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Background: The convolutional neural network (CNN) is a mainstream deep

learning (DL) algorithm, and it has gained great fame in solving problems from

clinical examination and diagnosis, such as Alzheimer’s disease (AD). AD is a

degenerative disease di�cult to clinical diagnosis due to its unclear underlying

pathological mechanism. Previous studies have primarily focused on investigating

structural abnormalities in the brain’s functional networks related to the AD or

proposing di�erent deep learning approaches for AD classification.

Objective: The aim of this study is to leverage the advantages of combining

brain topological features extracted from functional network exploration and deep

features extracted by the CNN. We establish a novel fMRI-based classification

framework that utilizes Resting-state functional magnetic resonance imaging (rs-

fMRI) with the phase synchronization index (PSI) and 2D-CNN to detect abnormal

brain functional connectivity in AD.

Methods: First, PSI was applied to construct the brain network by region of interest

(ROI) signals obtained from data preprocessing stage, and eight topological

features were extracted. Subsequently, the 2D-CNN was applied to the PSI matrix

to explore the local and global patterns of the network connectivity by extracting

eight deep features from the 2D-CNN convolutional layer.

Results: Finally, classification analysis was carried out on the combined PSI and

2D-CNN methods to recognize AD by using support vector machine (SVM) with

5-fold cross-validation strategy. It was found that the classification accuracy of

combined method achieved 98.869%.

Conclusion: These findings show that our framework can adaptively combine

the best brain network features to explore network synchronization, functional

connections, and characterize brain functional abnormalities, which could

e�ectively detect AD anomalies by the extracted features that may provide new

insights into exploring the underlying pathogenesis of AD.
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1. Introduction

Alzheimer’s disease (AD), the most common cause of dementia, is a progressive,

degenerative brain disease (Prince, 2018) which is the main cause of disability among older

adults, affecting around 50 million people worldwide (Prince et al., 2019). By 2050, it is

estimated that 1 in every 85 individuals will be affected by this condition, and the number

of affected individuals is projected to double within the next 20 years (Sarraf and Tofighi,

2016). Alzheimer’s disease (AD) has been associated with several common abnormalities in

the patient’s brain: (1) amyloid-related imaging abnormalities (ARIA) (Salloway et al., 2022);
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(2) damaged areas of nerve fibers and the occurrence of

neurofibrillary tangles (Moloney et al., 2021); (3) disconnection of

brain network connectivity compared to normal aging individuals

(Rosenberg et al., 2020). These pathological or physiological

heterogeneities directly or indirectly affect the diagnosis of AD.

To overcome these challenges, the diagnosis of Alzheimer’s

disease requires meticulous medical evaluation, patient history

records, mental state examinations (MMSE), as well as various

neurobiological and physical examinations (Duc et al., 2020).

Additionally, functional magnetic resonance imaging (fMRI) has

rapidly advanced due to its safety, non-invasiveness, and high

spatial resolution, making it the most commonly used method for

analyzing regular brain changes, different activities, and studying

functional connectivity and synchronization between brain regions

(Ibrahim et al., 2021). Currently, the identification of AD primarily

relies on resting-state functional magnetic resonance imaging

(rs-fMRI), which differs from task-based functional magnetic

resonance imaging (task-based fMRI). Resting-state fMRI does

not affect the individual’s ability to recognize and execute task

instructions, making it highly useful for studying the cognitive

decline caused by AD. During these tests, patients remain in a

resting state where they neither engage in any activities nor have

any specific thoughts, making the data acquisition task simple

and enabling the assessment of routine brain changes (Tong

et al., 2017). The rs-fMRI network has been demonstrated to be

highly sensitive to AD (Zhang et al., 2021). Magnetic resonance

imaging (MRI) and functional magnetic resonance imaging (fMRI)

techniques reveal lower MRI signal intensity, reduced brain tissue

and cortical volume, enlarged ventricles, affecting brain regions

and neural networks associated with cognition, memory, planning,

and decision-making (Janghel and Rathore, 2021), ultimately

leading to cognitive decline symptoms and decreased complexity

of brain networks in AD patients (Cai et al., 2018). Therefore,

distinguishing the visual differences between AD data and images

from elderly participants with traditional aging effects requires

in-depth information and knowledge, combined with additional

clinical clues for accurate data classification (e.g., MMSE) (Duc

et al., 2020). However, throughout the process, a tool or algorithm is

needed to classify imaging data based on rs-fMRI, such as analyzing

rs-fMRI data to establish brain network features for quantitative

analysis, and differentiate healthy individuals from AD patients for

appropriate treatment approaches.

Synchrony has been widely used on the brain network analysis,

including the correlation coefficient, Granger causality, phase

synchronization index (PSI), et al. (Dauwels et al., 2010b; Cai

et al., 2018). Particularly, PSI, as a nonlinear synchrony analysis,

can quantify the relationship between the instantaneous phases

of AD signals (Zheng and Zhang, 2013; Szymanski et al., 2017).

Cai et al. (2018) constructed PSI network by EEG signals, and

found that the brain network connectivity of AD patients was

abnormal and the small-world property was weakened. Nobukawa

et al. (2020) estimated the functional connectivity of AD brains by

building brain networks using the phase lag index through EEG

signals, and found that brain connectivity and complexity reduced

in AD patients. According to the previous synchrony analysis,

functional networks of multiple signals could be constructed

(Chen et al., 2019b) based on complex network and graph theory.

Functional connectivity can describe the relationship between

multiple channels in spatially remote brain regions, and quantify

their synchronous relationship in the complex brain system (Bi

et al., 2020; Sporns, 2022). Therefore, it has been widely applied to

fMRI to understand the brain network structure, development and

evolution of AD. Zhang et al. (2019) established brain network from

fMRI data by using Pearson correlation, and found the loss of small-

world properties and the destruction of whole brain tissue network

in AD brain. Si et al. (2019) proposed a mutual information brain

network model, and revealed that AD brain had characteristics

of a longer average time to process information transfer between

brain regions and a reduction in data processing capacity than

healthy control (HC). Note that functional networks can represent

information transmission between different brain regions.

As one of the mainstream deep learning algorithms,

convolutional neural networks (CNNs) have made tremendous

progress in various fields, such as image recognition and

clinical diagnosis (Chen et al., 2019a). CNNs can learn features

automatically from large-scale datasets, and then identify global

and local patterns (Samek et al., 2016; Mahmud et al., 2018). Li

et al. (2019) proposed a hybrid convolutional and recurrent neural

network for more detailed hippocampus analysis using structural

MRI to recognize AD brain and obtained a high accuracy rate.

Venugopalan et al. (2021) used stacked de-noising auto-encoders

to extract features from clinical and genetic data of AD, and used

CNN for imaging data, then found that hippocampus, amygdala

brain areas and the rey auditory verbal learning test (RAVLT)

were significant changes in AD brain. Despite variable structures

of CNNs, the deep features extracted from CNNs were used to

explain their strong recognition power (Bi et al., 2020; Gao et al.,

2022). One aim of this study was to find possible explanations of

the learned features based on the connectivity matrices derived

from PSI matrix of fMRI signals.

In this paper, a new framework, which combined the PSI, CNN

and support vector machine (SVM) measures, is proposed and

used for recognition and detection of AD from fMRI. Topological

and deep features are extracted to quantify the different local and

global patterns between AD and HC brain networks. The rest of

this paper are organized as follows: In Section 2, the ADNI dataset

and data preprocessing are described. In Section 3, the proposed

methods for AD classification are illustrated, including methods

for constructing brain networks using PSI, CNN structure, deep

features and topological feature extraction. Section 4 presents the

analytical results, which consists of deep and topological features

analysis, statistical analysis, classification analysis, followed by a

discussion in Section 5. The conclusions are drawn in Section 6.

2. Materials

2.1. Subjects

In this study, data used in the preparation of this article were

obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu/) (Jack Jr et al., 2008). The

primary objective of ADNI is to assess whether a combination of

sequential magnetic resonance imaging (MRI), positron emission

tomography (PET), other biomarkers, as well as clinical and

neuropsychological evaluations, can be used to measure the

progression of mild cognitive impairment (MCI) and early-stage

Alzheimer’s disease (AD). To date, over 1,000 scientific publications
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TABLE 1 Demographics and neuropsychologica.

Age
(mean
± SD)

Female/
male

MMSE
(mean
± SD)

CDR

AD (n = 118) 72.7±7.01 56/62 21.0±3.52 1

NC (n = 127) 74.6±7.44 63/64 29.0±1.15 0

have used ADNI data. A number of other initiatives related to

AD and other diseases have been designed and implemented

using ADNI as a model. Additionally, the fMRI data were

collected by a total 3T fMRI data of 118 patients with AD

and 127 healthy older adults (HC) were downloaded from the

Alzheimer Disease Neuroimaging Initiative (Jack Jr et al., 2008).

The main characteristics of the subjects are reported in Table 1,

which presents the baseline clinical and demographic variables

of both groups. Additionally, the fMRI data were collected by

3T Philips fMRI scanner, where the specific scanning parameters

are as follows: TR/TE is 3000ms/30ms, flip Angle is 80◦, imaging

matrix is 64×64, voxel size is 3.31mm × 3.31mm × 3.31mm,

48 slices.All original image files are available to the general

scientific community. In this table, AD represents Alzheimer’s

disease patients, NC represents normal controls, MMSE refers

to Mini-Mental State Examination, and CDR represents Clinical

Dementia Rating.

2.2. fMRI preprocessing

All preprocessing was performed using the Matlab toolbox

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and

CONN (https://www.nitrc.org/search/?type_of_search=group&q=

conn). (1) Data discard: The first 10 time points were discarded for

scanner calibration and for subjects to get used to the circumstance;

(2) Slice timing: The time offset between adjacent slices were

removed by the time slice correction image; (3) Realignment:

Motion artifacts generated on different images between individual

subjects were eliminated; (4) Normalization: The images after

realignment were spatial normalized to the standard EPI template

with 3×3×3 resolution; (5) Smoothing: The normalized images

were further spatially smoothed with a Gaussian kernel of 6mm

full width at half maximum (FWHM); (6) Filtering: The temporal

filtering (0.01Hz<f<0.08 Hz) was applied to the time series of

each voxel to reduce the effect of low-frequency drifts and high-

frequency noise such as respiratory and cardiac rhythms; (7) ROI

signal extraction: the original image was converted into ROI signals

using the AAL atlas based 116 Brain Regions (AAL-116) template.

Figure 1 shows the raw and pre-processed fMRI.

3. Methods

3.1. Functional brain networks construction

For the identification of functional and structural changes in

the brain of AD patients through constructing brain networks,

the brain network, as a graph, has two crucial components:

FIGURE 1

The (A) original and (B) pre-processed fMRI.

nodes and edges. Therefore, this study employs the phase

synchronization method to investigate the phase coupling of

signals within and between regions of interest (ROIs), which

are extracted using the AAL atlas, serving as the nodes. The

functional connectivity between two signals is calculated using the

phase synchronization index (PSI) and represents the edges for

constructing the brain functional network. Due to the sensitivity

of Phase Synchronization Index (PSI) to low-frequency signals,

which reflect the regulation and synchronization of neural activity,

utilizing phase synchronization analysis to process low-frequency

signals in fMRI aligns well with relevant concepts and mechanisms

in neurophysiology. Therefore, it is a commonly used metric for

measuring the strength of functional connectivity in networks.

PSI describes the instantaneous phase relationship between time

series. Through the Hilbert transformation of the signal sequence

(Thuraisingham et al., 2012), that is, the one-dimensional real

signal is transformed into a two-dimensional signal on the complex

plane. Hx(t) represents Hilbert transform from x(t), which can be

defined as follows (Yu et al., 2020):

Hx(t) =
1

π
pv

∫ ∞

−x

x(τ )

t − τ
dτ (1)

where pv is the Cauchy principal value. The instantaneous

amplitude A(t) and the instantaneous phase ϕ(t) can be

computed by:

A(t) =

√

[

x(t)
]2

+
[

Hx(t)
]2

(2)

ϕ(t) = arctan
Hx(t)

x(t)
(3)

The phase difference between two signals is defined as:

1ϕ(fm, fn, t) = mϕ(fm, t)− nϕ(fn,t) (4)

where fm and fn are the center frequencies of two signals. Besides,

m and n are integers that should satisfy the conditionm · fn = n · fm.

The phase difference is calculated by settingm = n = 1. Therefore,

the PSI can be defined as:

PSI(fm, fn) =
∣

∣

∣

〈

ej−(1ϕ(fm ,fn ,t))
〉
∣

∣

∣
(5)
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where 〈·〉 refers to the averaging across time. Obviously, PSI is a

symmetrical measure (i.e. PSIXY = PSIYX) and within the range

[0, 1]. According to graph theory, the PSI matrix in this study

can be transformed into an unweighted binary adjacency matrix

by applying a given threshold (= 0.3). In the representation of

the functional network graph, only connections with PSI values

greater than the threshold are realized, resulting in corresponding

entries of the matrix being 1, while others are 0. Therefore, the

functional connectivity network can be established by PSI, as

shown in Figure 2. The 116×116 connection matrix is displayed

through BrainNet Viewer toolbox (http://www.nitrc.org/projects/

bnv/) from full views, according to three brain regions of different

sizes of connectivity.

3.2. Convolutional neural network

Convolutional neural network (CNN) is a deep learning

network, which can maintain the original data hierarchical

structure and apply translation invariance to convert information

to feature information for classification (Azulay and Weiss, 2018).

It is designed to learn the latent and intrinsic features from

images in a supervised way. These features are appropriate

in categorizing the anatomical structures and diagnosing the

abnormal structures. CNN has a hierarchical structure, where each

layer learns feature representations at different levels of abstraction.

The lower-level convolutional layers primarily learn low-level

features such as edges and textures, while deeper convolutional

layers gradually learn higher-level features such as shapes and

structural components. This hierarchical feature learning ability

enables CNN to effectively capture semantic information in image

data. In this study, the convolutional operation in CNN is used

to generate extractable deep features, thereby analyzing the object

features and texture features of the input data from an image

perspective. It provides insights into the input data from both

global and local perspectivesIn the convolution layer of a CNN,

there are many neurons connected spatially and share the weight

and bias, and it uses a set of convolutional kernels to obtain

the feature mapping of the input image (Wang et al., 2021). In

the convolution layer, the input image is mapped with a set of

kernels to generate a new feature map Ck and this process is called

convolution. The feature value at location
(

x, y
)

in the kth feature

map of ith layer, wk is the weight of the kernel, bk is bias of the

kernel, Ci
k

[

x, y
]

is calculated:

Ci
k

[

x, y
]

= wi
kI

i
[

x, y
]

+ bik (6)

where Ii
[

x, y
]

is the value at location (x, y) of input image to the ith

layer.

Pooling layers are used to reduce the dimensionality

of computed feature maps Singh et al. (2020). In CNN

models, three commonly used pooling operations are max

pooling, min pooling, and average pooling (Satti et al., 2020;

Tasnim et al., 2021). After a series of convolutional and

pooling operations, the output of the final convolutional

layer is propagated to the classification layer. Let Rl

be the output of the last convolutional layer, and Rl

is computed as follows:

Rl = f
(

Il
)

= frelu

(

∑

k
wk ∗ f

(

Il−1
))

(7)

where k represents the number of kernels used in

the last convolutional layer, wk denotes the weights

of the kernels, f
(

Il−1
)

represents the activation

values of the (l − 1) convolutional layer, and frelu
represents the computation through the ReLU activation

function.

Finally, the classification layer uses the softmax activation

function to predict the class of an input image. The softmax

function calculates the class probability value (Wang et al., 2018):

fsoftmax(R
l) =

eR
l

∑

eR
l

(8)

Figure 3 shows the structures of proposed CNNs in this

paper, which has two convolutional (Conv) layers and two fully

connected (Fc) layers: (1) In the first Conv layer, there are 8 Conv

kernels/filters with a kernel size of 3 × 3, stride of 2, pad of 2, and

max pooling size of 2; (2) In Conv2, there are 16 Conv kernels/filters

with a kernel size 3 × 3, stride 1 and pad 1; (3) ReLU activation

functions are used for all Conv/Fc layers and sigmoid activation

functions for output layers, respectively.

3.3. Feature extraction

Deep features can extract both local and global feature

information from images, while brain network topological features

provide connectivity patterns and functional associations between

brain regions. Combining these two types of features can better

describe the functional and structural information in brain imaging

data, thereby enhancing the performance of disease classification.

Additionally, integrating deep features with brain network features

can provide a more comprehensive and intuitive visual analysis,

aiding researchers in understanding the intrinsic characteristics

and brain functionality of brain imaging data. This section

describes the eight topological features to be extracted: degree

(DG), node betweenness (NB), edge betweenness (EB), assortativity

(AS), clustering coefficient (CC), global efficiency (GE), local

efficiency (LE) and average characteristic path length (APL), see

details in Supplement file. In addition, eight deep features F1-F8

were automatically extracted from the last convolutional layer of

2D-CNN.

3.4. Statistical analysis

Single-factor analysis of variance (ANOVA) was used to assess

the statistical differences between the AD and HC groups. ANOVA

returns several statistical measures, including the sum of squares

(SS), degrees of freedom (df), mean squares (MS = SS/df), F-

value, and P-value. The F-value is the ratio of the between-group

mean squares (MSB) to the within-group mean squares (MSW),

indicating the extent of between-group differences (Wang et al.,

2015). The P-value is inversely related to the F-value and represents
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FIGURE 2

PSI matrix of regional brain network: FL: frontal lobe, LS: limbic system, OL: occipital lobe, PL: parietal lobe, BG: basal ganglia, TL: temporal lobe, C:

cerebellum, and CV: cerebellar vermis.

FIGURE 3

The 2D-CNN model proposed in this paper.

the probability of error when between-group differences are not

significant. In statistics, it is generally considered significant when

P<0.01. A larger F-value or a smaller P-value indicates more

significant between-group differences, and vice versa.

In addition, the receiver operating characteristic (ROC)

curve was used to visually evaluate the ability of these features

to distinguish AD patients from normal controls. Through

variance analysis, the between-group differences were found to be

significant. This statistical method summarizes the performance

of two classifiers over a range of possible thresholds from 0 to 1.

Sensitivity refers to the true positive rate, while specificity refers to

the true negative rate.

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

TN + FP
(10)

Among them, false negatives (FN) are the number of AD patients

misclassified as normal controls, and false positives (FP) are the

number of normal controls misclassified as patients. True positives

(TP) and true negatives (TN) are the counts of correctly identified

AD patients and normal controls, respectively. Accuracy quantifies

the total number of correctly classified subjects and is defined as

follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(11)

The area under the ROC curve (AUC) represents the performance

of the classification. For a perfect classifier, the AUC is 1, while an

AUC of 0.5 indicates a test with no value (Ferraris, 2019).
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FIGURE 4

The automatic detection process for AD.

3.5. Application

The application process for AD detection is as follows:

(1) Preprocessing of fMRI Images: Apply standard preprocessing

steps such as motion correction, slice-timing correction, and

spatial normalization to the fMRI images. These steps enhance

the data quality and provide the raw data for subsequent

analysis.

(2) Extraction of ROI Signals using AAL Atlas: Extract the average

time series signals from each region of interest (ROI) using

the Automated Anatomical Labeling (AAL) atlas. These signals

represent the brain activity in the corresponding regions.

(3) Calculation of PSI to Measure Functional Connectivity:

Calculate the PSI to quantify the functional connectivity

between brain regions. Construct a connectivity matrix based

on PSI values and extract 8 topological features (DG, NB,

EB, AS, CC, GE, LE, FL) from the network. These measures

represent the overall connectivity and information exchange

capabilities of the brain network.

(4) Analysis and Extraction of Deep Features using CNN: Train

a CNN model on the PSI dataset to learn discriminative

patterns in fMRI images. Extract 8 deep features from

the learned CNN model. These features provide intuitive

representations of object characteristics and texture features
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FIGURE 5

Comparison of whole-brain functional connectivity between the AD and HC group: (A) connectivity matrices of the two groups. (B) Connectivity full

views (frontal, profile, top) of the two groups.

FIGURE 6

Box plot of one-way ANOVA analysis of the eight topological features.

within the PSI network, offering new insights into the affected

regions in the brain associated with AD from a global and

local perspective.

(5) Feature Selection and Classification: Select relevant features

from the topological features derived from the PSI brain

network and the deep features extracted from the CNN model

for classification. Evaluate the impact of using the same

features or different feature combinations on the classification

accuracy. Employ a SVM classifier to classify AD and non-AD

samples. Apply 5-fold cross-validation to ensure the robustness

of the classification results. The training and test sets are split

with a ratio of 4:1. This process aids in model training and

evaluation while ensuring the reliability of the classification

results.
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The intelligent detection process is illustrated in Figure 4.

4. Results

4.1. Analysis of brain network

To study the cognitive impairment-related brain mechanisms

of AD, the PSI was used to construct the functional connectivity

after selecting the same threshold, so the adjacency matrix

was obtained (Figure 5A), and the brain network connection

TABLE 2 Results of ANOVA analysis of eight topological features.

Features F-
values

P-
values

AD(mean±
SD)

CN(mean±
SD)

DE 23.97 1.21e-06 0.29± 0.24 0.37± 0.28

NB 25.52 5.57e-07 0.70± 0.23 0.63± 0.28

EB 32.93 1.42e-08 0.45± 0.23 0.39± 0.26

AS 0.137 0.710 0.16± 0.05 0.16± 0.06

CC 19.31 1.28e-05 0.33± 0.23 0.40± 0.28

GE 22.42 2.64e-06 0.29± 0.24 0.37± 0.28

LE 20.58 6.72e-06 0.36± 0.22 0.43± 0.27

APL 24.90 7.62e-07 0.62± 0.25 0.55± 0.29

corresponding to the matrix was displayed through BrainNet

Viewer toolbox from full views (frontal, profile, top), as shown in

Figure 5B. Compared to the HC group, the brain networks of the

AD group were abnormal. To be specific, the values of PSI matrix

of AD group were ranged in [0, 0.4], which were much smaller

than that of the HC group ranged in [0.6, 1], reflected in the colder

color of the PSI matrix in AD group. Correspondingly, connections

between nodes in the AD group were sparser and weaker than that

in the HC group, which were shown by the thickness and density of

the connecting lines, especially in the frontal lobe (FL), parietal lobe

(PL) and basal ganglia (BG), marked by red and green color. That is,

the AD group had weaker ability of information transmission and

less activation in local brain regions. This partial loss of functional

connectivity across brain regions results from degenerative changes

in the AD brains.

In order to further study the difference between the AD and

HC group, eight topological features of brain network matrix: DG,

NB, EB, AS, CC, GE, LE, APL were extracted and performed one-

way ANOVA analysis, as shown in Figure 6, Table 2. In Figure 6,

box indicates the first and third quartiles, red line indicates the

median, whiskers mark the minimum and the maximum, notches

indicate the 95% confidence interval, and the red crosses indicate

outliers. Moreover, all the values of features in this figure were

normalized to the range of [0, 1]. All the topological features

except for the AS presented significant differences between AD

and HC groups, indicated by the P-values of the seven features

smaller than 0.01. The values of DE, CC, LE and GE of the AD

FIGURE 7

The feature maps of 2D-CNN for (A) AD group and (B) HC group. Panels on the left, middle and right represented the input layer, convolutional layer

1 and convolutional layer 2 of 2D-CNN model.
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FIGURE 8

Box plot of one-way ANOVA analysis of the eight deep features.

TABLE 3 Results of ANOVA analysis of eight deep features.

Features F-
values

P-
values

AD
(mean ±

SD)

CN
(mean ±

SD)

F1 714.40 4.23e-96 0.39± 0.11 0.66± 0.14

F2 1600.74 7.84e-153 0.69± 0.10 0.27± 0.11

F3 1305.12 3.35e-137 0.31± 0.11 0.71± 0.12

F4 1851.37 2.02e-164 0.27± 0.09 0.67± 0.11

F5 483.42 4.99e-74 0.66± 0.14 0.36± 0.15

F6 514.36 2.80e-77 0.41± 0.13 0.69± 0.13

F7 1872.49 2.43e-165 0.77± 0.11 0.32± 0.11

F8 130.11 9.47e-27 0.43± 0.14 0.59± 0.17

group are smaller than that of the HC group, suggesting that the

connectivity, aggregation and compensatory capacity of the AD

network was decreased, and thus the integration ability between

AD brain regions was poor; while the values of NB, EB and APL of

AD group increased, indicating the small-world property of brain

networks was weakened, the information transfer capacity and the

rate of information transmission between network nodes of AD

network were decreased.

4.2. Analysis of 2D-CNN

To illustrate the effectiveness of CNN on classifying the brain

connectivity of AD and HC, and determine the certain lesion

region in the AD brain image, the visualization feature maps of

convolutional layers by CNNwere plotted in Figure 7 to exhibit the

abnormality of functional connectivity of AD patients. Figures 7A,

B showed the feature maps of AD and HC PSI matrix, respectively.

Feature maps generated from convolutional layers 1 and 2 of the

CNN model were extracted to show how the convolutional layers

work. In each convolutional layer, there were multiple kernels,

for which a feature map could be generated by sliding the filters

over the PSI matrix (convolution). Therefore, the features map

dimension changes drastically from one convolutional layer to the

next according to the filters number. In Figure 7, the left, middle

and right panels represented the input layer, convolutional layer 1

and convolutional layer 2, respectively. After different convolution

operation in convolutional layers, the feature map changed, such

as the dimension of features maps of different layers. For example,

the input layer was 116 × 116, and convolutional layer 1 and

convolutional layer 2 were 58 × 58 and 29 × 29, respectively.

However, object features and texture features can preserve certain

key information of the original input data of the PSI matrix.

Compared to the HC group, the regions of FL, PL, and BG of

AD in convolutional layer 1 were much lighter in color, indicating

abnormalities in connectivity may be in these brain regions. The

same anomaly also occurred in convolutional layers 1 and 2,

marked by red and green colors. Thus, the comparison of the

feature maps of different layers of the CNN and the exploration of

the feature maps could reveal some interesting insights.

Eight deep features, which could be divided into two categories:

object features and texture features, extracted from the last

convolutional layer of the CNN: after normalization, F1-F8 were

further extracted and one-way ANOVA analysis was performed to

characterize the abnormality of AD brain, as shown in Figure 8,

Table 3. All the eight topological features, had obvious group

differences with P-values smaller than 0.01. Compared to the HC

group, F1, F3, F4, F6 and F8 of the AD group were decreased, while

F2, F5, F7 of were increased. Notably, the deep features in Table 3

could better display the local and global abnormal regions in AD

brain than topological features in Table 2 with larger F-values and

smaller P-values statistically.
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FIGURE 9

The Pearson correlation matrix of (A) AD and (B) HC group. Region 1 shows correlation between topological features; Region 2 shows correlation

between topological features and deep features; Region 3 shows correlation between deep features.

4.3. Correlation analysis of features

To gain more insight into the relationship between the different

measures, the correlations between those measures were calculated

using Pearson correlation. Figure 9 showed the correlation between

the deep features and the topological features in AD and HC,

where the colder the color, the weaker the correlation, and vice

versa. Seen from Figure 9, the correlation matrix could be divided

into four parts: top left, bottom right, and top right which was

symmetrical with the bottom left part, which represented the

correlation between any two topological features: DG, NB, EB, AS,

CC, GE, LE, APL, the correlation between any two deep features:

F1 F8 and the correlation between topological features and deep

features, respectively. For the part of one, it could find that there

was strong correlation among the topological features: (1) DE,

CC, GE and LE; (2) NB, EB and APL; For the part of three, the

correlation between deep features in the HC group was much

larger than in theAD group, especially for F2 with F5, F3 with

F4/F6/F8, and F5 with F7/ F8; for the part of two, the correlations

of deep features F2, F6, F8 with the topological features except

AS were relatively strong. Clearly, the reduced feature correlation

in AD patients compared to the HC group is due to the effect of

reduced inter-regional brain correlations. In addition, the relevance

of deep features and topological features can capture the changes

in the global pattern of AD from the structural and functional

brain network loss and convolutional kernels, and thus can more

effectively characterize AD than topological or deep features alone.

To further demonstrate the relevance between the deep and

topological features and investigate the effect on distinguishing AD

from HC, scatter plots are plotted to display the correlation results

between the deep and topological features in Figure 10, which was

composed of 64 subfigures, where each row represented the eight

deep features and each column represented the eight topological

features. After normalization, all eight deep features were correlated

with any of the eight topological measures, which indirectly verifies

the effect of deep features. In each subplot, the red and green points

represented the AD and HC group, respectively. In order to find

the difference between the two groups of data more intuitively,

the black line was fitted to show the discrimination of different

groups. When two features were combined, the normalized values

of the features were clustered in a distribution between the two

groups and can thus be easily discriminated. Interestingly, the

topological feature AS, which has no significant group differences

originally, could become effective attributing to depth features

(marked with blue rectangle), thereby suggesting that the CNN

model can learn some features that represent the global patterns of

the brain network that are not described by the topological features.

To further quantitatively investigate whether the correlation

between the deep and topological features could effectively

distinguish AD from HC, the classification accuracy is shown in

Tables 4, 5. The corresponding accuracy of each subplot could

distinguish between AD and HC, with higher accuracy for the

combined features formed by the deep features F1, F2, F3, F4 and F7

with topological features. In summary, when data passing through

successive CNN layers, the complexity of the data decreases as

the size of the output data decreases, but the correlation with the

topological features is preserved, indicating that the global and local

patterns on the brain network are preserved during CNN learning.

Therefore, it is feasible to improve the classification accuracy of AD

and HC by extracting the depth features of the last convolutional

layer.

4.4. Classification analysis

The results in the previous section show that there is a certain

correlation between TF and BF. Therefore, PSI can be combined
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FIGURE 10

The correlation results between the deep features and the topology features of brain connectivity, where the blue dashed box represents topology

feature AS with no significant di�erence (P-values> 0.05). The black line denoted the discrimination of di�erent groups.

with 2D-CNN for classification recognition. After 5-fold crossover,

eight topological features and eight depth features are combined

with these sixteen features to be fed into an SVM classifier for

classification. As shown in Figure 11, Table 6, the three methods of

topological features and deep features could distinguish between

AD and HC, but the classification by topological features is

generally effective. The combination of hybrid method had the best

ACC, AUC, SEN and SPE for classifying AD and HC. It indicated

that the accuracy of AD recognition can be greatly improved by

combining the brain structural features extracted by PSI brain

network and the whole brain global pattern features extracted by

2D-CNN. All of them could be used to explore the underlying

pathogenesis of AD, which may provide new insights for analysis.

5. Discussion

Alzheimer’s disease is a progressive and incurable

neurodegenerative disease, which leads to degradation of

cognitive (Chhatwal et al., 2018). Although the pathological

mechanisms underlying the neuropathological changes in AD

remain unclear, some neuropathological hallmarks have been

reported, such as neuritic extracellular amyloid plaques and

intracellular neurofibrillary tangles, which would lead to energy

slowing down, decrease of complexity and synchrony, and

disconnection of the connectivity (Dauwels et al., 2010a). By

complex networks theory and graph theory, recent research on

brain functional networks extracted from fMRI (Table 7) and the

structural networks extracted from MRI have shown that AD

patients have different degrees of local or even global topology

abnormalities and “disconnection” symptoms (Xu et al., 2008;

Sanz-Arigita et al., 2010; Córdova-Palomera et al., 2017; Khatri and

Kwon, 2022; Xing et al., 2022).

Additionally, some consistent conclusions of AD networks

were obtained that connectivity between brain regions decreased

(Si et al., 2019; Zhang et al., 2019) and small-world attribute

declined (Yu et al., 2018), specific brain hubs degenerated,

clustering coefficients reduced and path lengths closed to the values
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of random networks (Yu et al., 2018; Ferreira et al., 2019). The

connection and aggregation of the network was decreased, and

the compensatory ability of the network was reduced, which result

in blocking of information transmission. Besides, some specific

lesion areas in AD brain have been suggested by complex network

analysis, and the roles of frontal lobe (FL), parietal lobe (PL) and

basal ganglia (BG) in the development and progression of AD

have only recently begun to receive attention. (Ferreira et al., 2019)

found that the frontal cortex loss its modular connectivity with

the subcortical gray matter structures and nodal global efficiency

was decreased in the middle frontal cortex, which was associated

with decreased motor function and cognitive function in AD

patients. Srivishagan et al. (2020) applied the group measures to

TABLE 4 Results of topology features and the deep features.

Sensitivity Specificity AUC ACC

DE 85.45± 1.398 64.19± 1.398 72.68± 2.210 74.82± 2.321

NB 91.39± 2.235 75.75± 2.235 83.44± 2.137 83.57± 2.410

EB 95.69± 1.001 77.15± 1.001 80.48± 1.101 86.42± 1.012

AS 68.39± 0.136 76.23± 1.015 65.14± 2.014 72.31± 2.134

CC 84.89± 1.052 57.55± 1.052 64.11± 2.310 71.22± 1.353

GE 88.77± 3.020 74.07± 3.020 80.67± 1.012 81.42± 2.111

LE 83.87± 2.020 70.07± 2.020 65.03± 2.307 76.97± 2.221

APL 84.62± 3.368 86.80± 0.368 80.74± 3.112 85.71± 1.121

F1 97.45± 0.018 79.90± 1.117 91.10± 1.032 88.67± 1.109

F2 100.0± 0.000 93.83± 2.046 91.64± 2.125 97.02± 1.323

F3 96.52± 3.106 88.55± 3.607 96.25± 2.315 94.04± 2.032

F4 98.57± 1.095 94.46± 1.038 97.34± 2.023 97.01± 1.119

F5 97.56± 1.016 76.01± 2.027 87.64± 1.448 87.40± 1.018

F6 97.65± 2.154 72.45± 4.131 89.19± 2.018 85.47± 2.216

F7 99.63± 1.083 93.26± 1.274 96.74± 1.204 96.37± 1.112

F8 84.86± 2.718 54.58± 3.055 73.78± 1.566 70.50± 2.049

the structural connectomes of AD subjects based on the brain-

lobes and demonstrated that the strength of the parietal lobes has

been heavily affected in AD, and the impairment of the parietal

lobe was reflected in the reduced ability to integrate sensations.

Chen et al. (2022) found that AD patients predominantly decreased

connectivity in the basal ganglia, demonstrating that the motor

control and motor learning were declined.

Principally, CNN can identify and amplify these pathological

changes and lesions on the network, due to the number of involved

brain regions increases as the receptive field expands (Chen et al.,

2019a). For lower layers of the CNN, a smaller receptive field

may capture local patterns of the brain network, while a larger

receptive field for higher layers may reflect global patterns. In CNN

models, 2D-CNN and 3D-CNN are commonly used in the fMRI

image recognition, so the above two CNNS were also used and

compared in this paper, as shown in Figure 12, Table 8. Since 2D-

CNN has only two dimensions, the convolutional kernel can move

in both directions, which requires less convolutional computation

and is more efficient compared to 3D-CNN. 2D-CNN can be used

to amplify abnormalities in AD brain networks. In particular, the

CNN structure was applied to PSI matrix (2D data) and fMRI data

after pre-processing (3D data) for recognition, and the results of the

accuracy and loss rate were showed in Figure 12, Table 8. For both

types of CNNs, the test set shows the same trend as the training set

with less fluctuations and smoother curves, and training accuracy is

100% after 100 iterations, which validates the effectiveness for both

2D-CNN and 3D-CNN. For the training set (Figures 12A, C), the

2D-CNNmodel could achieve 95.833% of test accuracy, which was

higher than 3D-CNN; for the loss rate (Figures 12B, D), the loss

rate of 2D-CNN was 33.396%, greatly lower than that of 3D-CNN.

Clearly, 2D-CNN after constructing the brain network through PSI

may achieve better recognition efficiency than 3D-CNN directly

identifying pre-processed fMRI data.

The analysis of the features shows eight deep features extracted

from last convolutional layer in 2D-CNN had high correlations

(p < 0.01) with seven topological features except AS (shown in

Figure 12), thereby indicating that the global patterns described

by the eight deep features were of certain importance in the

AD identification problem and the CNN models excavated those

patterns. However, it is still impossible to understand CNN from

TABLE 5 The results of classification accuracy between the deep features and the topology features.

Topology
features

Deep features

F1 F2 F3 F4 F5 F6 F7 F8

DG 85.69± 0.038 94.02± 0.025 93.58± 0.33 9 4.88± 0.011 8 8.77± 0.057 79.80± 0.047 94.88± 0.026 68.16± 0.068

NB 87.18± 0.017 96.15± 0.028 95.08± 0.030 95.72± 0.013 86.84± 0.053 83.55± 0.038 96.16± 0.022 68.17± 0.063

EB 88.89± 0.030 97.22± 0.027 94.01± 0.031 97.01± 0.008 89.05± 0.038 84.83± 0.014 96.58± 0.017 70.52± 0.062

AS 89.32± 0.027 96.48± 0.014 94.44± 0.035 96.79± 0.015 87.54± 0.029 85.90± 0.015 96.37± 0.021 70.09± 0.047

CC 89.21± 0.028 97.43± 0.016 94.22± 0.039 97.02± 0.014 87.77± 0.028 86.12± 0.026 97.31± 0.037 69.99± 0.052

GE 87.11± 0.029 97.22± 0.014 93.42± 0.032 96.97± 0.015 88.80± 0.024 86.33± 0.024 96.57± 0.012 70.42± 0.049

LE 89.32± 0.071 96.57± 0.024 94.44± 0.035 95.73± 0.016 87.74± 0.033 86.47± 0.028 98.27± 0.022 69.88± 0.053

APL 88.35± 0.062 97.53± 0.017 94.26± 0.014 97.12± 0.014 89.68± 0.027 85.90± 0.021 97.42± 0.031 69.88± 0.046
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FIGURE 11

The ROC curve of PSI brain network features, 2D-CNN deep features and PSI and 2D-CNN combination features. TPR is true positive rate. FPR is

false positive rate.

TABLE 6 ACC and AUC classified by SVM after using 8 features for 2D-CNNmodels and PSI brain network.

Method SEN (%) SEP (%) AUC (%) ACC (%)

2D-CNN 96.942± 0.132 94.724± 0.324 88.859± 0.006 95.833± 0.340

PSI 71.224± 0.023 72.660± 0.313 63.965± 0.018 71.942± 0.100

PSI+2D-CNN 99.124± 0.054 98.614± 0.335 99.899± 0.061 98.869± 0.107

TABLE 7 Methods for establishing brain networks using fMRI data and conclusions obtained.

Khatri and Kwon

(2022)

fMRI

SMRI

ADNI Pearson

correlation

analysis

90*90 The most affected brain region in AD for all patient classification analysis

was mainly located on the middletemporal gyrus, the hippocampus, and the

amygdala area followed by other brain regions.

Xu et al. (2008) fMRI Medical College of

Wisconsin

Phase shift

index

Not

mention

The AD group existed asynchrony indicated the more asynchrony exists

between spontaneous low frequency components.

Córdova-

Palomera et al.

(2017)

fMRI NorCog Instantaneous

phase

synchronization

26*26 In the AD group, both static (putamen, dorsal and default-mode)and

dynamic (temporal, frontal-superior and default-mode), along with

decreased global metastability.

Xing et al. (2022)

fMRI ADNI Persistent

homology

90*90 The AD group showed a high residence time and a higher window ratio in a

weak connection state, which may be because patients with AD have not

established a firm connection.

Sanz-Arigita et al.

(2010)

fMRI Alzheimer Center

of the VU

University Medical

Center

Synchronization

likelihood

116*116 The regional synchronization reveals increased AD synchronization

involving the frontal cortices and generalized decreases located at the

parietal and occipital regions.

features alone, and the CNN model remains a black box. The

underlying pathological relationship between these deep features

and AD is still uncertain. As a result, further targeted clinical

therapies cannot be pursued based on these findings. In contrast,

with a precise methodological definition, topological features can

reveal which lesions are present in the brain network of AD and

can be helpful in assisting clinical diagnosis.

However, there were some limitations in this study. (1) The

depth of the CNNmodel proposed in this paper and the parameters

between the layers have optimization possibilities. (2) The courses

of AD patients (LMCI, EMCI, et al.) was not taken into account, all

classification results presented in this paper were two classifications

for AD and HC. In the following studies, we will conduct

more comprehensive analyses and use multivariate classification
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FIGURE 12

The accuracy and loss rates for training and testing convergence of 2D-CNN, and 3D-CNN, where blue curves represent the test set, and orange

curves represent the training set.

TABLE 8 The recognition accuracy (ACC) and loss rate (LOSS) of 2D-CNN

and 3D-CNN.

2D-CNN 3D-CNN

Train Test Train Test

ACC(%) 100±0.00 95.83±2.34 100±0.00 82.11±1.90

LOSS(%) 33.17±3.36 33.39±2.50 31.60±3.36 43.21±2.34

methods involving different AD processes. (3) It is important to

acknowledge that overfitting was not extensively addressed in this

study, which may limit the applicability of the proposed methods

described in the paper.

In future work, we can enhance our research through various

means, such as employing intelligent algorithms for parameter

optimization of CNN, incorporating LSTM modules to optimize

the structure of CNN, using Softmax activation function or

multiple output nodes to perform multi-classification of different

stages of Alzheimer’s disease (AD) patients. At last, it would be

valuable to explore additional strategies to combat overfitting,

such as data augmentation techniques, dropout regularization, or

ensemble methods. Considering the potential impact of overfitting

on the reliability and generalizability of the results, it is important

for future studies to prioritize addressing this issue and conducting

thorough validation on independent datasets. By doing so, the

validity and applicability of the proposed approach can be further

substantiated.

6. Conclusion

In this paper, a new framework using PSI and 2D-CNN was

applied on fMRI data in order to investigate the abnormalities

of AD brain. Firstly, after pre-processing, the PSI analysis

was applied to ROI signals for synchronization analysis thus

mapped into a PSI network, and eight topological features

were extracted. Compared with HC group, the brain network

connectivity of AD group was sparser, connection strength was

weaker, and the small-world property of the network was reduced.

Specifically, the information transmission capacity and the rate of

information transmission between network nodes of AD network

was decreased. Secondly, the 2D-CNN was further applied to

the PSI matrix to explore the local and global patterns of the

brain network by extracting eight deep features from the 2D-CNN

convolutional layers, which shows significant group differences

by ANOVA analysis. Besides, the focus area could be exhibited

from the feature map of 2D-CNN, such as frontal lobe (FL),

parietal lobe (PL) and basal ganglia (BG). Then correlation analysis

was implemented by Pearson analysis. As a result, topological

features and deep features were correlated, verifying the possibility

and effectiveness of the combination of the PSI and 2D-CNN

methods. Finally, SVM was applied to classify AD fMRI by

combing the PSI and 2D-CNN measures, which has the best

performance (accuracy: 98.869%) compared to only using PSI or

2D-CNN.

The result reveals that the 2D-CNN model found some

deep features that showed global patterns and texture patterns
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representing the abnormal connectivity in the brain network of

AD patients and other patterns that could not described by the

topological features. This paper demonstrates that 2D-CNN has the

amazing learning ability and could identify potential biases in AD

patients by extracting deep features of convolutional layers. Those

features may provide new insights into the underlying pathogenesis

of AD.
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