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Introduction: Patients with MS are MRI scanned continuously throughout their
disease course resulting in a large manual workload for radiologists which
includes lesion detection and size estimation. Though many models for automatic
lesion segmentation have been published, few are used broadly in clinic today, as
there is a lack of testing on clinical datasets. By collecting a large, heterogeneous
training dataset directly from our MS clinic we aim to present a model which
is robust to different scanner protocols and artefacts and which only uses MRI
modalities present in routine clinical examinations.

Methods: We retrospectively included 746 patients from routine examinations at
our MS clinic. The inclusion criteria included acquisition at one of seven different
scanners and an MRI protocol including 2D or 3D T2-w FLAIR, T2-w and T1-w
images. Reference lesion masks on the training (n = 571) and validation (n = 70)
datasets were generated using a preliminary segmentation model and subsequent
manual correction. The test dataset (n = 100) was manually delineated. Our
segmentation model https://github.com/CAAI/AIMS/ was based on the popular
nnU-Net, which has won several biomedical segmentation challenges. We tested
our model against the published segmentation models HD-MS-Lesions, which
is also based on nnU-Net, trained with a more homogenous patient cohort.
We furthermore tested model robustness to data from unseen scanners by
performing a leave-one-scanner-out experiment.

Results: We found that our model was able to segment MS white matter lesions
with a performance comparable to literature: DSC = 0.68, precision = 0.90,
recall = 0.70, f1 = 0.78. Furthermore, the model outperformed HD-MS-Lesions
in all metrics except precision = 0.96. In the leave-one-scanner-out experiment
there was no significant change in performance (p < 0.05) between any
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of the models which were only trained on part of the dataset and the full

segmentation model.

Conclusion: In conclusion we have seen, that by including a large, heterogeneous
dataset emulating clinical reality, we have trained a segmentation model which
maintains a high segmentation performance while being robust to data from
unseen scanners. This broadens the applicability of the model in clinic and paves
the way for clinical implementation.

multiple sclerosis, white matter lesions (WML), automatic segmentation algorithm,
clinical applicability, clinical dataset, heterogeneous dataset, multi-scanner

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of
the central nervous system (CNS), which is the most common
cause of long-term non-traumatic disability in young adults (Reich
et al., 2018). The disease is characterized by inflammatory axonal
demyelination and loss which manifests as focal lesions in the
grey- and white matter of the CNS (Reich et al., 2018). Lesion
activity is a primary biomarker for disease diagnosis, disease
activity and treatment response (Smith et al., 2017; Thompson
et al., 2018; Klistorner et al., 2021; Oship et al., 2022), and is
monitored throughout the patients disease course by acquiring
magnetic resonance images (MRI) of the brain and spinal
cord (Sastre-Garriga et al., 2020). Manual assessment of MRI
and registration of newly appearing or enlarging white matter
lesions is a difficult and time-consuming task, which is routinely
performed in the evaluation of the MR images. Despite volumetric
lesion quantification being an established biomarker for disease
progression, manual lesion segmentation is not carried out in
clinical routine practice as it is an even more time-consuming
task, prone to inter- and intra-rater variability (Altay et al., 2013).
Recently, MS lesion segmentation has been of increasing interest
in new research related to prediction of the clinical disease course
(Zhao et al., 2017; Pruenza et al., 2019; Tousignant et al., 2019; Yoo
etal., 2019; Pinto et al., 2020), risk of long-term disability (Popescu
et al,, 2013), treatment response (Wattjes et al., 2015), as well as
establishing the MS diagnosis (Shoeibi et al., 2021).

Automatic MS lesion segmentation using artificial intelligence
(AI) has been heavily researched in the last decade, and
while segmentation performance has long been trailing manual
segmentation (Commowick et al., 2018), recent models have met,
and in few cases exceeded, the performance of clinical experts under
controlled evaluation conditions (Carass et al., 2017a). This is in
large part due to recent enhancements in both computer software
and hardware, which has made it possible to train and apply deep
learning models for biomedical segmentation tasks, with especially
convolutional neural network (CNN) methods dominating the field
of MS lesion segmentation (Garcia-Lorenzo et al., 2009; Danelakis
et al., 2018; Kaur et al., 2020; Zeng et al., 2020; Shoeibi et al., 2021;
Zhang and Oguz, 2021). A popular CNN architecture is the U-net,
originally presented for general biomedical image segmentation
(Ronneberger et al.,, 2015), which is the architecture behind many
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leading models in international MS lesion segmentation challenges
such as the MSSEG2016 Challenge and the ISBI2015 Longitudinal
MS Lesion segmentation Challenge (Commowick et al., 20165
Carass et al., 2017a). Several promising DL models are published
each year, obtaining incremental gains compared to the classical
U-net. The main difference between the latest proposed methods
is their focus on either quantifying both lesions and other brain
structures in the same model (Cerri et al., 2021; McKinley et al.,
2021; Weiss et al., 2021) or on enhancing performance on localized
lesions, e.g., infratentorial and cortical, which often appear small
and less hyperintense than other lesions. Regarding the latter
La Rosa et al. (2020) proposed a U-net model for MS lesion
segmentation, in which they had special focus on cortical lesions,
assigning them with a separate label, while Rakiz et al. (2021)
has proposed a novel combination of a clinically implemented
machine-learning model for brain structure measurement, with an
attention-gated U-net to target cortical and infratentorial lesions.
By fusing the outputs of the two networks, they found that they
could improve segmentation of infratentorial and juxtacortical
lesions by 14 and 31%, respectively.

A newly emerging branch of neural networks is transformer-
based models, which has shown promising results in both
language processing (Li G. Y. et al., 2023) and biomedical image
segmentation (Hatamizadeh et al., 2022), and has quickly become
state-of-the-art in some segmentation tasks such as head-and-
neck cancer (Li G. Y. et al,, 2023). So far, no implementations
of transformer-based networks are readily available for MS
lesion segmentation, and no large-scale clinical studies have been
published. The nnU-Net is one of few ready-to-use segmentation
frameworks available online. The model is distinguished by
being a robust end-to-end framework, which includes pre-
processing, post-processing and hyper-parameter optimisation and
have obtained a high ranking in several biomedical segmentation
challenges (Isensee et al., 2018).

Despite extensive research in automatic MS lesion
segmentation, no model is broadly applied in clinical practice
today, which is largely due to a lack of clinical testing and
inadequate performance of the applied model. Model performance
on clinical data is a challenge due to data heterogeneity compared
to controlled and curated datasets, which is often used to develop
and train AI-models. Clinical MRI often embrace a large variation
of scanners, field strengths, image resolutions, protocols and
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intensity distributions, as well as patients with multiple stages and
variations of the disease (Hindsholm et al., 2021). Furthermore,
the performance of CNN models are generally challenged when
applied to external datasets, and in many cases require re-training
on a subset of local data (Valverde et al., 2019; Kamraoui et al.,
2022). This is unsustainable in a clinical setting, as there is not
necessarily capacity and knowledge, or high-quality delineated
data, to train new models each time a new scanner is introduced.
Studies show, however, that large and heterogeneous training
datasets can increase model robustness when applied to external
datasets (Martensson et al., 2020).

The aim of this study was to train and test a state-of-the-art MS
lesion segmentation model on a large-scale heterogeneous dataset
from clinical practice and evaluate segmentation performance in
relation to clinical implementation. The latter will be achieved by
testing model robustness to new scanners as well as an ablation
study examining the number of necessary input modalities.

2. Materials and methods

2.1. Dataset

2.1.1. Patients

We retrospectively included 2,817 consecutive patients (10,747
examinations) who had been referred for a routine MS-MRI
examination from Copenhagen University Hospital-Rigshospitalet
from January 2015 to October 2020. Patients were identified by
linking The Danish Multiple Sclerosis Registry (Magyari et al.,
2021) to their available clinical MRIs. All patients were adults
(> 18 years) and diagnosed with relapsing remitting MS following
the time respective McDonald criteria (Thompson et al., 2018).
From this dataset we selected a total of 746 examinations of 746
unique patients, using the following exclusion criteria: (1) the
patients had to be scanned at one of the seven most prevalent
scanner types in the dataset, (2) patient examinations were
required to include a T2-weighted (T2-w) FLAIR sequence, a T2-
w sequence, and a T1-w sequence without contrast, (3) protocols
should be standardised within each scanner cohort, but not across
cohorts, (4) only one examination per patient was included in the
study chosen randomly from among the available time points. By
selecting seven different scanner types, data acquired at both 1.5T
and 3T scanners as well as 2D and 3D FLAIR images from a total
of three different vendors were included. Additional protocol- and
scanner specifications can be found in Table 1.

The dataset was divided into three subsets each with an even
proportion of patients from each of the seven scanners: training-
dataset (n = 571 patients), validation-dataset (n = 70) and hold-out
test-dataset (n = 100).

2.1.2. Manual lesion masks

White matter lesion (WML) delineation of the training- and
validation datasets was conducted by two of the authors (AH,
UL) under supervision of two trained specialists with a total of
>44 years of experience in delineating MS lesions (HJS, SPC) in
a semi-automated, iterative process: A preliminary segmentation
model provided segmentations which were corrected by AH and
UL. As masks were corrected, the preliminary model was retrained
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to increase performance and decrease the need for correction.
After this initial delineation, all masks were approved or corrected
by two trained specialists (HJS, SPC). Lesion delineation was
conducted slice-by-slice in original FLAIR image resolution using
FSLeyes version 6.0.2 (McCarthy, 2023) and ITK-snap version
3.2 (Yushkevich et al., 2006) depending on the preference of the
delineator.

Lesion delineation of the hold-out test-dataset was conducted
manually in FSLeyes by contouring each lesion slice-by-slice in
original FLAIR image resolution. Delineation was performed by
a trained specialist (HJS), followed by a consensus-reading in
ITK-snap by an experienced neuroradiologist with 20 years of
experience (AL). Lesions in all three datasets were delineated on
FLAIR-images while consulting T2-w images when needed.

2.1.3. Ethics declaration

All patient-specific data was handled in compliance with
the Danish data protection agency act no. 502. Collection
of the retrospective dataset was approved by the National
Committee on Health Research Ethics (protocol number 2117506).
All patient-specific data were pseudo-anonymised and the
GDPR (the European General Data Protection Regulation) was
thereby fulfilled.

2.1.4. Data pre-processing

The MR images were pre-processed in three steps inspired
by Brugnara et al. (2020): (1) All inputs were reoriented to
standard orientation [fslreorient2std, FSL (Jenkinson and Smith,
2001; Jenkinson et al., 2002)], (2) Brain-extraction was performed
on all MRI-sequences [HD-BET (Isensee et al., 2019)], (3) T1-w and
T2-w images were linearly (affine transformation with 12 degrees of
freedom) registered to FLAIR-space using FSL FLIRT version 5.0
(Jenkinson and Smith, 2001; Jenkinson et al., 2002).

2.2. Segmentation network

We used the nnU-Net framework for lesion segmentation,
which is an open-source toolkit comprised of pre-processing,
training, inference, and post-processing (Isensee et al., 2018). The
pre-processing steps included image normalisation according to the
nnU-Net standard and resampling of all input-images to a common
voxel-spacing. Network training was performed with T1-w, T2-w
and FLAIR as input using 5-fold cross validation in the 3D full-
resolution configuration of nnU-Net (for further description of
network hyperparameters see Appendix Al) (Isensee et al., 2018).
The final network was evaluated using the hold-out validation- (see
below) and test-datasets. The model is available at https://github.
com/CAAI/AIMS/.

2.3. Evaluation

2.3.1. Comparison to state-of-the-art model
state-of-the-art,
segmentation models, we evaluated HD-MS-Lesions and the
widely used LST-LGA.

For comparison to publicly available
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TABLE 1 Data acquisition parameters.

Field
strength

Manufacturer [Scanner No. of patients
(Train/Validation/

Test)

10.3389/fnins.2023.1177540

Sequences

Siemens Avanto 15T 115 (90/10/15) X X X
Siemens Verio 3T 115 (90/10/15) X X X
Siemens Prisma fit 3T 115 (90/10/15) X X X
Siemens Trio 3T 109 (86/10/15) X X X
GE medical systems |Optima MR450 15T 113 (88/10/15) X X X

GE medical systems |Signa HDxt 15T 56 (31/10/15) x* x* X X

Philips medical Achieva dStream 3T 115 (90/10/15) X X X

systems

*29% of the GE Signa HDxt patients were acquired with 2D FLAIR and 71% with 3D FLAIR.

HD-MS-Lesions is, similarly to our model, based on nnU-Net
(Brugnara et al., 2020). HD-MS-Lesions deviates from the standard
3D nnU-Net in only two ways: Brugnara et al. (2020) utilise a soft
dice loss as loss function and large patches of 128 x 128 x 128
voxels. The model was trained on a dataset of 334 patients with a
standardised protocol from 3 scanners. Model input was 2D FLAIR,
T1-w and T2-w images. 3D FLAIR images were not included in the
HD-MS-Lesions training dataset.

The LST-lga is a lesion-growth algorithm which is part of the
LST toolbox for SPM (we used version 3.0.0)* (Schmidt et al., 2012).
The algorithm first segments the T1 images into the three main
tissue classes (CSF, grey matter and white matter). This information
is then combined with the coregistered FLAIR intensities in order
to calculate lesion belief maps. These maps are thresholded with
a pre-chosen initial threshold (k) into an initial binary lesion map
which is subsequently grown along voxels that appear hyperintense
in the FLAIR image. k was set to its reccommended default value of
0.3, as seen in previous studies (Cerri et al., 2021).

2.3.2. Performance metrics

Lesion segmentation accuracy was assessed using the dice
similarity coefficient (DSC) calculated at voxel-level. Lesion
detection was assessed using the positive predictive value, also
called Precision, the true positive rate called Recall and the
lesion detection accuracy or Fl-score calculated at lesion-level
(Commowick et al., 2016). Further descriptions of all performance
metrics can be found in Appendix A2.

To evaluate segmentation performance in relation to clinical
implementation, the following two steps were carried out; testing
of model robustness to new data as well as an ablation study
examining model dependency on Tl-w MRI and the effect
of large datasets.

2.3.3. Model robustness

Model robustness toward data from an unseen scanner was
assessed by a leave-one-scanner-out (LOSO) cross-validation,
where we trained seven models in total, each blinded to training

1  www.statisticalmodelling.de/Ist.ntml
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data from one of the seven scanners in turn. The performance
was compared to the main model on the test-dataset where we in
each LOSO iteration only predicted the masks from the held-out
scanner. We compared the difference to the main model using a
t-test for each scanner individually.

2.3.4. Ablation studies

The importance of including T1-w images in the model was
evaluated by training a model with only FLAIR and T2-w MRI as
input and comparing model performance to the main model on
the validation dataset. This test was done, as T1-w images are not
always part of the clinical protocol.

We then tested the importance of dataset size by training
our model on different subsets of the total training-dataset and
testing on the complete test-dataset. We created five data subsets
by randomly sampling 10, 20, 40, 60, and 80% from the main
dataset, while keeping the scanner distributions. Each subset was
sampled five individual times to eliminate data-dependency. We
furthermore sampled 10% of the main dataset from a single
scanner, Achieva dStream, to investigate the effect of scanner
heterogeneity in the training dataset.

To compare model performance of our model trained on our
clinical dataset, with smaller, publicly available training datasets,
we trained a model on two publicly available datasets and tested
its performance on our test-dataset. The two datasets were from
the ISBI2015 Longitudinal Multiple Sclerosis Lesion Segmentation
Challenge (n = 5 patients with 4-5 examinations each) (Carass et al.,
2017b) and the MSSEG MICCAI 2016 Challenge Dataset (n = 15
patients) (Commowick et al., 2018), respectively.

2.4. Implementation in clinical practice

The segmentation model has been implemented into a fully
automatic pipeline ready for clinical application. Automatic lesion
segmentation is carried out when requested after MR image
acquisition and clinically relevant parameters from the lesion
mask are extracted. If the MRI is a follow-up examination, the
previous MRIs which have been processed by the model are
collected and used for longitudinal analysis. The model output
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TABLE 2 Patient demographics.

Gender (f/m) 71%/29%

Mean age (median) (IQR) 46 years (45) (38-54)
MS phenotype RRMS
Mean EDSS score (median) (IQR) 2.0 (1.5-3.5)
Mean disease duration from onset (range) 10.9 years (0-57.4)
Mean lesion volume (range) 15.6 mL (0.002-288.9)
Mean lesion count (range) 49 (2-323)

The EDSS score is the estimated score at time of MRI acquisition. Disease duration is
measured from first diagnosis. EDSS, expanded disability status scale; MS, multiple sclerosis;
RRMS, recurrent remitting MS.

TABLE 3 Number of lesions per patient as percentage of the total cohort.

Number of Training Validation Test
lesions
1 (0) ) )

0.0% 0.0% (0 0.0% (0
2 0.2% (1) 0.0% (0) 1.0% (1)
3 0.9% (5) 1.4% (1) 0.0% (0)
4 0.5% (3) 1.4% (1) 2.0% (2)
5-10 0.0% (0) 0.0% (0) 0.0% (0)
11-20 15.4% (88) 14.5% (10) 22.0% (22)

>20 83.0% (474) 82.6% (57) 75.0% (75)

Exact number of patients in parenthesis.

is then delivered back to the clinical imaging platform of choice.
The model output is comprised of the binary lesion mask, the
mask superimposed on a FLAIR image in a PACS preview as well
as a PDF-report of summary results including total lesion load,
lesion location, delineation examples and longitudinal changes
from last examination (lesion appearance, disappearance and
30% enlargement).

3. Results

Patient demographics are displayed in Table 2. The training
dataset had a total lesion count of 27,815 (mean = 48.7
lesions/patient, median = 37), and the test dataset of 4,978
(mean = 49.8 lesions/patient, median = 31). When examining lesion
count per patient, 83% of the patients had more than 20 lesions
(Table 3) in all three data subsets. Generally, all three subsets had
the same distributions of lesion-load.

We tested our segmentation model on the validation dataset
(n = 70) and hold-out test dataset (n = 100) which were evenly
distributed among the 7 scanner types. A visual illustration of a
representative delineation result from each scanner is shown in
Figure 1. Table 4 shows the average performance of our model
and of the state-of-the-art model HD-MS-Lesions. The DSC and
Recall scores were higher on the validation dataset than on the
test dataset for both models. Our model outperformed HD-MS-
Lesions in three out of four metrics on both the validation and
test dataset with lower standard deviations. On the test dataset our
model localised 70% of all lesions in the reference (recall), whereas
HD-MS-Lesions localised 40%.
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Figure 2 displays the difference in estimated lesion volume per
patient for the reference delineations and our model. We see a
small tendency to underestimate lesion volume compared to the
reference delineations, with an increasing discrepancy with total
lesion load.

3.1. Scanner robustness

The average metrics per patient in the test dataset, grouped
according to scanner, are displayed next to the results of the LOSO
cross-validation experiment (striped) in Figure 3. Some variation is
observed between the scanners, especially regarding the F1 scores
in which the Optima, Prisma and Signa scanners obtain a slightly
lower performance than the remaining cohorts. The results of the
LOSO-experiment follow the performance of the full segmentation
model with no significant differences (P-values > 0.05) for any of
the scanners, indicating a high robustness to data from an unseen
scanner. The corresponding results regarding Precision and Recall
scores can be found in Appendix A4.

3.2. Ablation studies

Omitting the T1-w images in the model input resulted in
nearly identical segmentation performance on the validation-
dataset (DSC = 0.82, FI = 0.85) compared to the three-channel
input. All segmentation results can be found in Appendix A3.

The results of the dataset size ablation study can be found
in Figure 4. A substantial difference in performance is observed
between training on 10% or 20% and more of the main training
dataset. From 20% (n = 115) and above, the segmentation
performance is only incrementally improved. Training on 10%
from a single scanner is seen to slightly outperform training on
10% from 7 different scanners. When training on the two combined
public datasets (n = 36), both lesion segmentation performance
(DSC) and lesion detection performance (F1) is lower than any
fraction of our main dataset.

4. Discussion

In this study we collected a large MS MRI dataset reflecting the
clinical reality from our Radiological Department with regards to
scanner and protocol heterogeneity and used it to train and validate
a state-of-the-art MS lesion segmentation model. We found that
our model was able to find and segment MS lesions in the test
dataset with a performance comparable to the literature (Aslani
et al.,, 2019; La Rosa et al., 2020; McKinley et al., 2021), despite
being a highly heterogeneous dataset including seven different
scanners and protocols. The recorded agreement between our
model-generated segmentation and the reference was furthermore
comparable to many published accounts of inter-rater agreement,
such as Cerri et al. (DSC = 0.59-0.69, 7 raters), Egger et al.
(DSC = 0.66, 3 raters) and the 2015 ISBI segmentation challenge
(DSC = 0.63, 2 raters) (Carass et al., 2017a; Egger et al., 2017; Cerri
et al., 2021).
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Verio

Optima

Reference FLAIR

Our model

FIGURE 1

Prisma

10.3389/fnins.2023.1177540

Avanto

Slices from seven patients, one from each scanner, in the test dataset with delineations generated by our segmentation model (blue) and the

reference delineation (pink).

TABLE 4 Average metrics on the validation- and test dataset of 105
patients of our model and HD-MS-lesions as well as LST-LGA.

DSC
Validation dataset

Our model 0.82 (0.09) 0.89 (0.08) 0.83 (0.12) 0.86 (0.08)
HD-MS- 0.62 (0.20) 0.93 (0.17) 0.42 (0.21) 0.55 (0.21)
lesions

Test dataset

Ourmodel | 0.68 (0.11) 0.90 (0.11) 0.70 (0.15) 0.78 (0.11)
HD-MS- 0.57 (0.19) 0.96 (0.13) 0.40 (0.20) 0.54 (0.19)
lesions

LST-LGA 0.39 (0.21) 0.64 (0.25) 0.28 (0.17) 0.35 (0.18)

Each cell displays the mean (standard deviation) for each metric across all patients. DSC, dice
similarity coefficient. Bold values mean the best performance.

Many published datasets used for benchmarking are limited in
size and protocol diversity, such as the MICCAI 2008 challenge
dataset (n = 20/24 train/test) or the ISBI 2015 challenge dataset
(n = 5/14 train/test) (van Ginneken et al.,, 2008; Carass et al,,
2017a). Though the public datasets provide a great platform for
model comparison, it does not emulate a models’ ability to segment
MS lesions in a clinical setting, as it lacks both scanner, protocol
and sequence heterogeneity. This point is underlined by training
our model performance on just 10% of our dataset, and when
training on two public datasets, where in both cases we saw a
significant decrease in both DSC and F1-score. There was a large
performance increase when training on 20% or more of our dataset,
while keeping the scanner heterogeneity. Since performance did not
increase significantly above 20%, this would indicate that a dataset
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of approximately # = 115 from heterogeneous scanners is sufficient
for training a robust segmentation model.

As the goal of the present study was to evaluate segmentation
performance in relation to clinical implementation, we chose to
include both 2D and 3D FLAIR images acquired at both 1.5T and
3T MRI scanners, as used in our Radiological Department, and to
not exclude images of low quality, unless our clinicians deemed
the images unsuitable for an MS-assessment. Our dataset therefore
includes motion artefacts and low signal intensities to mirror the
clinical reality, which further complicates the segmentation task.

As a promising indication of the model performance in relation
to clinical implementation, the model was robust to data from an
unseen scanner in the LOSO-experiment. This is an important
result, as MS clinics often include several different MRI scanners
and patients are scanned at several clinics during their disease
course. Gabr et al. (2020) performed a similar leave-one-centre-
out experiment, in which they divided their 68 datasets into 17
partitions and also saw a low difference in DSC between centres.
However, even though 68 centres participated in the study, they all
used the same MRI protocol.

HD-MS-Lesions was trained on a relatively large dataset
(n = 334) and reported very high segmentation metrics on their
local test dataset (DSC = 0.88). However, their dataset was limited
in data heterogeneity with a standardised protocol not including 3D
FLAIR and T2-weighted images. We saw that the model generalised
poorly to our test dataset, both the entire dataset (DSC = 0.57,
FI = 0.53) and if tested only on the 2D FLAIR subset (DSC = 0.57,
precision = 0.96, recall = 0.42, F1 = 0.57). This underlines the need
for heterogeneous training data if the model is to be applied to
unseen data in clinic.

The fact that we achieve similar high performance metrics
compared to previous studies, in spite of the inclusion of
highly heterogeneous datasets, from 7 different scanner brands,
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FIGURE 2
Comparison of lesion load estimation per patient between our model and the reference segmentation. Both plots show a slight tendency from our
model to under-estimate total lesion volume. Generally, the discrepancy is smaller in subjects with a smaller lesion load.
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including both 2D and 3D FLAIR sequences, and allowing for
motion and other image artefacts, highlights the methodological
improvements made toward clinical implementation of AT WML
delineation in MS, and contests to a broader validity and
applicability of our method.

4.1. Limitations

We experienced a difference in segmentation performance
from our validation dataset to the test dataset, despite the two
subsets being drawn from the same dataset. We attribute some of
this variation to the difference in delineation practice between the
train/validation dataset and the test dataset. We chose to decrease
the extensive task of manual delineation by utilising a semi-
automatic delineation approach on the train/validation dataset as
seen in several publications (Le et al., 2019; Brugnara et al., 2020;
Kriiger et al., 2020). However, to avoid data spilling from the semi-
automatic process, the test dataset was manually delineated by one
rater and subsequently approved by another. We observed that the
two approaches led to two different segmentation styles, similar
to an inter-rater variability, as both approaches introduce a bias
toward accepting the preliminary delineations during correction.
Ideally, there should have been several manual delineations on the
test dataset to account for the inter-rater variability, as ignoring it
can result in a misleading impression of model performance. The
segmentation model should therefore be validated clinically, which
is our next step.

To optimise our model for clinical usability, we only included
the most frequently used MRI sequences for MS examinations,
with T1-w images without contrast being the only sequence which
is not always included during examinations. However, as we saw
a robustness to omitting T1-w images from the model input
(DSC = 0.82 both with and without T1-w), a 2-channel version of
the model could be used in these instances.

The patients in our dataset generally have a high lesion load
(>20), which complicates the segmentation process. It would be
relevant to investigate model performance on patients with a low
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lesion load, for use in cases of disease-onset. For subjects with a
low total lesion volume, we saw that our model generally had a
higher agreement with the reference models. One of the advantages
of automatic lesion segmentation, besides enhanced segmentation
speed, is that it is consistent and reproducible. This is especially
important regarding longitudinal follow-up examinations, as it
eliminates inter-rater bias between appointments.

Our dataset was limited in MS-subtype diversity, as all included
patients had RRMS. In total, 85-90% of patients present with
an RRMS phenotype from onset and regular MRI is part of the
routine monitoring of disease modifying therapies, which guided
the inclusion criteria.

4.2. Perspectives for future studies

The results of this study show, that when trained on a large,
heterogeneous dataset, our AI-model can segment MS lesions from
a clinical dataset, from a range of different scanners and protocols,
with a performance comparable to more homogeneous models
from literature. We furthermore show, that the model can maintain
that high performance when applied to data from previously
unseen scanners. This is promising for the implementation of the
model in clinical practice, where the use of automatic segmentation
could potentially reduce assessment time for the radiologist and
eliminate some of the inter-rater variation which dominates MS-
lesion segmentation. Before implementation, the model should be
validated in clinical practice to ensure that delineation standards
are satisfactory and that the output is a useful decision support for
the radiologist.

5. Conclusion

In conclusion, we have demonstrated that an Al-model
trained on a large heterogeneous clinical cohort can segment MS
lesions with high performance results. Unlike previous studies,
we included highly heterogeneous datasets which gives a more
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realistic portrayal of a real life clinical setting, broadening the
general applicability of our method and paving the way toward a
clinical implementation. We found that the lesion segmentation
performance (DSC) and lesion detection performance (F1) was
robust to data from unseen scanners, which is promising for clinical
implementation. Future work will aim at determining the clinical
value of the model in a clinical validation study.
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