatment. Therefore, a comprehensive 
understanding of the effects of different psychotropic agents on 
rsEEG is necessary to ensure accurate interpretation and clinical 
applicability of EEG findings.

Research on the effects of psychotropic drugs on rsEEG has 
primarily concentrated on power spectral measures, revealing 
changes induced by antidepressants (Knott et al., 2000; Siepmann 
et al., 2003; Saletu et al., 2006), benzodiazepines (Porjesz et al., 
2002; Stone et al., 2015), and antipsychotics (Hyun et al., 2011). 
However, in the past two decades, more advanced techniques in 
EEG analysis, such as functional connectivity and network analysis, 
have emerged. These approaches offer potential as prediction tools 
(Rolle et al., 2020; Zhang et al., 2021). Despite the promise of this 
type of EEG analysis, the effects of psychotropic drugs on these 
metrics remain largely unexplored. The limited studies that have 
investigated the impact of psychotropics on these metrics (Knott 
et  al., 2002; Leuchter et  al., 2008; Numan et  al., 2019) have 
predominantly focused on healthy populations and were based on 
small sample sizes. Moreover, these studies primarily examined 
monotherapy effects, which may not accurately reflect the 
complexities of real-world clinical settings where patients often 
receive single or multi-class polytherapy (Kukreja et al., 2013).

Given the limited existing literature on the effects of 
psychotropics on rsEEG functional connectivity and network 
topology metrics, our aim was to contribute valuable insights to 
this field of research. In this exploratory study, we examined the 
associations between commonly prescribed psychotropics, 
including antidepressants, antipsychotics and benzodiazepines, 
and aforementioned rsEEG metrics in a large naturalistic, cross-
sectional population of hospital-admitted psychiatric patients. 
Importantly, our study sought to provide a comprehensive analysis 
by exploring not only the effects of single-class psychotropic 
treatments but also the potential interaction effects resulting from 
multi-class polypharmacy, providing a more realistic reflection of 
real-world treatment scenarios. Finally, associations were further 
examined by performing follow-up analyses to investigate dosage 
correlations. By shedding light on the potential confounding effects 
of single-class and multi-class treatments, our study could offer 
valuable insights that can enhance the accuracy and applicability 
of rsEEG biomarker research in clinical practice.
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2. Materials and methods

2.1. Participants

Data were obtained between 2013 and 2018 at the Department of 
Psychiatry of the Ziekenhuis Netwerk Antwerpen (ZNA), a large 
community hospital in Antwerp, Belgium. Data collection procedures 
and study population characteristics were outlined previously (Kool 
et al., 2022). In brief, data were collected from 1,132 hospital-admitted 
adult patients that were diagnosed with at least one of the following 
psychiatric clinician-informed disorders based on DSM-IV: mood 
disorders (MD, depressive and bipolar disorders), psychotic disorders 
(PD, schizophrenia and other psychotic disorders, except brief 
psychotic disorder, and psychotic disorder due to a medical condition 
or substance use) and substance use disorders (SUD, alcohol and/or 
drug use disorders). Diagnoses were established using the clinical 
diagnostic interview by the clinician, a valid assessment and 
comparable to well-established standardized clinical interviews (Drill 
et  al., 2015). Patients with two or three of the beforementioned 
disorders were assigned to a separate group called multiple morbidities 
(MM). The exclusion criteria were limited in order to gather a 
representative sample of patients with the abovementioned psychiatric 
disorders. Participants were excluded if they were unable to give 
informed consent, had restlessness that would affect EEG results, had 
poor quality EEG, or were using drugs falling outside the classes of 
antipsychotics (APs), antidepressants (ADs), and benzodiazepines 
(BDZs). All participants provided written informed consent. The 
institutional Review Board of the ZNA approved the study procedures 
that were carried out in accordance with the provisions of the World 
Medical Association Declaration of Helsinki.

2.2. EEG recordings

RsEEG recordings were made using a 64-channel Electrical 
Geodesics Incorporated (EGI) system (Philips, United States), at a 
sample frequency of 500 Hz. Participants underwent a three-minute 
eyes-closed rsEEG recording in a quiet (<40 dB) room. All 
participants were instructed to sit still and avoid excessive thinking 
to prevent resting-state mind wandering. The eyes closed condition 
was prefered over of the eyes open condition, because EEG 
parameters are more stable over sessions and the more prominent 
alpha oscillations in this condition provide good guidance for the 
selection of epochs (van Diessen et al., 2015). Raw EEG data were 
converted into ASCII files.

2.3. EEG preprocessing

Subsequent offline analysis was done in BrainWave version 
0.9.152.12.26, developed by CJ Stam; further information and free 
software is available at: https://home.kpn.nl/stam7883/brainwave.
html. EEG signals were filtered with a band-pass of 0.5-45 Hz. EEG 
data were visually inspected for artifacts by two independent raters. 
Artifacts included cardiac pulse, muscle tension, eye flutter or blink, 
and slow eye movement. Four channels associated with eye 
movements and one channel associated with a variety of other artifacts 
in a substantial number of participants were excluded from analysis 

(Supplementary Figure 1). Artifacts were allowed in a maximum of 6 
channels (~10% of the remaining 59 channels), otherwise subjects 
were excluded from further analysis. The first 10 artifact-free epochs 
of 8.192 s each (~1.20 min in total) were selected. Reported outcome 
measures are based on averaged values over these 10 epochs per 
subject to further increase parameter stability (van Diessen et  al., 
2015; Colclough et al., 2016; Fraschini et al., 2016).

2.4. EEG data analysis

Data was re-referenced toward an average reference and filtered 
in four frequency bands, delta (0.5–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz) and beta (13–30 Hz). The gamma band (30–48 Hz) was 
excluded from analysis based on evidence suggesting that this 
frequency range cannot reliably be distinguished from muscle artifacts 
(Whitham et  al., 2007). Macroscale rsEEG variables of interest 
included: amplitude envelope correlation corrected (AECc), phase lag 
index (PLI), and minimum spanning tree (MST) based on both the 
AECc and PLI.

2.4.1. Functional connectivity
Functional connectivity can be based on amplitude and phase 

synchronization, which provide complementary information on 
connectivity between brain regions (Siems and Siegel, 2020). Two 
commonly used metrics that are not affected by volume conduction 
problems are the corrected amplitude envelope correlation (AECc) 
and phase lag index (PLI) (van Diessen et al., 2015; Colclough et al., 
2016). By concurrently evaluating the AECc and PLI, our analysis 
offers a comprehensive understanding of the impacts of psychotropic 
substances on diverse aspects of functional connectivity.

2.4.1.1. Phase lag index
The Phase lag index (PLI) measures the asymmetry of the 

distribution of phase differences between time series (Stam et al., 
2007). The PLI ignores zero and π phase differences (Stam et al., 2007). 
Consequently, the method is less affected by the presence of common 
sources (volume conduction) than most other frequently used 
functional connectivity measures (Porz et  al., 2014). The PLI is 
calculated by means of:

 
PLI sign tk= < > ( )| [sin( ( ))] |∆φ 1

Where sign is the signum function, ΔΦ is the phase difference 
between two time series (computed via the Hilbert transform), which 
is determined for all time-points (k) per epoch. <> indicates the mean 
value and || indicates the absolute value. The PLI value ranges from 0 
to 1. A value of 0 indicates either a lack of coupling or coupling with 
a phase difference centered around 0 (mod π). A value of 1 means 
perfect phase locking. An extensive description of the PLI and its 
mathematical theory is provided by Stam et al. (2007).

2.4.1.2. Amplitude envelope correlation corrected
The Amplitude Envelope Correlation (AEC) measures the 

synchrony between the oscillations of two time-series computing the 
correlation between their amplitude envelopes (Bruns et al., 2000). 
The AEC also ranges from 0 to 1 and high AEC values reflect 
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synchronization between oscillations or networks. However, signal 
components that pick up the same source at different sites show an 
identical phase (Hipp et al., 2012). Therefore, we used the corrected 
version of the AEC (AECc), in which the time-series are 
orthogonalized by applying linear regression analysis (Hipp 
et al., 2012).

2.4.2. Network organization
Frequency-dependent brain network topology was assessed by 

constructing a minimum spanning tree (MST, Stam et  al., 2014; 
Tewarie et al., 2015). An MST is the “backbone” of functional network 
organization, as it represents a unique acyclic subgraph of the 
strongest connections of the original weighted network (which are 
based upon functional connectivity measures) while minimizing the 
link weights (Stam et al., 2014; Tewarie et al., 2015). Furthermore, it is 
an unbiased method for comparing brain networks across conditions 
and gives information about the efficiency and integration of the 
network topology (Tewarie et al., 2015; van Diessen et al., 2015). The 
MST was calculated based on both the AECc and PLI connectivity 
matrices and consisted of 59 nodes (the number of nodes equaled the 
number of electrodes) and 58 edges (the number of edges was the 
number of nodes-1). There are a number of MST metrics that are used 
to describe the topological properties of the tree (Stam et al., 2014). 
We examined the following metrics; diameter (D), leaf fraction (Lf), 
kappa (κ), tree hierarchy (Th), and mean strength. The first four are 
network topology measures, but the last metric measures the 
functional connectivity strength within the aforementioned subgraph 
of the original weighted network and is therefore technically a 
functional connectivity measure. A detailed description of the 
beforementioned MST metrics can be  found in Table  1. For a 
schematic overview of the EEG processing pipeline see Figure 1.

2.5. Drug treatment

2.5.1. Psychotropic drug classes
Our analysis involved subjects who were treated with ADs, APs, 

BDZs, or combinations thereof. Multi-class combinations included: 
AP + BDZ, AD+BDZ, AP + AD, and AD+AP + BDZ. It is important to 
highlight that single-class treatments encompassed both monotherapy 
and single-class polytherapy, meaning that patients were allowed to 
receive two or more drugs from the same class (e.g., two different 
APs). We also included patients that were unmedicated. It is important 
to note that being unmedicated did not necessarily mean they had no 
prior history of medication, but rather they were not taking any 
medication at the time of data collection. For an overview of the 
specific drugs included in each class, see Table 2.

2.5.2. Medication dose equivalence calculation 
methodology

Dose equivalents were calculated using the DDD (defined daily 
dose) methodology, endorsed by the WHO (WHO Collaborating 
Centre for Drug and Statistics Methodology, 2018) and recommended 
as the international standard for drug utilization monitoring and 
research. The DDD is defined as follows: the assumed average 
maintenance dose per day for a drug used for its main indication in 
adults (WHO Collaborating Centre for Drug and Statistics 
Methodology, 2018). DDDs are only assigned for drugs given an ATC 
(anatomical therapeutic chemical) code. The main advantage of this 
method is that DDDs are available for almost all psychotropic 
medications. Equivalents to diazepam for benzodiazepines, olanzapine 
for antipsychotics, and fluoxetine for antidepressants were calculated, 
using the ATC/DDD index of the WHO.

2.6. Statistical analysis

All statistical analyses were performed using IBM Statistics SPSS 
version 27 and ggplot2 (Wickham and Wickham, 2016) was used to 
generate plots. Parametric and, where appropriate, non-parametric 
tests were used.

Since specific psychotropic drugs may be prescribed for specific 
psychiatric disorders, a relationship between psychotropic treatment 
and diagnosis might exist within our data. In order to accommodate 
potential diagnosis-specific interaction effects, we  first ran a 
multivariate general linear model (GLM) with diagnosis included as 
a fixed factor. Covariates included sex and age. If no diagnosis 
interaction was found, analyses were performed on all psychiatric 
disorders combined, otherwise separately.

After, we performed a second GLM with additional post-hoc tests 
with psychopharmacological group as fixed factor and sex and age as 
covariates. The psychopharmacological group omprised eight distinct 
categories: (1) no medication, (2) AD, (3) AP, (4) BDZ, (5) AD+AP, 
(6) AD+BDZ, (7) AP + BDZ, and (8) AP + AD+BDZ. A total of 48 
rsEEG measures were included as outcome variables, including two 
connectivity measures (PLI and AECc) in four frequency bands, and 
five times two (both PLI and AECc) MST measures (D, Lf, Th, κ, 
strength) in four frequency bands. Frequency bands were: delta, 
theta, alpha, beta. In case of a diagnostic-specific interaction, 
we performed the abovementioned GLM four times (for PD, MD, 
SUD, and MM separately). To understand the dominant effect of 

TABLE 1 Minimum spanning tree (MST) measures and their definitions.

MST metric Explanation

Diameter (D) Measure for network efficiency, where a low diameter 

indicates a more efficient the network. It is defined by the 

largest distance between any two nodes, normalized for the 

total number of connections.

Leaf fraction (Lf) Measure for network integration, the higher (or closer to 1), 

the more integrated the network is. It is defined by the leaf 

number (number of nodes that have only one connection), 

divided by maximum possible leaf number.

Kappa (κ) Measure of the width of the degree distribution (degree 

divergence) and relates to spread of information across the 

tree. High kappa indicates the presence of high-degree nodes 

which facilitate synchronization of the tree but also increase 

the network’s vulnerability if a hub is damaged.

Tree hierarchy 

(Th)

Measure that defines the hierarchy of the MST organization 

as optimal topology. It quantifies the trade-off between large 

scale integration in the MST and the overload of central 

nodes.

Strength Mean weight of all edges included in the MST. Measures 

functional connectivity strength within the subgraph of the 

original weighted graph.
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medication on rsEEG characteristics in a real-world sample, the value 
of p significance threshold (α) of 0.05 was Bonferroni-corrected to 
control for type-I errors due to multiple testing (48 tests). While 
psychotropic medication effects on EEG connectivity and network 
organization is in itself a topic of interest, it may also be considered a 
confounder in pathophysiological and biomarker studies in 
psychiatric disorders. We  therefore also performed analyses 

uncorrected for multiple testing to explore the potential confounding 
influence of psychotropic medication in such studies due to 
psychotropic medication. Both corrected and uncorrected significant 
findings were further examined by carrying out univariate one-way 
ANCOVAs and post-hoc tests (α = 0.05). Significant post-hoc tests 
were followed up by Spearman’s rank correlation analyses to 
investigate dosage-correlations. Dose equivalents were calculated 

FIGURE 1

Schematic overview of EEG processing pipeline. (A) Raw rsEEG data was collected by a 64-channel EGI system. A band-pass filter was applied and 
epochs were visually inspected for artifacts. The first 10 artifact free epochs were selected for further analysis. (B) Functional connectivity matrices 
based on both the phase lag index (PLI) and amplitude envelope correlation corrected (AECc) were constructed for each frequency band (delta: 0.5–
4  Hz, theta: 4–8  Hz, alpha: 8–13  Hz, and beta: 13–30  Hz) and each epoch. (C) Kruskal’s algorithm is applied to obtain the minimum spanning tree (MST) 
matrix. (D) To describe the topological properties of the tree, we used multiple metrics including the diameter (D), tree hierarchy (Th), leaf fraction (Lf), 
Kappa (κ), and mean strength.
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using the defined daily dose methodology (WHO Collaborating 
Centre for Drug and Statistics Methodology, 2018).

3. Results

3.1. Demographic characteristics and 
medication use

Of 1,132 participants, 900 (406 females, mean age 41.4 ± 12.9 years) 
remained after EEG preprocessing and further data selection (for a 
flowchart of the data selection process: see Supplementary Figure 2). 
An overview of the demographics per psychopharmacological group 
can be found in Table 3. For a complete overview of the specific drugs 
included within each of the eight psychopharmacological groups, see 
Supplementary Table 1.

3.2. Interaction between treatment group 
and psychiatric disorder

In order to accommodate potential diagnosis-specific interaction 
effects, we first ran a GLM with psychopharmacological group and 
diagnosis as fixed factors and age and sex as covariates. The analysis 
yielded no significant interaction between diagnosis and 
psychopharmacological treatment, Wilks’ Lambda = 0.347, F(1,008, 
15903.80) = 0.891, p = 0.993. Since there was no interaction, 
we performed analyses on all psychiatric disorders combined. The 
final GLM included psychopharmacological group as fixed factor and 
age and sex as covariates. This model yielded a significant main effect 
for psychopharmacological group, Wilks’ Lambda = 0.633, F(336, 
5858.63) = 1.189, p = 0.012. Significant between-subjects effects and 
post-hoc results will be explained in detail in the following paragraphs.

3.3. Associations between psychotropic 
drugs and functional connectivity

A GLM was conducted in order to investigate associations 
between single and multi-class use of psychotropics and functional 
connectivity and network organization measures. For readability 
purposes, significant functional connectivity (including MST strength) 

results will be reported in this paragraph, while significant findings 
concerning network topology will be presented in a separate paragraph.

For functional connectivity measures, we found no significant 
group effects after Bonferroni correction (α = 0.05/48). Significant 
group effects uncorrected for multiple testing (α = 0.05) were found 
for the AECc in the theta band (p = 0.004, np

2 = 0.023), alpha band 
(p = 0.018, np

2 = 0.019), beta band (p = 0.044, np
2 = 0.016), and PLI in 

the delta band (p = 0.009, np
2 = 0.021). Significant GLM results and 

post-hoc results of between-group effects are shown in Table 4 (for an 
overview of all main results, as well as means and standard deviations 
of significant rsEEG findings: Supplementary Tables 2, 3). Post-hoc 
comparisons (α = 0.05) for functional connectivity measures revealed 
lower delta PLI in the BDZ, AD, AD+AP, AP + BDZ, and 
AD+AP + BDZ groups compared to untreated patients, as well as in 
AP + BDZ relative to AD+BDZ (Figure 2A). In addition, lower theta 
AECc was found in all multi-class groups compared to untreated 
patients and in the AP + BDZ and AD+AP + BDZ groups compared 
to AD (Figure 2B). The AECc within the alpha band was lower in the 
AP group and all multi-class groups containing antipsychotics 
compared to untreated patients (Figure 2C). Finally, compared to no 
medication and AD, we found lower beta AECc for BDZ, AD + BDZ, 
and AD+AP + BDZ (Figure 2D).

For functional connectivity (MST) strength measures, we found 
Bonferroni-corrected group effects for PLI strength in the delta band 
(p < 0.001, np

2 = 0.029) and AECc strength in the alpha band (p < 0.001, 
np

2 = 0.030). We found lower delta PLI strength in all groups (except 
AD and AD+BDZ) compared to untreated patients, as well as in 
AP + BDZ compared to both AD, AD+BDZ, and AD+AP + BDZ 
(Figure 3A). In addition, lower alpha AECc strength was found in all 
groups (except AD and AD+BDZ) compared to untreated patients, as 
well as in AP + BDZ compared to AD (Figure 3B). Uncorrected group 
effects were found for AECc strength in the theta band (p = 006, 
np

2 = 0.022) and PLI strength in the alpha band (p = 027, np
2 = 0.018). 

Post-hoc tests revealed lower theta AECc strength for BDZ and all 
multi-class groups containing antipsychotics compared to untreated 
patients, as well as in the AP + BDZ group relative to AD (Figure 3C). 
Finally, the alpha PLI strength was found to be  lower for 
AD+AP + BDZ compared to untreated patients, AP, AD, and AD+AP, 
as well as in AD+BDZ compared to AP (Figure 3D).

3.3.1. Dosage correlations with functional 
connectivity measures

Spearman’s rank correlation tests were conducted between the 
dose of the psychotropic of interest and the aforementioned 
significant functional connectivity (strength) outcomes within the 
group that showed significance. Within the AD+AP group, we found 
a significant negative correlation between antipsychotic dose and 
delta PLI (r = −0.309, p = 0.002) and delta PLI strength (r =  −0.229, 
p = 0.026). Within the AD+AP + BDZ group, we found significant 
negative correlations between antipsychotic dose and theta AECc 
(r =  −0.243, p = 0.013) and alpha AECc (r =  −0.210, p = 0.032). No 
other correlations yielded statistical significance.

3.4. Associations between psychotropic 
drugs and network organization

For network organization measures, we found no significant group 
effects after Bonferroni correction (α = 0.05/48). Group effects 

TABLE 2 Overview of specific drugs included within each class.

Name of 
class

Drugs included

AD Amitriptyline, Buproprion, Citalopram, Clomipramine, 

Duloxetine, Dosulepine, Fluoxetine, Fluvoxamine, Imipramine, 

Melitracen, Mianserine, Mirtazapine, Nortriptyline, Paroxetine, 

Sertraline, Trazadone, Venlafaxine

AP Amisulpride, Aripiprazole, Bromperidol, Clotiapine, Clozapine, 

Flupenthixol, Haloperidol, Olanzapine, Paliperidone, Pimozide, 

Pipamperone, Quetiapine, Risperidone, Sulpiride, Tiapride, 

Zuclopenthixol

BDZ Alprazolam, Bromazepam, Chlorazepam, Clobazam, 

Clonazepam, Diazepam, Flunitrazepam, Flurazepam, Lorazepam, 

Lormetazepam, Nordazepam, Prazepam Zolpidem

AD, antidepressants; AP, antipsychotics; BDZ, benzodiazepines.
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(significant when uncorrected for multiple testing) were found for a 
variety of network characteristics in the delta, alpha and beta bands. 
More specifically, we  found effects for the PLI-κ within the delta 
(p = 033, np

2 = 0.017) and alpha (p = 032, np
2 = 0.017) bands, the 

AECc-Th tree hierarchy in the alpha band (p = 046, np
2 = 0.016) and 

AECc-D diameter in the beta band (p = 046, np
2 = 0.016). Significant 

GLM results and post-hoc results of between-group effects are shown 
in Table 5 (for an overview of all main results, as well as means and 
standard deviations of significant rsEEG findings: 
Supplementary Tables 2, 3).

Post-hoc tests (α = 0.05) found the delta PLI-κ to be  lower in 
AP + BDZ compared to untreated patients, AD and AD+BDZ, as well 
as in AD+BDZ relative to BDZ and AD+AP (Figure 4A). Within the 
alpha band, we  found lower PLI-κ in the AD+AP + BDZ group 
compared to untreated patients, AD, AP, and AD+AP. In addition, 
we found this metric to be lower in de AD+BDZ group compared to 
untreated patients (Figure  4B). Furthermore, we  found lower 
AECc-Th in AD+AP + BDZ relative to unmedicated patients, AP and 
AP + BDZ, as well as in AD and BDZ compared to AP (Figure 4C). 
Finally, higher AECc-D was found for the BDZ group compared to 
untreated patients, AD and AD+AP, as well as in AD+AP + BDZ 
relative to untreated patients (Figure 4D).

3.4.1. Dosage correlations with network topology 
measures

Spearman’s rank correlation tests were conducted between the 
dose of the psychotropic of interest and the aforementioned significant 
network topology outcomes within the groups that showed statistical 
significance. Within the AD+AP group we found a significant negative 
correlation between antipsychotic dose and delta PLI-k (r = −0.279, 
p = 0.006). No other correlations yielded statistical significance.

4. Discussion

In a retrospective cross-sectional study, we explored associations 
between single and multi-class psychotropic treatment and macroscale 
rsEEG functional connectivity and topology measures in a hospital-
admitted psychiatric population. The classes of psychotropic drugs 
investigated were antipsychotics, antidepressants, and 
benzodiazepines. Bonferroni-corrected main effects were only found 
for functional connectivity (MST) strength in the delta (PLI), and 
alpha band (AECc). Both measures were lower in the antipsychotic 
and benzodiazepine single-class groups and the majority of multi-
class groups compared to unmedicated patients. The absence of 

TABLE 3 Demographics per psychotropic group.

Demographic 
characteristic

No 
medication

N  =  190

AD
N  =  190

AP
N  =  65

BDZ
N  =  41

AD  +  AP
N  =  94

AD  +  BDZ
N  =  120

AP  +  BDZ
N  =  96

AD  +  AP  +  BDZ
N  =  104

Sex, female (%) 64 (33.7%) 92 (48.4%) 25 (38.5%) 23 (56.1%) 43 (45.7%) 66 (55%) 32 (33.3%) 61 (58.7%)

Age, mean (SD) 39.1 (12.8) 41.2 (12.8) 37.7 (13.3) 40.7 (15.1) 41.0 (12.4) 44.7 (13.3) 40.4 (12.9) 43.9 (12.7)

Diagnosis

PD, N (%) 1 (0.5%) 3 (1.6%) 33 (50.8%) 3 (7.3%) 5 (5.3%) 5 (4.2%) 73 (76%) 31 (29.8%)

MD, N (%) 80 (42.1%) 88 (64.3%) 26 (63.4%) 39 (41.5%) 81 (67.5%) 8 (8.3%) 43 (41.4%)

SUD, N (%) 99 (51.1%) 79 (41.6%) 13 (20%) 10 (24.4%) 45 (47.9%) 26 (21.7%) 6 (6.3%) 15 (14.4%)

MM, N (%) 10 (5.3%) 20 (10.5%) 6 (9.2%) 2 (4.9%) 5 (5.3%) 8 (6.7%) 9 (9.4%) 15 (14.4%)

Drug familya NA NA

SSRI, N (%) 90 (47.4%) NA 39 (41.5%) 61 (50.8%) NA 55 (52.9%)

SNRI, N (%) 113 (59.5%) NA 61 (64.9%) 63 (52.5%) NA 57 (54.8%)

NDRI, N (%) 6 (3.2%) NA 7 (7.5%) 3 (2.5%) NA 5 (4.8%)

TCA, N (%) 34 (17.9%) NA 15 (16%) 23 (19.2%) NA 22 (21.1%)

FG, N (%) NA 8 (12.3%) 19 (20.2%) NA 8 (8.3%) 16 (15.8%)

SG, N (%) NA 61 (93.9%) 84 (89.4%) NA 119 (124%) 110 (105.7%)

Dose range NA

Olanzapine dose EQ (mg) NA 0.5–45 NA 0.5–62 NA 0.6–75 0.3–60

Fluoxetine dose EQ (mg) 3.3–70 NA NA 3.3–80 2.7–75 NA 2.7–100

Diazepam dose EQ (mg) NA NA 1.3–80 NA 0.3–60 0.9–60 03.90

Mean dose (SD) NA

Olanzapine dose EQ (mg) NA 13.6 (11) NA 7.5 (8.6) NA 19.9 (14.7) 13.2 (13.6)

Fluoxetine dose EQ (mg) 22.6 (14.1) NA NA 26 (16.2) 24.7 (14.9) NA 28.1 (16.9)

Diazepam dose EQ (mg) NA NA 19.3 (14.8) NA 14 (9.9) 23 (13.8) 19.1 (14.2)

AD, antidepressants; AP, antipsychotics; BNZ, benzodiazepines; FG, first generation; EQ, equivalent; MD, mood disorder; MM, multiple morbidities; NDRI, norepinephrine dopamine 
reuptake inhibitor; PD, psychotic disorder; SG, second generation; SNRI, selective norepinephrine reuptake inhibitors; SSRI, selective serotonin reuptake inhibitors; SUD, substance use 
disorder; TCA, tricyclic antidepressants.
aDrug family exceeds total number of subjects, because most subjects were receiving polypharmacy: even within single-class treatment groups, subjects were commonly treated with more than 
one different kind of drug.
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TABLE 4 Significant differences in functional connectivity metrics.

Functional connectivity 
measure

GLM resultsa Post-hoc resultsb,c

Overall model Group comparisons

PLI delta band F = 2.70 BDZ vs. None p = 0.041 [−0.023–0.001]

p = 0.009 AD vs. None p = 0.009 [−0.016–0.002]

np
2 = 0.021 AD+AP vs. None

AP + BDZ vs. None

AP + BDZ vs. AD+BDZ

AD+AP + BDZ vs. None

p = 0.036 [−0.017–0.001]

p = 0.00012 [−0.024–0.008]

p = 0.017 [−0.020–0.002]

p = 0.009 [−0.019–0.003]

AECc theta band F = 3.04 AD+AP vs. None p = 0.015 [−0.015–0.002]

p = 0.004 AD+BDZ vs. None

AP + BDZ vs. None

p = 0.034 [−0.013–0.001]

p = 0.00032 [−0.019–0.006]

np
2 = 0.023 AP + BDZ vs. AD

AD+AP + BDZ vs. None

AD+AP + BDZ vs. AD

p = 0.007 [−0.016–0.003]

p = 0.0008 [−0.019–0.005]

p = 0.015 [−0.015–0.002]

AECc alpha band F = 2.44 AP vs. None p = 0.002 [−0.025–0.005]

p = 0.018 AD+AP vs. None

AP + BDZ vs. None

p = 0.036 [−0.017–0.001]

p = 0.0008 [−0.023–0.006]

np
2 = 0.019 AD+AP + BDZ vs. None p = 0.028 [−0.017–0.001]

AECc beta band F = 2.70 BDZ vs. None p = 0.029 [−0.023–0.001]

p = 0.009 BDZ vs. AD

AD+BDZ vs. None

p = 0.030 [−0.023–0.001] 

p = 0.003 [−0.019–0.004]

np
2 = 0.021 AD+BDZ vs. AD

AD+AP + BDZ vs. None

AD+AP + BDZ vs. AD

p = 0.003 [−0.018–0.004]

p = 0.006 [−0.020–0.003]

p = 0.005 [−0.019–0.003]

PLI MST strength delta band F = 3.73 BDZ vs. None p = 0.037 [−0.040–0.001]

p = 0.00054 AP vs. None

AD+AP vs. None

p = 0.016 [−0.034–0.004]

p = 0.006 [−0.034–0.006]

np
2 = 0.029 AP + BDZ vs. None

AP + BDZ vs. AD

AP + BDZ vs. AD+BDZ

AP + BDZ vs. AD+AP + BDZ

AD+AP + BDZ vs. None

p = 0.000007 [−0.047–0.019]

p = 0.004 [−0.035–0.007]

p = 0.0008 [−0.042–0.11]

p = 0.045 [−0.033–0.001]

p = 0.024 [−0.030–0.002]

AECc MST strength theta band F = 2.86 BDZ vs. None p = 0.039 [−0.037–0.001]

p = 0.006 AD+AP vs. None

AP + BDZ vs. None

p = 0.007 [−0.023–0.004]

p = 0.0005 [−0.027–0.007]

np
2 = 0.022 AP + BDZ vs. AD

AD+AP + BDZ vs. None

p = 0.012 [−0.022–0.003]

p = 0.003 [−0.024–0.005]

AECc MST strength alpha band F = 3.95 BDZ vs. None p = 0.019 [−0.029–0.003]

p = 0.00030 AP vs. None

AD+AP vs. None

p = 0.002 [−0.028–0.006]

p = 0.007 [−0.023–0.004]

np
2 = 0.030 AP + BDZ vs. None

AP + BDZ vs. AD

AD+AP + BDZ vs. None

p = 0.000016 [−0.030–0.011]

p = 0.007 [−0.023–0.004]

p = 0.0006 [−0.026–0.007]

PLI MST strength alpha band F = 2.28 AD+BDZ vs. AP p = 0.039 [−0.070–0.002]

p = 0.027 AD+AP + BDZ vs. None

AD+AP + BDZ vs. AD

p = 0.006 [−0.066–0.011]

p = 0.010 [−0.062–0.008]

np
2 = 0.018 AD+AP + BDZ vs. AP

AD+AP + BDZ vs. AD+AP

p = 0.006 [−0.084–0.014]

p = 0.007 [−0.075–0.012]

ηp
2, partial Eta squared; AECc, amplitude envelope correlation corrected; MST, minimum spanning tree; PLI, phase lag index.

aResults of multivariate GLM and post-hoc tests. Only GLM results for which significant results were found are displayed (see Supplementary material for all results). Covariates in the model: 
age, sex. Note that P-values reported here are uncorrected; GLM statistical significance was based on Bonferroni-corrected (α = 0.05/48) and uncorrected (α = 0.05) significance thresholds for 
multiple testing. Significant GLM findings meeting the Bonferroni-corrected threshold (α = 0.05/48) are depicted in bold.
bPost-hoc tests were uncorrected (α = 0.05) for multiple testing. Only significant post-hoc results are mentioned.
c99% confidence intervals are reported between brackets.

https://doi.org/10.3389/fnins.2023.1176825
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zandstra et al. 10.3389/fnins.2023.1176825

Frontiers in Neuroscience 09 frontiersin.org

additional significant corrected effects could potentially be attributed 
to variations in treatment duration, dosage, underlying disease 
etiology, disorder severity, or use of a stringent correction method. 
Exploratory analyses, which were uncorrected for multiple testing, 
suggest effects of both single and multi-class use of psychotropics on 
a range of connectivity and topology measures. Differences were 
found both in comparison with untreated patients and between 
different psychopharmacological groups. Notably, we  only found 
dosage correlations for antipsychotics. Although effect sizes were too 
small to withstand Bonferroni correction, our findings may still have 
implications for EEG biomarker research.

4.1. Single-class psychotropic associations 
with EEG connectivity and network 
topology

Associations between single-class use of antidepressants and 
rsEEG metrics were only found for the functional connectivity (PLI) 
strength in the delta band, which was lower in this group compared 

to unmedicated patients. We are not aware of previous studies on the 
effects of antidepressants on macroscale connectivity and topology 
measures. However, previous studies have reported regional 
connectivity decreases in the alpha band of depressed men (Iseger 
et al., 2017) and in the theta band of healthy men (Nissen et al., 2020), 
using linear lagged connectivity (LLC) and PLI, respectively. It is 
possible that our macroscale approach may have obscured these 
regional differences. Additionally, the discrepancies between our 
findings and the aforementioned studies may be  attributed to 
variations in study design, study population characteristics, and 
gender composition. When considering the study by Iseger and 
colleagues, the inconsistencies between their findings and our own 
could also be potentially elucidated by the variance in the connectivity 
metric used. Both the LLC and PLI are measures of phase 
synchronization. However, the LLC is a measure that examines the 
linear relationship between two signals (Pascual-Marqui, 2007), while 
the PLI examines nonlinear relations (Stam et al., 2007). Consequently, 
it is plausible that antidepressants could impact linear connectivity 
within the alpha band while not significantly affecting nonlinear 
connectivity. We  are unaware of studies examining the effects of 

FIGURE 2

Group comparisons of functional connectivity (A) Phase lag index in the delta band, (B) Corrected amplitude envelope correlation in the theta band, 
(C) Corrected amplitude envelope correlation in the alpha band, (D) Corrected amplitude envelope correlation in the beta band. Group means and 
standard deviations are shown for no medication (brown), antidepressants (purple), antipsychotics (dark green), benzodiazepines (light green), 
antidepressant and antipsychotic polypharmacy (orange), antidepressant and benzodiazepine polypharmacy (pink), antipsychotic and benzodiazepine 
polypharmacy (blue), and polypharmacy of all three classes (red). The gray colored areas represent the kernel density estimation to show the 
distribution shape of the data. Little dots represent individuals. AD, antidepressants; AECc, amplitude envelope correlation corrected; AP, 
antipsychotics; BDZ, benzodiazepines; PLI, phase lag index. * Significant at an α-level of 0.05. ** Significant at an α-level of 0.01.
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antidepressants on linear and nonlinear connectivity. However, it is 
noteworthy to mention that a study involving benzodiazepines 
demonstrated contrasting impacts on linear and nonlinear 
connectivity (Alonso et al., 2010).

Antipsychotics were found to be associated with lower functional 
connectivity strength in the delta band (PLI) and alpha band (AECc and 
AECc-strength) compared to unmedicated patients. In contrast to our 
study, a recent systematic review revealed no systematic effects of 
antipsychotics on macroscale EEG connectivity and network 
characteristics (Mackintosh et al., 2021). Only one of the reviewed studies 
directly assessed the impact of antipsychotics on EEG connectivity by 
comparing pre-and post-antipsychotic drug treatment in treatment 
refractory psychosis patients using EEG intra-and interhemispheric 
correlation analysis (Cerdán et al., 2005). Interestingly, they observed 
regional connectivity increases across various frequencies, with the 
exception of a connectivity decrease in the high theta band. The 
discrepancies between our study and the aforementioned research may 
stem from differences in the study populations, brain regions analyzed 
(macroscale vs. regional), and the specific connectivity metrics employed. 

The metric used by Cerdán and colleagues is sensitive to volume 
conduction. Volume conduction can cause electrical or magnetic signals 
generated in one region to spread to neighboring areas (van den Broek 
et al., 1998), which can result in an erroneous estimate of the actual 
connectivity between brain areas. Therefore, the use of this metric has 
been discouraged (Colclough et al., 2016). Consequently, the reliability 
and validity of the outcomes from the study by Cerdán and colleagues 
might be somewhat compromised.

Associations between benzodiazepines and rsEEG metrics were 
more widespread. We  found lower connectivity (strength) across 
frequency bands (i.e., delta band PLI and PLI-strength, theta and 
alpha AECc-strength, and beta AECc) in patients treated with 
benzodiazepines compared to unmedicated patients. In the beta band, 
we also found a higher diameter compared to unmedicated patients, 
single-class use of antidepressants, indicating less efficient information 
processing between remote brain regions (Tewarie et  al., 2015). 
Furthermore, we  identified network topology differences between 
single-class use of benzodiazepines and other psychopharmacological 
groups. For example; the diameter in the beta band was also higher 

FIGURE 3

Group comparisons of functional connectivity (MST) strength (A) Phase lag index strength in the delta band, (B) Corrected amplitude envelope 
correlation strength in the alpha band, (C) Corrected amplitude envelope correlation strength in the theta band, (D) Phase lag index strength in the alpha 
band. Group means and standard deviations are shown for no medication (brown), antidepressants (purple), antipsychotics (dark green), 
benzodiazepines (light green), antidepressant and antipsychotic polypharmacy (orange), antidepressant and benzodiazepine polypharmacy (pink), 
antipsychotic and benzodiazepine polypharmacy (blue), and polypharmacy of all three classes (red). The gray colored areas represent the kernel density 
estimation to show the distribution shape of the data. Little dots represent individuals. AD, antidepressants; AECc, amplitude envelope correlation 
corrected; AP, antipsychotics; BDZ, benzodiazepines; PLI, phase lag index. * Significant at an α-level of 0.05. ** Significant at an α-level of 0.01.
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compared to single-class use of antidepressants and multi-class use of 
antidepressants and antipsychotics, the AECc tree hierarchy in the 
alpha band was lower compared to single-class use of antipsychotics, 
and the PLI kappa in the delta band was lower compared to multi-
class use of benzodiazepines and antidepressants. The majority of 
previous studies have primarily focused on investigating the effects of 
benzodiazepines on regional rsEEG metrics. However, there have 
been a limited number of studies that specifically explored the impact 
of benzodiazepines on macroscale connectivity metrics. In line with 
our findings, Arnts and colleagues observed a decrease in beta band 
functional connectivity (AECc) throughout the brain in patients with 
severe brain injury after administration of zolpidem (Arnts et  al., 
2020). Again, in line with our study, previous research using the PLI 
found no effect of benzodiazepines in the beta band in healthy 
controls (Alonso López et  al., 2015) or patients scheduled for a 
gastrointestinal endoscopic procedure (Numan et al., 2019). These 
findings suggest that benzodiazepines affect beta band amplitude 
coupling but not phase-coupling.

4.2. Multi-class psychotropic associations 
with EEG connectivity and network 
topology

A complex pattern of multi-class psychotropic associations was 
found for both functional connectivity and network measures (AECc 

and PLI) across frequency bands. All of the multi-class groups showed 
associations with functional connectivity or network measures, but 
effects were most pronounced for patients treated with all three 
psychotropics and least pronounced in patients treated with 
antidepressants and benzodiazepines. Importantly, we  found 
differences between patients treated with multi-class combinations of 
psychotropics and unmedicated patients even when no association 
was found when patients on single-class treatment with one of these 
agents were compared to unmedicated patients.

In case of both single and multi-class associations, the multi-class 
associations may be driven by the psychotropic class that also showed 
a single-class association. For example, the lower AECc in the beta 
band found in patients concomitantly treated with antidepressants 
and benzodiazepines relative to unmedicated patients was also found 
for single-class use of benzodiazepines but not for single-class use of 
antidepressants. In fact, both single-class benzodiazepine and multi-
class antidepressant and benzodiazepine groups showed a lower AECc 
beta compared to single-class antidepressant group, which had the 
exact same mean value as unmedicated patients. Thus, although 
single-class use of a psychotropic (in this case antidepressants) may 
not affect rsEEG metrics, concomitant use with another psychotropic 
might actually influence rsEEG outcomes, meaning that multi-class 
effects may be entirely attributed to one class of psychotropics.

Multi-class associations with connectivity and network 
measures were also found while no association was observed when 
patients on single-class treatment with these agents were compared 

TABLE 5 Significant differences in network topology metrics.

Network organization 
measure

GLM resultsa Post-hoc resultsb,c

Overall model Group comparisons

PLI-κ delta band F = 2.19 AD+BDZ vs. BDZ p = 0.019 [−0.598–0.053]

p = 0.033 AD+AP vs. AD+BDZ p = 0.010 [−0.473–0.064]

np
2 = 0.017 AP + BDZ vs. None

AP + BDZ vs. AD

AP + BDZ vs. AD+BDZ

p = 0.048 [−0.372–0.001]

p = 0.025 [−0.399–0.027]

p = 0.0006 [−0.563–0.154]

PLI-κ alpha band F = 2.20 AD+BDZ vs. None p = 0.006 [−0.606–0.100]

p = 0.032 AD+AP + BDZ vs. None

AD+AP + BDZ vs. AD

p = 0.001 [−0.704–0.175]

p = 0.015 [−0.585–0.062]

np
2 = 0.017 AD+AP + BDZ vs. AP

AD+AP + BDZ vs. AD+AP

p = 0.020 [−0.718–0.036]

p = 0.044 [−0.619–0.008]

AECc-Th alpha band F = 2.06 AD vs. AP

BDZ vs. AP

p = 0.027 [−0.013–0.001] 

p = 0.012 [−0.020–0.002]

p = 0.046 AD+AP + BDZ vs. None p =0.017 [−0.012–0.001]

np
2 = 0.016 AD+AP + BDZ vs. AP

AD+AP + BDZ vs. AP + BDZ

p = 0.001 [−0.019–0.005]

p = 0.019 [−0.014–0.001]

AECc-D beta band F = 2.06 BDZ vs. None p = 0.005 [0.004–0.024]

p = 0.046 BDZ vs. AD p = 0.011 [0.003–0.022]

np
2 = 0.016 BDZ vs. AD+AP

AD+AP + BDZ vs. None

p = 0.032 [0.001–0.022]

p = 0.025 [0.001–0.015]

ηp
2, partial Eta squared; AECc, amplitude envelope correlation corrected; D, diameter; κ, kappa, PLI, phase lag index; Th, tree hierarchy.

aResults of multivariate GLM and post-hoc tests. Only GLM results for which significant results were found are displayed (see Supplementary material for all results). Covariates in the model: 
age, sex. Note that P-values reported here are uncorrected; GLM statistical significance was based on Bonferroni-corrected (α = 0.05/48) and uncorrected (α = 0.05) significance thresholds for 
multiple testing. Significant GLM findings meeting the Bonferroni-corrected threshold (α = 0.05/48) are depicted in bold.
bPost-hoc tests were uncorrected (α = 0.05) for multiple testing. Only significant post-hoc results are mentioned.
c99% confidence intervals are reported between brackets.
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to unmedicated patients (e.g., AECc strength in the theta band). 
This suggests that combinations of psychotropics may have 
summative effects on EEG connectivity and topology. We speculate 
that the regional effects of antidepressants, antipsychotics and 
benzodiazepines described in the literature (see previous section) 
can result in macroscale functional connectivity and network 
alterations when multiple psychotropics are combined. Another 
explanation may be that complex interactions between drugs are 
responsible for the observed effects. For example, one study found 
that benzodiazepines reduce dopamine release by activation of 
GABAA receptors (Brodnik et al., 2018). This suggests that the 
interactions of benzodiazepines and antipsychotics may result in 
an even greater decrease in dopaminergic activity compared to 
using antipsychotic treatment alone treatment with antipsychotic 
treatment alone, which might consequently result in decreased 
connectivity. Many other possible interaction effects may exist, and 
the complex interactional effects of psychotropic agents on 
macroscale EEG characteristics are of interest for future studies.

4.3. Implications

The observed associations between both single-class and multi-
class use of psychotropics and functional connectivity and network 
topology metrics were relatively small. However, even small 
associations can have important implications for EEG biomarker 
research. These associations may impact the ability to distinguish 
between medication and disease effects of used medication and the 
effects of the underlying condition being studied. In addition, it is 
important to disentangle the effects of the psychotropic of interest 
from concomitant psychotropics. Therefore, it is crucial to carefully 
consider and control the influence of psychotropic medications 
when interpreting EEG connectivity and topology findings. In 
particular, the use of benzodiazepines, and to a lesser extent, 
antidepressants and antipsychotics, should be  recognized as 
potential confounding factors in studies examining EEG 
connectivity and topology. Notably, our study revealed that multi-
class associations with macroscale connectivity and network 

FIGURE 4

Group comparisons of network topology (A) Phase lag index kappa in the delta band, (B) Phase lag index kappa in the alpha band, (C) Corrected 
amplitude envelope correlation tree hierarchy in the alpha band, (D) Corrected amplitude envelope correlation diameter in the alpha band. Group 
means and standard deviations are shown for no medication (brown), antidepressants (purple), antipsychotics (dark green), benzodiazepines (light 
green), antidepressant and antipsychotic polypharmacy (orange), antidepressant and benzodiazepine polypharmacy (pink), antipsychotic and 
benzodiazepine polypharmacy (blue), and polypharmacy of all three classes (red). The gray colored areas represent the kernel density estimation to 
show the distribution shape of the data. Little dots represent individuals. AD, antidepressants; AECc, amplitude envelope correlation corrected; AP, 
antipsychotics; BDZ, benzodiazepines; PLI, phase lag index. * Significant at an α-level of 0.05. ** Significant at an α-level of 0.01.
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organization measures may be  present even in the absence of 
significant single-class psychotropic effects. This highlights the 
importance of considering the cumulative impact of multiple 
psychotropic medications when investigating EEG biomarkers. 
Furthermore, our findings indicate that the dose of antipsychotics 
may play a role, as we  observed dose-effects in this particular 
medication class. This suggests that both the use of antipsychotics 
and the specific dosage should be taken into account as relevant 
covariates in rsEEG studies involving medicated psychiatric 
patients. For antidepressants and benzodiazepines, the agents may 
be  important covariates regardless of the specific dosage. In 
summary, our study underscores the need to carefully consider and 
control the effects of psychotropic medications, especially 
benzodiazepines and multi-class combinations of psychotropics, 
in EEG connectivity and topology studies. Understanding and 
accounting for these medication-related factors will enhance the 
accuracy and reliability of EEG biomarker research in 
psychiatric populations.

4.4. Strengths and limitations

Strengths of our study include the large cross-diagnostic sample in 
a real-world setting of hospital-admitted psychiatric patients, analysis 
of a range of rsEEG connectivity and network topology parameters, 
and analysis of multiple psychotropics with a focus on both single-class 
and multi-class associations, reflecting clinical practice.

Several limitations should be borne in mind when interpreting the 
results, mostly stemming from its retrospective design. First, due to the 
cross-sectional study design, we were unable to compare EEG results 
before and after treatment. Our results therefore provide an estimation 
of between-subject effects of psychotropic medication, rather than 
within-subject effects. Second, it is important to acknowledge that our 
sample consisted of individuals from a psychiatric population. While 
we  did not observe an interaction effect between diagnosis and 
psychopharmacological group, we  cannot dismiss the possibility of 
disease-specific effects, such as the influence of disease etiology or 
symptoms, on the studied EEG metrics. Therefore, the observed 
differences in EEG patterns may be attributed to various factors related 
to the underlying psychiatric disorders rather than solely the effect of 
treatment. While spectral EEG studies have provided insights into 
disorder-related effects on rsEEG (Newson et al., 2019), investigations 
on the effects on connectivity and topology measures have been limited 
and require further research to elucidate their significance. Third, 
we could not control for several confounding factors, such as smoking 
and caffeine consumption immediately prior to obtaining EEG data, 
which are known factors to influence EEG results (Siepmann and Kirch, 
2002; Fisher et al., 2012). In addition, the use of non-prescribed drugs or 
psychedelics has not been documented and therefore cannot be ruled 
out. However, it is worth noting that the use of psychedelics in Belgium 
during the time of data collection was very limited. According to a report 
from 2018, only 0.5% of the Flemish population between the ages of 15 
and 64 reported using LSD or hallucinogenic mushrooms in the past 
12 months (Drieskens et al., 2019). Fourth, it has been found that EEG 
measures are influenced by both short-term pharmacological effects of 
drugs and patients’ long-term clinical responses to medication (Saletu 
et al., 2006), however, we did not have information regarding treatment 

duration. Fifth, the retrospective nature of our study also limited our 
ability to capture detailed and standardized information on medication 
dosages. While dosing was accounted for within the available data, the 
lack of precise dosing control may have influenced the results. Future 
research directions should consider employing prospective study designs 
or complementary methods such as randomized controlled trials to 
achieve greater control over dosing. This would allow for a more 
in-depth analysis of the effects of different dosage levels on rsEEG 
connectivity and topology metrics. Sixth, subjects using multiple 
different medications within the same class (same-class polytherapy) 
made up the majority of the single-class groups, and due to heterogeneity 
in treatment regimes, we were not able to take specific combinations into 
account in our analyses. Drug interactions may not only exist between 
drugs of different classes, but also between drugs within the same class. 
Thus, our results may not be representative for patients under strict 
monotherapy. For antipsychotics, the receptor binding profiles of typical 
and atypical antipsychotics are quite different, while they both bind to 
the dopamine D2 receptor, the latter also binds to a variety of other 
receptors (Kusumi et al., 2015). RsEEG effects may be larger for atypical 
antipsychotics than for typical antipsychotics (Centorrino et al., 2002). 
In the present study, the majority of patients taking antipsychotics were 
on atypical agents. Similarly, the binding profiles of different subclasses 
of antidepressants vary (Sánchez and Hyttel, 1999), which may 
differentially affect rsEEG metrics. Therefore, future investigations 
should aim to explore the effects of different subclasses of psychotropic 
medications on rsEEG connectivity and topology. By addressing these 
factors, future research can provide a more comprehensive 
understanding of the relationship between psychotropic medications 
and rsEEG measures. Finally, although it is a strength that our study 
focused on both phase and amplitude synchronization, many different 
metrics exist within these two broad categories. Future research should 
focus on examining the effects of psychotropics on various metrics 
within these categories. For instance, the potential differential effects on 
linear and nonlinear metrics could be  a fruitful avenue for 
future research.

5. Conclusion

Taken together, the present study provides evidence that, in a 
cross-sectional, hospital-admitted psychiatric population, small 
macroscale alterations of the strength and organization of functional 
connectivity were present in patients treated with single-class 
antidepressants, antipsychotics and benzodiazepines, as well as in 
multi-class combinations of these psychotropics. Whereas single-
class use of antidepressants was specifically associated with functional 
connectivity of the delta band, we  found more widespread 
associations for antipsychotics, benzodiazepines and multi-class 
combinations of psychotropics with beforementioned measures. 
Importantly, multi-class associations were also found in the absence 
of single-class associations, suggesting summative or interaction 
effects between different classes of psychotropics. Our study 
highlights the importance of considering the effects of specific 
psychotropics, as well as their interactions, when investigating rsEEG 
biomarkers in a medicated psychiatric population, ultimately leading 
to enhanced accuracy and applicability or rsEEG connectivity and 
topology metrics in clinical practice. Further research is needed to 

https://doi.org/10.3389/fnins.2023.1176825
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zandstra et al. 10.3389/fnins.2023.1176825

Frontiers in Neuroscience 14 frontiersin.org

validate and expand upon our findings, and to explore the underlying 
mechanisms driving these associations.
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