
TYPE Original Research

PUBLISHED 18 July 2023

DOI 10.3389/fnins.2023.1177592

OPEN ACCESS

EDITED BY

Joon Young Kwak,

Korea Institute of Science and Technology,

Republic of Korea

REVIEWED BY

Bill Zivasatienraj,

Georgia Institute of Technology, United States

Ashish Gautam,

The University of Tokyo, Japan

*CORRESPONDENCE

Anuar Dorzhigulov

adorzh@udel.edu

RECEIVED 01 March 2023

ACCEPTED 26 June 2023

PUBLISHED 18 July 2023

CITATION

Dorzhigulov A and Saxena V (2023) Spiking

CMOS-NVM mixed-signal neuromorphic

ConvNet with circuit- and training-optimized

temporal subsampling.

Front. Neurosci. 17:1177592.

doi: 10.3389/fnins.2023.1177592

COPYRIGHT

© 2023 Dorzhigulov and Saxena. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Spiking CMOS-NVM mixed-signal
neuromorphic ConvNet with
circuit- and training-optimized
temporal subsampling

Anuar Dorzhigulov* and Vishal Saxena

AMPIC Lab, Department of Electrical and Electronic Engineering, University of Delaware, Newark, DE,

United States

We increasingly rely on deep learning algorithms to process colossal amount

of unstructured visual data. Commonly, these deep learning algorithms are

deployed as software models on digital hardware, predominantly in data centers.

Intrinsic high energy consumption of Cloud-based deployment of deep neural

networks (DNNs) inspired researchers to look for alternatives, resulting in a

high interest in Spiking Neural Networks (SNNs) and dedicated mixed-signal

neuromorphic hardware. As a result, there is an emerging challenge to transfer

DNN architecture functionality to energy-e�cient spiking non-volatile memory

(NVM)-based hardwarewithminimal loss in the accuracy of visual data processing.

Convolutional Neural Network (CNN) is the staple choice of DNN for visual

data processing. However, the lack of analog-friendly spiking implementations

and alternatives for some core CNN functions, such as MaxPool, hinders the

conversion of CNNs into the spike domain, thus hampering neuromorphic

hardware development. To address this gap, in this work, we propose MaxPool

with temporal multiplexing for Spiking CNNs (SCNNs), which is amenable for

implementation in mixed-signal circuits. In this work, we leverage the temporal

dynamics of internal membrane potential of Integrate & Fire neurons to enable

MaxPool decision-making in the spiking domain. The proposed MaxPool models

are implemented and testedwithin the SCNNarchitecture using amodified version

of the aihwkit framework, a PyTorch-based toolkit for modeling and simulating

hardware-based neural networks. The proposed spiking MaxPool scheme can

decide even before the complete spatiotemporal input is applied, thus selectively

trading o� latency with accuracy. It is observed that by allocating just 10% of

the spatiotemporal input window for a pooling decision, the proposed spiking

MaxPool achieves up to 61.74% accuracy with a 2-bit weight resolution in the

CIFAR10 dataset classification task after training with back propagation, with

only about 1% performance drop compared to 62.78% accuracy of the 100%

spatiotemporal window case with the 2-bit weight resolution to reflect foundry-

integrated ReRAM limitations. In addition, we propose the realization of one

of the proposed spiking MaxPool techniques in an NVM crossbar array along

with periphery circuits designed in a 130nm CMOS technology. The energy-

e�ciency estimation results show competitive performance compared to recent

neuromorphic chip designs.

KEYWORDS

spiking neural networks, convolutional neural networks,MaxPool, neuromorphic circuits,

mixed-signal circuits

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1177592
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1177592&domain=pdf&date_stamp=2023-07-18
mailto:adorzh@udel.edu
https://doi.org/10.3389/fnins.2023.1177592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1177592/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

1. Introduction

Our contemporary society generates an enormous amount

of sensor data, often unstructured, with the pervasive use of

smartphones, tablets, cameras, and emerging smart vehicles. As a

result, this vast amount of digital data requires transfer, storage, and

processing to make sense of it. Deep Neural Networks (DNNs) have

found unprecedented success in inferences based on unstructured

data. Consequently, Convolutional Neural Networks (CNNs) have

become the staple architecture for visual data processing tasks, such

as object detection and image classification. DNNs, such as CNNs,

are commonly implemented in software and deployed on graphic

processing units (GPUs) or neural network accelerator application-

specific integrated circuits (ASICs). However, these approaches,

although powerful, run into memory access bottlenecks, where

the energy required to access and transfer NN data is several

magnitudes higher than the energy needed for actual computing.

The operation of Vector-Matrix Multiplication (VMM) is essential

for DNNs. However, in a commonly utilized von Neumann

architecture, VMM could consume up to ×200 more energy to

move data between the memory and processing units compared to

the energy required for the data processing itself (Sze, 2020).

Merging memory and compute units is a potential solution

to mitigate this energy bottleneck of von Neumann architectures.

Such an architectural design approach is called In-Memory

Computing or Compute-in-Memory (CiM) (Ielmini and Wong,

2018; Verma et al., 2019; Sebastian et al., 2020). The emergence of

non-volatile memory (NVM) devices and their foundry integration

has allowed circuit designers to consider implementating coreDNN

functions as energy-optimized CiM circuits. While in-memory

computing prototypes utilize volatile DRAM and SRAMmemories

(Su et al., 2021; Xie et al., 2021), realizing it in NVM arrays

is desirable to implement persistent weights and higher weight

density. Emerging NVM devices promise low switching energy,

higher density, and endurance compared to traditional devices,

such as FLASH. Resistive RAM (ReRAM) or memristors, phase

change RAM (PCRAM), and ferroelectric FET (FeFET) are the

most notorious examples of emerging NVM devices, recently

getting traction in the CiM research community.

In such mixed-signal architectures, NVM cells are arranged

into crossbar or cross-point arrays. The conductance of the NVM

cell serves as the analog weight, and applying a voltage across

the NVM cell results in output currents, which, if summed,

act as the VMM result in the analog domain (Saxena, 2021a).

These NVM devices are preferred in a crossbar array with a

select transistor, i.e., using the 1T1R or 2T2R cells. In fact, select

transistors are essential for sneak-path current mitigation during

electroforming and program/erase operations by limiting current

in the memory device (Li T. et al., 2017). Consequently, the current

vs. voltage (I–V) characteristics of the entire memory cell depend

on the transistor’s I–V curves. The resulting compound 1T1R cell

exhibits nonlinear I-V characteristics, as discussed later in Section

2.1. Furthermore, this nonlinearity depends on process, voltage,

and temperature (PVT). The weighting operation is essentially

an analog multiplication, and the PVT-variable nonlinearity

produces an imprecise multiplication, which eventually degrades

the classification accuracy of the hardware DNN (Guo et al., 2017).

Alternatively, encoding the analog input as a bi-level sequence of

pulses or spikes alleviates the effect of such nonlinearity. As a result,

spike-based or Spiking Neural Networks (SNNs) are attractive

for realizing neuromorphic computing hardware architectures

which leverage mixed-signal in-memory computing. As elucidated

later, SNNs allow precise neural network computations with low-

precision weights or synapses, in addition to low-power event-

driven circuit realization (Saxena, 2021a). These advantages of

SNNs over other mixed-signal neuromorphic architectures merit

investigating into the spike-based realization of traditional deep

architectures, such as CNN, in NVM crossbar arrays.

CNN models comprise three primary mathematical/logical

operations: convolution, nonlinear activation (such as rectified

linear unit or ReLU), and maximum pooling (MaxPool or MP),

as illustrated in Figure 1. A direct translation of CNN to in-

memory computing arrays is not straightforward. Significant

challenges arise from the observations: (i) using a K2 × 1 array

to implement the K × K kernel under-utilizes the crossbar

array, (ii) the translating window of the convolutional kernel

is neither biologically inspired nor amenable for in-memory

computing, and (iii) the CNN has to process the spike-coded

inputs which are in fact spatiotemporal signals (i.e., have an

additional temporal, or time, dimension). The last point makes

realizing the MaxPool operation especially challenging with

mixed-signal SNN hardware. Previous work experimented with

alternative subsampling techniques, such as AveragePool (Lin et al.,

2014; Iandola et al., 2016) and Non-overlapping Convolutional

Kernel Windows (Springenberg et al., 2015), but MaxPool tends

to show superior accuracy (Gopalakrishnan et al., 2020). The

fundamental contribution of this work includes investigating spike-

based CNN (SCNN) architecture suitable for analog mixed-signal

implementation. This entails developing spike-based MaxPool

operation compatible with crossbar ReRAM arrays and analog

CMOS peripheral circuits. In this work, we propose and compare

novel membrane potential-based pooling techniques that exploit

temporal multiplexing for a significant reduction in hardware.

Moreover, the proposed scheme supports native autograd based

backpropagation training of SCNNs in PyTorch without any

spike-specific methods such as surrogate gradients. The rest of

this article is arranged as follows: Section 2 provides a brief

introduction to CNNs using ReRAM arrays; Section 3 covers

an overview of spiking neural networks and spike encoding

and why they are relevant for NVM-based CNNs; Section 4

reviews prior used subsampling techniques and proposes spike-

based MaxPooling algorithms for SCNNs. Section 5 presents a

software pipeline to evaluate the proposed MaxPool algorithms

by training the SCNN using a PyTorch-based device- and circuit-

aware framework. Section 6 demonstrates a CMOS transistor-level

circuit implementation of the integrate and fire (I&F) neuron

with the proposed MaxPool algorithm, temporal multiplexing and

circuit reuse in the NVM array. Finally, Section 7 presents a

summary discussion.

2. Convolutional neural networks
using ReRAM array

LeCun pioneered the now well-established sequential

arrangement of Convolution, Nonlinear Activation Function,

Pooling, Fully-connected (or dense) layers for digits recognition

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 1

A two-dimensional (2D) convolutional layer comprised of Conv2D, ReLU, and MaxPool operations. The Conv2d and ReLU layers process an input

tensor of size Nx ×Ny × C using a K × K kernel and produce an output tensor of size Mx ×My × F, where the C and F are numbers of input channels

and output features, respectively. Also, here Mx/y = Nx/y − K + 1 for a stride of one and no zero padding. The Maxpool operation spatially subsamples

the output tensor by a s× s.

(LeCun et al., 1989). The superiority of CNN architectures was

solidified by AlexNet winning the ImageNet 2012 challenge for

large-scale visual recognition challenge (Krizhevsky et al., 2012).

CNNs are excellent function approximators due to their superior

image feature extraction capability. They thus have become

architectures of choice for a wide range of applications, such

as image recognition, video analysis, facial recognition, medical

analytics, and object detection for autonomous driving (Bhatt et al.,

2021).

Compared to the fully connected layers, where each neuronal

connection is treated individually, CNN layers maintain spatial

dependency between inputs (or pixels) by processing them as

a group of neighboring spatial inputs. Each input image group

(or an image patch) is processed using the same filters (or

kernels) and reusing weights and biases. This spatial filtering-

based approach significantly reduces the number of training

parameters compared to traditional DNNs. In addition, Pooling

layers (MaxPool, AveragePool) reduce the data dimensions as

it flows through a CNN. As a result, the same computational

resources could be used to train larger CNNs, compared to fully-

connected DNNs (Wu and Gu, 2015).

Figure 2 illustrates the baseline CNN architecture used in this

work, where hidden layers are convolutional, and the CNN’s last

layer(s) is fully connected (or dense). In the final output layer,

each dense neuron provides confidence in its output, typically

corresponding to a label in the training data. For example, in

the case of MNIST (handwritten digits image classification), the

output neuron corresponding to the output “7” should have the

highest activation if the input stimuli is an image of the digit

“7,” as shown in Figure 2. Essentially a deep CNN architecture

comprises two primary sections, as depicted in Figure 1: the

feature extraction section using an arrangement of convolutional

stacks and the classification, or the inference, section using dense

layers. Additional layers are frequently used to assist with DNN

training, such as specialized initialization, batch normalization,

drop-out, regularizers, and gradient boosting (Goodfellow et al.,

2016; Nielsen, 2017). However, they were not considered for

SCNNs in this work.

2.1. Mixed-signal VMM using ReRAM
crossbars

Vector-Matrix Multiplications (VMMs) computations are

fundamental to neural network architectures, whether fully-

connected or convolutional NNs. The VMM computation is ideally

expressed as

yj =
∑

i

wi,jxi (1)

where xi and yj are analog (or real-valued) inputs and outputs,

respectively, and wi,j are the neural network weights. Emerging

non-volatile resistive memory arrays, such as ReRAMs, are

attractive to implement VMM in the analog domain. The

analog mixed-signal realization eliminates digital multipliers and

adders. It promises low-power neuromorphic or Edge-AI hardware

by leveraging the low program/erase energy and higher write

endurance (>108 cycles) of emerging NVMs. In a ReRAM crossbar

array, an op-amp provides a virtual ground at the array output,

so currents flowing through each branch, Ij, follow Kirchoff’s

current law (KCL), as in Equation (2), resulting in a current

sum at the output. Comparing Equations (1) and (2), voltage,

ReRAM conductance, and current correspond to the input, weight,

and weighted sum, respectively. The currents, Ij, can be further

converted to analog voltages or spikes. Moreover, weights realized

using ReRAM conductance, Gi,j, can be initialized and/or updated

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 2

Deep CNN architecture for handwritten digit recognition from the MNIST dataset: 28 × 28 × 1-32c3-2s-48c3-2s-64c3-2s-10o. This architecture

was used as a baseline for all training cases described in this manuscript. For MNIST and FashionMNIST datasets, the input size is 28 × 28 × 1 and 32

× 32 × 3 for CIFAR10.

based on the learning algorithm employed (Wu et al., 2015b;

Saxena, 2021b).

Ij =
∑

i

Gi,jVi (2)

Ideally, it is expected for ReRAM devices to exhibit stable

multilevel cell (MLC) retention. However, practical devices exhibit

limitations such as variability, low on-state resistance (high energy

consumption), and state drift, detailed in Esmanhotto et al. (2020)

and Saxena (2021b). Figure 3 shows canonical weight, or synapse,

cell configurations. The 1T1R cell (T, select transistor; R, ReRAM

device) mitigates some non-idealities and has become the preferred

configuration despite its lower array density (Danial et al., 2019).

Here, device isolation using the select transistor prevents sneak

path currents during a read operation or inference and stabilizes the

forming and the program/erase processes by limiting the current

through the device.

In Figure 3B, each 1T1R cell has three terminals: BitLine

(BL), shown in red, is connected to the top electrode of the cell

and supplies input voltage. WordLine (WL), shown in green, is

connected to the select transistor gate, enabling the required NVM

cell. Source or Sense Line (SL), shown in blue, is connected to

the bottom electrode and is used to read out the output current

(through a virtual ground).

While a 1T1R cell realizes analog weight, a 2T2R or a similar

cell is used for signed weights, as shown in Figure 3 (Liu et al.,

2020). The resistance of the 1T1R cell is Rcell = Rsw + RM , where

Rsw and RM are the transistor switch and ReRAM resistances,

respectively. Here, Rsw depends upon the input voltage on a BL,

Vi, and the ReRAM state leading to nonlinear I-V characteristics.

Consequently, the conductance and current in the 1T1R cell can be

expressed as

Gcell = Gsw(Vi,GM) ‖ GM (3)

Icell = Gsw(Vi,GM) ‖ GM · Vi (4)

Here, Gsw = R−1sw is the switch conductance, and GM = R−1M

is the ReRAM conductance which can take binary or multilevel

state values. Since the 1T1R (or 2T2R) cell realizes the analog

multiplication, wi,j · xi ≡ Gcell,ij · Vi, the large-signal nonlinearity

makes the weight input signal dependent. While this nonlinearity

could be learned during the neural network training, the PVT-

dependent variations make this untenable.

3. Spike encoding and spiking neural
networks

Translating DNNs into a neuromorphic architecture entails

mapping each neural network layer to one or more crossbar arrays.

In a typical CiM VMM array (Figure 3D), the inputs to each

array are applied using a WL (i.e., row) driven by a digital-to-

analog converter (DAC) with a given bit resolution (e.g., eight

bits). The summed analog outputs on BLs are digitized using

column analog-to-digital converters (ADCs). As discussed earlier,

the 1T1R (or 2T2R) cell exhibits PVT-dependent nonlinearity,

which has rendered accurate mixed-signal VMMs challenging to

design. Moreover, DACs and ADCs limit the energy and area

efficiency of these VMMs.

Spike-based computation derives inspiration from biological

brains to solve imprecise weights and energy consumption

challenges. In a biological brain, inputs and activation intensities

(Vi) are mapped to temporal characteristics of individual spikes or

a spike train, such as spike firing time or a spike firing rate. Spikes

form a bilevel sequence that encodes the analog input, Vi, as si(t):

si(t) =
∑

n

g(t − ti,n) = g(t)⊗
∑

n

δ(t − ti,n) (5)

where, g(t) is the spike pulse shape and ti,n are the spike firing times

for n = 0, · · · ,N − 1.

In a spiking neuromorphic architecture, the weights multiply

by zero or one (two possible spike amplitude levels). Thus, the cell

current from Equation (4) takes two possible values

Icell =

{

0, spike = 0

Gsw(Vp,GM) ‖ GM , spike = 1
(6)

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 3

Crossbar array cell configurations: (A) 1R, (B) 1T1R, and (C) 2T2R. WL, SL, and BL are the WordLine, BitLine, and SelectLine, respectively. (D) A

non-spiking VMM realized using a 1T1R crossbar array with row DACs, column transimpedance amplifiers (TIA) and ADCs. The 2T2R array for

realizing signed weights will be similar but will use two BLs instead of one, one for each 1T1R cell.

resulting in linear weight multiplication, even with PVT variations.

This alleviates the imprecision of analog multiplication of the

input activation with weights. Furthermore, the input DAC and

output ADC are now transformed into pre-synaptic and post-

synaptic integrate-and-fire neurons, which can be realized with

mixed-signal circuits for reduced power consumption (Saxena,

2021a).

3.1. Latency encoding

In spike latency encoding of inputs, the timing or latency of

a spike corresponds to a mapped intensity (Figure 4B). Measured

latency could be between two spike events (e.g., the time difference

between the input and output spikes of a neuron) or at what time

the spike was fired between arbitrary time-frames (e.g., sample

time-frame) if fired at all. The main drawback of this encoding is

the reliance on temporal information encoded in a single spike. In

a hardware realization, single spike timing could be distorted by

deterministic and stochastic delays or lost entirely, deteriorating

data integrity (Guo et al., 2021).

3.2. Rate encoding

The spike firing rate represents the mapped intensity in a spike

rate encoding (Figure 4C). Encoding a real-valued input as a train

of spikes is a more robust scheme. Here, any instantaneous errors

introduced by the hardware could be mitigated over a sufficiently

long spike train due to the reliance on an average spike rate

(Javanshir et al., 2022).

3.3. Integrate and Fire encoding

In the Integrate and Fire (I&F) encoding scheme, the input data

intensity does not depend on deterministic temporal values, such as

latency and rate. Instead, it is represented by the local average over

a time window (Figure 4D). This local average can be obtained by

integrating either the inputs over time, where the integrated value

is equivalent to an I&F neuron’s membrane potential (VM):

VM,j(t) =

∫ t

0

∑N

i=1
wijsi(t)dt =

∑N

i=1
wij

∫ t

0
si(t)dt (7)

Once VM crosses a predetermined threshold (Vthr) at time tf ,

the neuron fires, i.e., generates an output spike and resets VM to an

initial resting potential (Vrst) (Burkitt, 2006):

at t = t
f
j V l

M,j(t) ≥ V l
thr,j

:

{

V l
M,j(t)← Vrst

sj(t)← g(t − t
f
j )

(8)

For I&F encoding, we can think of Vi being encoded as the

average of the spike train si(t) with an encoding error ǫ:

Vi ≈
1

T

∫ T

0
si(t)dt + ǫ (9)

One common variation of the I&F neuron is a Leaky Integrate

and Fire (LIF) neuron (Delorme et al., 1999). In a LIF neuron,

VM leaks over time, slowly pulling VM to the Vrst level. Leakiness

endows the ability to filter out low-intensity inputs and activations

temporally. In addition, I&F neurons typically have a refractory

period, a short time window following neuron firing reset, where

VM stays at Vrst by ignoring any input spikes. Another optional

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 4

Input intensity encoding schemes: (A) Amplitude, (B) Spike latency, (C) Firing rate, and (D) Integrate and fire.

feature of the I&F neuron is lateral inhibition, which can inhibit

neighboring neurons’ firing if it fires itself first (Thiele et al.,

2018). This lateral inhibition forms winner-take-all (WTA) neural

networks commonly used for unsupervised learning (Wu et al.,

2015a). This work uses the basic configuration of I&F neurons

without any leakiness, refractory period, or lateral inhibition.

4. Sub-sampling by pooling operation

4.1. MaxPooling in CNNs

Pooling is a standard operation in CNNs that reduces the spatial

dimensionality of data as it flows through a neural network. It is

achieved by propagating a limited number of neuronal activations

after a layer. Typical dimensionality reduction operations are

briefly described as follows.

4.1.1. MaxPooling
MaxPooling operation propagates only the strongest neuronal

response to the input stimulus. In real-valued CNN architectures,

where continuous or floating values represent inputs and

activations, the highest amplitude of neuronal activations in a

subsampling window is propagated through the MaxPool layer.

Direct hardware realization of this scheme results in costly chip area

and design overhead (Gopalakrishnan et al., 2020).

4.1.2. Average pooling
Since mixed-signal circuit implementation of MaxPooling has

significant overheads, neuromorphic circuit designers experiment

with averaging or mean pooling instead. The AveragePool layer

propagates forward the averaged value of all neuronal activations

within a spatial pooling window (Boureau et al., 2010).

4.1.3. Strided convolutional kernels
CNNs typically use unitary strides when performing

convolutions. Spatial sub-sampling can be achieved using

convolutional kernels with strides greater than one, which could

result in non-overlapping kernels.

4.2. Spatial MaxPooling in SNNs

Pooling layers are indispensable for CNNs. Thus it is

desirable to translate this function to the spike domain. However,

MaxPooling from multiple spike trains is more complex than

pooling from an array of continuous neuronal activations. As a

result, some of the recent SCNN implementations favor more

straightforward Pooling options. AveragePool (Wu et al., 2018;

Sengupta et al., 2019; Garg et al., 2021; Yan et al., 2021) and Strided

Convolutional layers (Esser et al., 2016; Patel et al., 2021) are

some of the straightforward alternatives to the spikingMaxPooling.

However, even in the spike domain, the MaxPooling tends to

produce higher classification accuracy (Rueckauer et al., 2017) than

the aforementioned alternatives. When implementing the spiking

MaxPooling, researchers are drawn to several popular approaches:

rate-based spike accumulation (Hu and Pfeiffer, 2016; Chen et al.,

2018; Kim et al., 2020), time-to-first-spike (Masquelier and Thorpe,

2007; Zhao et al., 2014; Li J. et al., 2017; Mozafari et al., 2019), and

lateral inhibition or temporal winner-take-all (Orchard et al., 2015;

Lin et al., 2017).

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

TABLE 1 Comparison of pooling schemes in SNNs.

References Pooling type Accuracy degradation Comments

ANN converted to SNN

Rueckauer et al. (2017) MaxPool with a gating function CIFAR10: 0.04% MaxPool relies on firing rate estimators

Gaurav et al. (2022) MaxPool based on input currents and

MaxPool based on neuron model

properties

CIFAR10: 2.5% Based on NengoDL (Rasmussen, 2019)

and dependent on Loihi hardware.

Nguyen et al. (2020) MaxPool based on VM potential and

firing threshold Vthr

CIFAR10: 5.9% with the spiking

VGG-16

Digital hardware to implement the

MaxPool operation by propagating fired

output spikes and not selected neurons,

thus making the dynamic VM potential

comparison unnecessary.

Guo et al. (2020) MaxPool based on I&F neuron model CIFAR10: 2.2% with the spiking

VGG-16

Used an additional spiking neuron as a

pooling controller to propagate any

output spikes fired from a pooling

group.

Li et al. (2022) MaxPool based on Lateral-Inhibition

pooling

CIFAR100: 0.01% with the spiking

VGG-16

Used a spike calibration scheme with

lateral-inhibition pooling.

Datta and Beerel (2022) Unspecified MaxPool for SNNs CIFAR10: 3.01%, CIFAR100: 4.59% with

spiking ResNet-20

Surrogate gradient-based fine training

(Rathi and Roy, 2020).

Direct SNN training

Zhang J. et al. (2022) MaxPool and AveragePool based on the

spike count

MNIST: 95.4% accuracy with three

Conv layers and temporal coding.

FPGA based implementation

Zhang C. et al. (2022) MaxPool based on the temporal WTA

scheme

CWRU ball bearing dataset (CWRU,

2023): 99.6% accuracy with the spiking

LeNet-5 model.

SCNN trained with surrogate gradients

(Neftci et al., 2019)

This work Membrane potential (VM) based

MaxPool techniques

CIFAR10: 2.55% for SCNN with three

conv layers

Max VM pooling yields the most

accurate SCNN after backprop training

with native autograd

Table 1 compares the SNN pooling techniques from prior

literature. Some key observations are: (i) The membrane potential,

VM , based MaxPooling is rarely investigated or fully utilized;

(ii) The most straightforward approach is to train an ANN and

then convert it into its SNN equivalent (Saxena, 2021b); (iii)

Directly training an SNN with the Backprop algorithm requires

additional assistance in the form of surrogate gradients (Neftci et

al., 2019); (iv) MaxPooling is dynamic in the temporal domain,

in other words, the winning neuron is not locked for the entire

input time-frame. Since we are considering mixed-signal circuits to

implement SCNNs, where we can access the integrating capacitor

(Saxena, 2020) and keep the spike buffering overhead minimal

(or ideally non-existent) without any additional circuit elements,

such as dedicated MaxPool Neuron (Guo et al., 2020), we propose

using the VM potential as the MaxPooling criteria. We introduce

and compare three methodologies for the spiking MaxPool.We

also consider using a native PyTorch training workflow with

backpropagation and autograd to train SCNNs with the proposed

MaxPooling schemes directly. To assist with Backprop training, we

are locking the MaxPool winning neuron till the end of a time-

frame. In other words, the MaxPooled neuron stays the same until

the input image changes. As highlighted in the Table 1, we obtained

competitive results with respect to the Converted SNNs. Section 5

further elaborates on SCNN training details and results.

In this work, we investigated schemes for pooling in SCNNs,

which are amenable to mixed-signal circuit implementation. The

specific challenge with pooling in SNNs is the latency in deciding

the MaxPooled or winner neuron, i.e., the time needed to select the

neuron in the spatial group whose activation will be propagated.

All the neuron spikes must be buffered during the decision-making

time interval to propagate the winning neuron’s output spikes

right after the pooling decision. Otherwise, the initial spikes of the

propagated neuron are lost. On the other hand, we can access the

continuous value of the membrane potential, VM , inside the I&F

neuron to make the pooling decisions instead of using spikes. We

propose and consider the following three MaxPooling schemes and

present a temporal scheme to implement them in mixed-signal

neuromorphic hardware efficiently.

4.2.1. Maximum membrane potential
In this approach, the neuron with the highest accumulated

membrane potential within a specific time range or Pooling time

window is pooled (Figure 5A). The downside of such an approach

is a requirement for additional clocking elements controlling the

time period for MaxPool decisions. In addition, such a MaxPool

approach will introduce a time delay for the algorithm to decide the

maximum potential. The scheme can be improved if the MaxPool

decision window is much shorter than the MaxPool activation

window (i.e., the time period within which the selected neuron will

be active or the time until the next MaxPool decision). Moreover,

output spikes are not fired during the MaxPool decision time

window, even if the VM potential exceeds the Vthr threshold.

However, in Section 6 of this manuscript, we propose to precharge

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 5

Proposed temporal MaxPool algorithms for SCNNs. Examples illustrate the 1 ×3 spatial pooling window. (A) Max VM potential MaxPooling. Out of

three given neurons, select the one with the highest membrane potential, VM, by the end of the MaxPool window at t = tMP . (B) Threshold

MaxPooling. Out of three given neurons, select the one with the fastest membrane potential, VM, to reach Vthr,MaxPool. (C) The First N spikes to arrive

MaxPooling. Out of three given neurons, select the one with the fastest N number of spikes. In this illustration N = 3.

the integrator capacitor to the winning VM potential to minimize

temporal data loss. If VM ≥ Vthr , the neuron will fire an output

spike once the firing circuit activates.

4.2.2. MaxPool threshold
In this MaxPool algorithm, the winner neuron is

determined by the timing at which its VM reaches predefined

Vthr,MaxPool (Figure 5B). The first neuron to reach it is

selected for pooling. Vthr,MaxPool could be different from the

I&F firing threshold, Vthr , but keeping Vthr,MaxPool ≤ Vthr

should keep temporal data loss minimal since no input

spike contribution will be lost due to the VM potential

overcharging. However, if Vthr = Vthr,MaxPool, this approach

acts as a Time-to-first-spike MaxPooling (Orchard et al.,

2015).

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

4.2.3. First N spikes to arrive
This approach counts the number of spikes fired by each

neuron within a group and is not necessarily based on VM . The

first neuron to fire “N” times is pooled, and its subsequent output

spikes are propagated (Figure 5C). Time-to-first-spike is a popular

approach to implement MaxPool in SCNNs, so we were interested

in exploring the idea of counting multiple spikes to improve the

SCNN classification accuracy.

5. SCNN training using PyTorch
framework

5.1. SCNN training

Spike-based training (or learning) algorithms are a popular

topic of SNN research (Neftci et al., 2017, 2019; Saxena,

2021b). The algorithms are broadly categorized into transfer

(ANN conversion), unsupervised/semi-supervised, and supervised

learning. Spike Timing Dependent Plasticity (STDP) is associated

with unsupervised SNN training (Vaila et al., 2019a). While these

bio-inspired learning rules lend to localized learning and hardware-

friendly realizations (Wu et al., 2015a; Wu and Saxena, 2018), they

are limited to shallow networks with diminishing gains in terms

of accuracy when multiple SCNN layers are stacked (Vaila et al.,

2019b).

This work focuses on supervised learning for image

classification to achieve competitive classification accuracy

with deep SCNNs. In our paradigm, training is performed on

GPUs with PyTorch. Since we are considering deploying SCNNs on

mixed-signal neuromorphic chips, we expanded PyTorch training

functionality with aihwkit to investigate the impact of NVM device

non-idealities on classification accuracy. Aihwkit, or IBM Analog

Hardware Acceleration Kit, is an open-source PyTorch-integrated

toolkit for exploring the capabilities of neuromorphic devices

and circuits for AI (Rasch et al., 2021). This toolkit modifies

PyTorch’s standard functions and training workflow to be more

hardware aware. For example, the commonly used PyTorch 2D

convolutional layer, Conv2D, is replaced by AnalogConv2D, where

the parametric analog device model defines the behavior of the

convolutional weights. The list of device-defining parameters

includes the following: behavioral model (linear or exponential

response to the weight update), positive and negative weight

bounds, minimal and maximal weight increments, weight drift,

and corrupt device probability. In addition, the forward layer-

to-layer pass could be modeled with controllable ADC and DAC

limitations of quantization and bounds. However, since we are

investigating spiking networks, there are no digital or analog values

shuttled between layers in the forward pass, only bi-level spikes, so

ADC and DAC limitations are ignored in the context of SCNNs.

The presented approach is well-suited for the off-chip learning

paradigm since we optimize SCNN models for on-chip inference,

but training is still off-chip on GPUs. On-chip learning using

NVMs is a challenging problem and is elaborated upon elsewhere

(Saxena, 2021b).

Image classification datasets used in this work are a collection

of grayscale [MNIST (LeCun, 1998) and FasionMNIST (Xiao et al.,

2017)] or colored (RGB for CIFAR10; Krizhevsky and Hinton,

2009) 2D arrays, where colors are split into channels in the

dedicated third dimension. The dataset images are converted to a

4D tensor with an added temporal dimension to represent spike-

domain spatiotemporal inputs. Two input conversion schemes are

explored for SNN training with the proposed MaxPooling methods

from Section 4.2:

Static input scheme: The first scheme converts input pixel

intensity into a fixed amplitude encoded signal (Figure 4A). Such an

approach could be interpreted as a static input image repeated for

each timestep in a time-frame or constant current levels supplied

to the first hidden layer of I&F neurons to charge the membrane

potential VM . This encoding increases spike firing frequency in

otherwise low-activation neurons, thus boosting the classification

accuracy of transfer-based SNNs (Rueckauer et al., 2017). We are

examining if this approach improves the classification accuracy of

trained SNNs.

Spiking input scheme: The second scheme converts pixel

intensity into a dynamic spike train, where the firing rate is

proportional to the input pixel intensity (Figure 4C).

Figure 6 illustrates the temporal interface implemented for

2D analog convolutional layers. PyTorch Conv2D layers, and by

extension aihwkit AnalogConv2D layers, naturally support 4D

input tensors in the BCHW format: batch, channel, height, and

width. However, input images are converted into the 5D tensor

BTCHW (batch, timestep, channel, height, and width).

We designed the PyTorch implementation of the

TimeDistributed Keras wrapper (Keras, 2022) to apply the

wrapped layer to every input timestep. Firstly, TimeDistributed

splits the BTCHW input tensor into the T number of BCHW

tensors, where T is the number of timesteps in a time-frame. Then

each BCHW input tensor is individually fed forward through the

same AnalogConv2D layer. Then the T number of AnalogConv2D

BCHW output tensors is concatenated into the single BTCHW

output tensor of the TimeDistributed layer. Thus, TimeDistributed

integrates Conv2D/AnalogConv2D layers from aihwkit into the

SCNN flow.

Automatic differentiation (autograd) is a PyTorch tool that

allows convenient gradient estimation for training. Autograd

estimates the gradients of a function with respect to its inputs, even

if the function is defined through a complex, nested computation.

This makes it easy to implement and train complex DNNmodels in

a scalable and efficient manner (Paszke et al., 2017). However, due

to the intrinsic data sparsity and spike representation, SNNs suffer

from discontinuous gradients, hindering training performance,

especially in latency encoding, where each neuron fires at most

once per each time-frame (Neftci et al., 2019). The recent research

literature proposes gradient approximation techniques such as

surrogate gradient (Neftci et al., 2019; Cramer et al., 2022) to

substitute gradients with non-differentiable spiking neurons to

adapt Backprop for SNNs.

In our work, the weighted summation of input spikes,

followed by the integrating membrane potential, VM , and

thresholding, defines the computation graph for each I&F neuron.

PyTorch autograd showed competitive results in our scheme

without employing any surrogate gradient. This is unsurprising

since autograd can work with a mixture of differentiable and

non-differential functions, thanks to reverse-mode automatic

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 6

Software pipeline for SNN input conversion to BTCHW tensors and the TimeDistributed layer for processing them using the AnalogConv2D function.

differentiation. The reverse-mode automatic differentiation

traverses the computation graph in reverse and accumulates

the gradients as it goes. Thus, the gradient information is

“propagated” through the computation graph, even in cases where

the individual operations are not differentiable. Moreover, in our

implementation, the network loss computation and weight updates

are calculated only at the end of the entire time-frame, not for each

timestep, thus averaging the gradient information over the entire

time-frame.

SNN training and inference were performed on an Nvidia

RTX 8,000 GPU with 46 GB memory on an Intel Xeon 4214R

dual CPU server. They took around 22, 24, and 27 min to run

one training epoch for MNIST, FashionMNIST, and CIFAR10

datasets. Each training was performed for 50 epochs. However,

it has been observed that each training loss converged to the

final value in <30 training epochs for each dataset. To keep

SCNN simulation time and GPU RAM load manageable, the

simulations presented in this work use the time-frame length of

100 timesteps. Otherwise, doubling the number of timesteps will

double the size of the computational graph, throttling the GPU.

In other words, each input image from a dataset is fed forward

for 100 timestep units and thus represented by 0–100 spikes.

The 0–100 range roughly corresponds to the activation temporal

resolution of log2(100) = 6.64 bits. The size of the time-frame

can be increased for higher resolution at the cost of a longer

training duration.

To estimate the effect of the proposed spiking MaxPooling

techniques on classification accuracy, we compare five baseline

CNN model (seen in Figure 2) implementations: Ideal, ANN-

converted-to-SNN, and three SCNNs with the proposed spiking

MaxPooling schemes trained using autograd. The Ideal CNN was

implemented with conventional non-spiking PyTorch layers and

trained with the AdaDelta optimizer. The ANN-converted-to-SNN

was implemented by converting the Ideal CNN model into the

SCNN using the SNN toolbox (Rueckauer et al., 2017). This toolbox

was chosen for the comparison due to the near-lossless (in terms

of classification accuracy) ANN-to-SNN conversion, where the

dynamic gating function estimates pre-synaptic neuron firing rates

to propagate spikes only from the most active neurons, thus acting

as the spiking MaxPool.

Since we want to investigate if SCNN training with non-spiking

inputs results in higher classification accuracy than the training

with spike-coded inputs, we evaluated both for SCNNs training

with the proposed MaxPooling algorithms. Table 2 shows test

classification accuracy for the aforementioned cases after training

with autograd.

As can be observed from these results, converting input

intensities into static (i.e., non-spiking) amplitudes indeed

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

TABLE 2 Baseline CNNmodel implementations testing accuracy on

image classification datasets.

CNN
implementation

MNIST (%) Fashion
MNIST (%)

CIFAR10
(%)

Ideal ANN 99.96 92.66 82.04

ANN-converted-to-

SNN

99.70 92.61 80.56

Autograd trained with static input

Max VM potential 98.50 91.24 79.49

MaxPool VM

threshold

99.16 90.76 75.26

First three spikes to

arrive

97.48 86.65 67.30

Autograd trained with spiking input

Max VM potential 98.26 88.16 74.19

MaxPool VM

threshold

98.10 87.94 71.73

First three spikes to

arrive

92.38 83.98 62.38

results in higher image classification accuracy after training

compared to the spike input encoding. This difference is

most evident from CIFAR10 results, where the static input

encoding helped to train the Max VM MaxPooling SCNN

with 79.49% classification accuracy, which is more than a

5% difference between the same network model trained with

spiking inputs.

The second important observation is that the proposed

Max VM-based MaxPool SCNN implementation achieves the

highest classification accuracy after training out of the three

proposed MaxPooling schemes. Furthermore, these results

compare well with the converted model with <1.5% degradation

in classification accuracy across the three image classification

tasks. Compared to the ideal real-valued ANNs results, the

degradation exceeds 1.5% only for CIFAR10, where it achieves a

2.55% difference.

5.2. VM-based MaxPool with partial time
window

As discussed earlier, the first scheme with Max VM-based

Maxpool exhibits the highest test accuracy after training. To further

investigate the efficacy of this algorithm, the time window used

for Maxpooling was reduced from 100% of the total number

of input image timesteps to 50, 25, and 10%. The results from

this experiment are shown in Table 3. Here, we can see that an

accurate MaxPool decision can be made with a partial observation

window with a marginal reduction in accuracy. Based on this

observation, it could be concluded that non-spiking input encoding

helps to identify the strongest activations early, since themembrane

potential integration starts from the very first timestep, and not

just from the very first input spike. Such an approach allows to

trade-off fractional temporal data loss for a regeneration of the

TABLE 3 Testing accuracy after training on image classification tasks of

the Max VM MaxPool SCNNmodel with the pooling window less or equal

to the number of timesteps.

MaxPool
window,
timesteps

MNIST (%) Fashion
MNIST (%)

CIFAR10
(%)

Autograd trained with static input

100 98.50 91.24 79.49

50 98.10 90.61 78.96

25 98.14 90.25 78.82

10 98.55 89.15 77.75

Autograd trained with spiking input

100 98.26 88.16 74.19

50 97.75 86.83 67.79

25 97.89 86.85 65.64

10 95.70 81.82 58.44

complete spike sequence for further layers. For example, only the

first 10% of timesteps will be lost or require regeneration. As a

result, utilizing only the fraction of the temporal data for aMaxPool

decision results in higher energy savings, similar to early training

termination in SNN, where adequate SNN performance could

be achieved using only fraction of output spikes or dataset as a

whole (Choi and Park, 2020; Kwak and Kim, 2022). Alternatively,

the I&F neuron membrane potential, VM , could be precharged

to the winning VM potential after pooling, thus minimizing

data loss. Another minor observation is that training with a

smaller pooling window could lead to higher accuracy, as it

can be observed in cases of 50 and 25 timesteps window for

MNIST. It could be attributed to the stochastic nature of the

training algorithm used (AdaDelta), where the network with a

smaller pooling window resulted in marginally higher performance

by chance.

5.3. Training with limited weight resolution
for the VM based MaxPool

Neuromorphic NVM devices, such as ReRAMs (or

memristors), became popular for actual or theoretical VMM

realization on neuromorphic mixed circuit chips. Ideally,

NVM devices have infinite conductance resolution and state

stability. However, they demonstrate a small number of stable

conductance states (Esmanhotto et al., 2020). As a result,

we investigated how limited weight resolution would affect

classification accuracy after training the Max VM MaxPool

SCNN. Moreover, we trained two versions of the SCNN, one

with a 100% MaxPool window and the another with just 10%,

so we could observe if the smaller MaxPool window will have

negligible classification accuracy degradation in the context

of severe device limitations. Limited weight resolution was

implemented with aihwkit AnalogConv2D and AnalogLinear

(Dense) layers with the non-ideal device model. We used

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

TABLE 4 Accuracy of the autograd trained SCNN with Max VM based

MaxPool, 100 and 10% time windows and limited weight resolution.

Weight
resolution

MNIST (%) Fashion
MNIST (%)

CIFAR10
(%)

100% MaxPooling window

Ideal weights 98.50 91.24 79.49

10-bits 98.92 90.14 76.84

8-bits 98.97 89.32 76.95

6-bits 98.63 89.72 73.60

4-bits 98.65 87.71 71.32

2-bits 98.08 85.17 62.78

1-bit 97.60 81.83 48.08

10% MaxPooling window

Ideal weights 98.55 89.15 77.75

10-bits 98.88 89.87 75.88

8-bits 98.97 89.21 74.60

6-bits 98.51 89.59 69.94

4-bits 98.57 87.73 69.64

2-bits 99.33 83.56 61.74

1-bit 97.68 80.83 45.44

the ConstantStepDevice behavioral model and bounded

the weights to the [−0.5, 0.5] range with the update noise

parameter dw_min_std = 0.3 (IBM, 2022b). Furthermore,

we defined the minimum weight update δwmin (the smallest

weight increment) dependency on weight resolution in bits,

nbits, as

δwmin =
1

2nbits+1
(10)

To train the SCNN with analog layers, we modified the

PyTorch AdaDelta optimizer to support aihwkit analog workflow

based on the analog tiles (IBM, 2022a). Table 4 shows the

classification accuracy results after autograd training with

limited weight resolution for 100 and 10% VM time window.

As shown, lowering weights resolution hardly affects MNIST

classification accuracy. Even in the most severe case of 1-bit

weight and 10% MaxPool window, performance degradation

is <1%. FashionMNIST classification drops significantly at

the 4-bits resolution or lower, but overall accuracy stays

above 80% even for the 1-bit case. As expected, CIFAR10

is more affected by device limitations. In order to maintain

the CIFAR10 accuracy degradation below 10%, at least 6-bit

weight resolution is desired for training. However, 2-bit weights

are enough for at least 60% accuracy of SCNNs. Comparing

MaxPool window sizes, the accuracy difference does not

exceed 2.64%, even for the worst case of the 1-bit resolution

in CIFAR10.

6. Mixed-signal circuit realization of
SCNN

We now focus on realizing SCNNs and MaxPooling in mixed-

signal neuromorphic hardware. Mapping convolutions to an NVM

crossbar array is a problem of current interest in CNN-based

neuromorphic chips. In recent works, fully-parallel convolutions

are realized by “unrolling” the overlap and save operation and

mapping it to NVM (ReRAM) arrays much larger than the kernel

size, K2 × 1 (Gopalakrishnan et al., 2020; Saxena, 2021a). This

is accomplished using Toeplitz matrix mapping, as illustrated in

Figures 7A, B (Yakopcic et al., 2016; Gopalakrishnan et al., 2020).

Here, the Mx × My × C input tensor is flattened, and for

C = 1, the convolution operation is mapped to a MxMy × NxNyF

crossbar array withMxMy inputs and NxNyF readout outputs. The

inputs are pre-neurons (or DACs in non-spiking VMMs), and the

output readout circuits are post-neurons (or ADCs in non-spiking

VMMs). Specific readout circuits are discussed later in Section 6.2.

However, Toeplitz mapping underutilizes the NVM array, as

several devices are unused with a utilization ratio of

η =
K2NxNy

MxMyNxNy
=

K2

MxMy
(11)

which is 9
20 or 45% for the example in Figure 7. An advantage of this

scheme is that all convolution outputs are simultaneously available

without changing the inputs.

As discussed in Section 4, MaxPooling is challenging to realize

at the circuit level without a significant area overhead, compared to

subsampling alternatives, such as average pooling (Lin et al., 2014;

Iandola et al., 2016) or non-overlapping convolutional kernels

(Springenberg et al., 2015; Gopalakrishnan et al., 2020). Moreover,

in the case of a fully parallel readout, where each array output

is available simultaneously, each column requires its own readout

periphery circuit. Due to the nature of a CNN, only one output from

a pooling window propagated further. Using Toeplitz CNN array

mapping, output rearrangement, and time domain Peak-Detector

periphery circuits, fully parallel output access is maintained with

a reduced circuit area overhead due to the time-multiplexed

periphery circuit utilization.

6.1. Area-e�cient CNNs using RRAM
crossbar array

In the scheme depicted in Figures 7A, B, each select-line (SL)

will require an individual readout circuit, i.e., a post-neuron in

SCNN or an ADC in regular CNN implementations. Also, the pitch

of a crossbar array will depend on the layout size of the post-

neurons (or column ADCs), which must be designed in a narrow

column area (Khaddam-Aljameh et al., 2021). Alternatively, several

NVM (IT1R or 2T2R) columns can be fitted in the pitch of a column

readout circuit. For example, a 100 µm readout circuit pitch can

accommodate 32 columns at a cell pitch of 3.125µm. It suggests the

possibility of sharing peripheral circuits for array operations, such

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 7

(A) Example of Toeplitz mapping of F = 2 convolution kernels (3 × 3) on a crossbar for a Conv2D operation on an input of size Mx ×My = 5 × 4 (the

same weight label, e.g., w1,1, could be reused by di�erent convolutional kernels, but the actual weights could be di�erent). (B) 1T1R architecture for

the selected crossbar segment in (A). The 2T2R architecture will be similar but 1T1R shown for visual clarity. (C) Proposed crossbar mapping scheme

with temporal Maxpooling with merged SLs/columns. Here, four columns are multiplexed into one readout circuit. (D) 1T1R architecture for the

crossbar segment, selected in (C). (E) Segment of the rearranged multiplexed crossbar scheme, where outputs belonging to the same MaxPool

spatial window appear on the same SL/column. (F) 1T1R architecture for the crossbar segment, shown in (E).

as convolution readout and pooling, leading to denser area-efficient

arrays.

There are several use cases for arrays with peripheral circuit

reuse. For example, weights of multiple neural layers can be

mapped into a single physical array with appropriate sub-array

scheduling (Qiu et al., 2018). Furthermore, in such a configuration,

layers outputs or activations could be fed back into the same array,

emulating sequential layer-to-layer data flow. Similarly, multiple

digital operations could be mapped on a single physical array

(James et al., 2020).

We previously proposed the optimized Toeplitz mapping

scheme with MaxPooled circuit reuse (Dorzhigulov et al., 2022).

This expanded work details the complete mixed-signal SCNN

with optimized Maxpooling and circuit blocks reuse. Here, we

propose reusing a comparator from the I&F neuron circuit to

minimize the effect of temporal data loss due to the time delay

required for the MaxPool decision and also to keep the winning

neuron active after the pooling decision is made. This approach

allows us to implement the proposed membrane potential-based

(VM) Maxpooling in CMOS/ReRAM mixed-signal hardware. This

scheme is illustrated in Figures 7C, D. Here, L = s2 SLs are

multiplexed to a single shared readout circuit in the column. Since

outputs within a group are accessed sequentially in the proposed

configuration, it essentially allows performing spiking MaxPool in

the time domain. With the typical s× s = 2× 2 MaxPool window,

s2 = 4 outputs on the SLs, that correspond to theMaxpool window,

are wire-ORed together. Each column is accessed sequentially by

selecting the corresponding WL, and their outputs are compared

for Maxpooling. Thus, each output within a group is read in four

WL-select cycles.

Figures 7E, F shows the rearranged array configuration, where

outputs belonging to the same pooling window are spatially

grouped by connecting them to the respective SL. In addition

to readout circuit reuse, with only
NxNy

s2
readout circuits and

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

higher array area- and energy- efficiency, the MaxPool outputs are

available simultaneously for each pooling group, so the MaxPool

layer outputs are available for the next layer at the same time. A

major drawback of this approach is the temporal data loss due to the

output time-multiplexing. However, the proposed Max VM-based

MaxPooling is capable of adequate classification accuracy with only

a fraction of temporal data. Thus, the effect of this overhead could

be minimal for a small enough MaxPool decision time window.

6.2. Mixed-signal circuit for readout and
temporal MaxPooling

Wenow present the transistor-level circuit details for the shared

readout and temporal MaxPooling circuit shown in Figure 8. A

crossbar array and peripheral circuits were realized in ST 130

nm H9A CMOS with MAD200 NVM technology with post-

fabricated HfOx ReRAM in the back-end-of-the-line (BEOL)

process. A 2T2R ReRAM crossbar array, similar to the one seen

in Figures 3, 7, is used for realizing signed weights. We used

the 1.8 V supply analog transistors available in the process.

The circuit operation comprises four phases: Integrate, Write,

Read, and Resets, controlled by the strobe signals: WL1−4, φwrite,

φreset, φrst,2, and φread. Using the 2×2 MaxPool window example

from Figure 7, the circuit uses shared integrator op-amp and

Peak-Detector-and-Hold (PDH) circuits to identify the highest

membrane potential, Vint , VM , from a group of four-column

outputs.

The circuit timing diagram is shown in Figure 9. The

sequence starts with the integrator reset and selecting WL1
to be high. The op-amp integrator integrates the incoming

weighted spikes from the K2 active inputs in the selected

column over time. This recovers the analog information of the

VMM output through low-pass filtering (integration), which

is analogous to the membrane potential, VM , in an I&F

neuron. Next, as φwrite goes high, the PDH circuit samples

and holds the integrator output as Vhold on the capacitor Ch.

Following the writing phase, the integrator resets with the φreset

strobe.

Then the same cycle repeats, but with WL2 going high and

so on. The only difference is that the PDH circuit compares the

new integrated sample with the previously held voltage value and

only retains the highest voltage. Here, Vint is on the negative

input of the operational transconductance amplifier (OTA), where

Vint > Vhold charges up capacitor Ch through the current mirror

(De Geronimo et al., 2002). If Vint drops below Vhold on Ch, Vhold

remains unchanged until Vint > Vhold again.

At the end of all WL cycles, the φread strobe is asserted. The

read phase sets the OTA in a voltage follower configuration, making

Vout = Vhold. In that phase, the Cint capacitor is also charged to

a Ch potential, making Cint carry the pooled potential to the next

I&F stage. Such an approach allows the preservation of the spiking

data from the MaxPool decision phase in the form of the saved

integrated potential of the winning input. The PDH reset strobe,

φrst,2, resets Vhold to Vreset , so Vint below Vreset will not be detected.

Thus, it effectively acts as an implicit ReLU. Thus, Vreset serves as

the ReLU bias. The maximum pooled value is read out as Vout . This

voltage can be digitized using an ADC for non-spiking VMM or

converted to spikes using an I&F neuron circuit.

In addition, it is feasible to reuse a comparator, an essential part

of the I&F CMOS neuron (Wu et al., 2015b). The primary function

of the comparator is to signal when the integrated potential VM

exceeds the firing threshold Vthr . With additional strobe φfire, the

comparator input can be switched to trigger a signal when Vint is

greater than Vhold. That trigger signal activates a digital memory

to store a currently active WL as a MaxPool winner. The digital

counter, clocked by φwrite, tracks the currently active WL. Then,

the winning WL is encoded in a digital N-bit one-hot output,

where N is the total number of WLs. One-hot encoding keeps

only the winning WL high (“1”), thus passing spikes only from the

MaxPool winner. At the end of each time-frame, the circuit resets

to select and propagate a new winner for the next frame. Finally,

by implementing the MaxPool operation with partial temporal

information, as in Section 5.2, theWLj strobe width can be reduced.

Combining the optimized Toeplitz mapping scheme with

shared peripheral circuits with implicit ReLU, we can implement

fully-parallel convolutions, MaxPooling, and nonlinearity in an

area-efficient manner. Thanks to the synchronous nature of the

proposed design (i.e., cycling through the WLs in a predefined

MaxPool time window), we can implement the explicit Max VM-

based MaxPool scheme, proposed and evaluated in software earlier

in Section 5.

6.3. Circuit simulation results

The transistor-level circuits were simulated using Cadence

Specter and 130 nm CMOS/OxRAM device models for VDD =

1.8V . Figure 10A shows a transient simulation of the PDH circuit

functionality during the write and reset phase. When the signal

φwrite is high, Ch charges up to the Vint level, and if Vhold across the

Ch capacitor is below Vint , it works as the PDH circuit. φrst2 resets

Ch to the Vreset level, set to VCM = 0.9V of the OTA. Thus, Ch will

not charge below the VCM level, effectively functioning as a ReLU.

Figure 10B shows that when φread is high, Vout is pulled

to the Vhold level. Figure 10C demonstrates the comparator

response to increasing VM as the input spikes are integrated

over time. VM crossing of a threshold voltage triggers the

comparator response. Figure 10D shows the fired output spike

following the triggering input spike with a slight dynamic

delay.

Circuit simulation shows the total bias current of Ibias,DC =

1.06µA or 1.9 µW power consumption. The SCNN circuit

realization incurs 0.85 pJ energy per synaptic operation (synOp).

We estimated the average number of spikes used for performing

an inference based on Equation (12) described in Rueckauer

et al. (2017), where t is the current time step, T is the

total simulation duration, l is the current layer, L is the total

number of layers, sl is the number of fired spikes in the

layer l at the time t. fout denotes fan-out, the total number

of outgoing synaptic connections to the subsequent layer. The

SCNN results in 21.7 µJ per inference for the CIFAR10 dataset.

However, considering the static energy dissipation from the

peripheral circuits and additional delay caused by MaxPool

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 8

Proposed array readout circuit with integrator and comparator sharing in time-domain followed by the PDH circuit.

FIGURE 9

Timing diagram of the proposed periphery MaxPool circuit. 2× 2 MaxPool window (thus four WLs) and no negative weights (integrator output only

increasing) assumed for illustration.

layers (10% per layer), this metric increases to 181 µJ per

inference.

T
∑

t=1

[

L
∑

l=1

fout,lsl(t)

]

= synOps/image (12)

A common benchmarking metric for AI hardware is the

throughput or the number of operations per second per Watt

(OPS/W), which is computed as OPS = MACs per inference ×

Frequency, where each multiply-and-accumulate (MAC) accounts

for two operations (Sze et al., 2020). MACs per inference can be

calculated according to Equation (13) (Rueckauer et al., 2017),

where fan-in fin,l is defined as the number of incoming connections

to a neuron, and nl is defined as the number of neurons in the l

layer.

L
∑

l=1

(

2fin,l + 1
)

nl = MACs/image (13)

For a 50 µs timestep and pipelined sequencing of SCNN

arrays for each SNN layer with 100 timesteps per inference,

the estimated throughput for the SCNN is 34.4 GOPS for

the MNSIT/FashionMNIST network and 85.6 GOPS for the

CIFAR10 network. This corresponds to an equivalent energy-

efficiency metric of 234.4, 236.5, and 473.6 TOPS/W for MNIST,

FashionMNIST, and CIFAR10 networks, as shown in Table 5.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

FIGURE 10

Transient simulations of the proposed periphery. (A) PDH write and

reset phases. φwrite enables charging up of Ch, while φrst,2 resets it to

Vrst = 0.9V. (B) PDH read phase. φread enables the OTA to set

Vout = Vhold. (C) Comparator phase. VM reaching Vthr triggers the

comparator circuit. (D) Input and output spikes. Observed delay

depends on the VM state before firing.

It also includes the energy-efficiency metrics comparison with

some of the recent compute-in-memory chips. As can be seen,

we can obtain competitive results for pJ/SOp compared to

SNN chips and TOPS/W compared to ReRAM-based image

classification chips.

7. Discussion and future work

In this work, we have proposed three variations of MaxPool

algorithms for SCNNs. The benefits of the proposed algorithms

are: (i) temporal MaxPool allows reuse of peripheral circuits,

thus minimizing chip area and power, (ii) decision-making

based on the partial temporal information is possible,

implying that the entire duration of the spike-encoded

image is not required to perform MaxPooling a correct

output.

While mixed-signal SCNN circuit design was performed

and block-level circuits simulated at the transistor level, a

higher software abstraction is necessary for evaluating system-

level performance for the entire SCNN. We developed a

customized software pipeline to simulate spiking CNNs using

4D tensors. The aihwkit framework allowed us to simulate

the effect of the device-level non-idealities on SCNNs

classification accuracy. Next, we evaluated the proposed

MaxPool algorithms by training spiking variations of the

baseline CNN using PyTorch and its native auto-differentiation

functionality.

As can be seen from the results for the CIFAR10 dataset,

the difference between SCNN converted from ideal CNN and

proposed VM-based MaxPool SCNN is 1.07%. Since such a

result was obtained using training, as opposed to transfer

learning, it highlights the prospects of proposed algorithms for

on-chip training.

To further support the advantages of the proposedVM MaxPool

in a mixed-signal neuromorphic chip, we implemented the desired

functionality with a novel shared readout circuit, effectively

implementing Convolutional Layer, MaxPool, and ReLU in a single

area and energy-efficient circuit block. The proposed periphery

circuit could be even more energy efficient if the same op-amp

and OTA could be reused for multiple operation phases (Wu

et al., 2015a). There is further scope to increase array utilization

for CNNs by employing more sophisticated row and/or column

multiplexing in time. Lastly, energy-efficiency estimation of the

proposed array and periphery shows competitive results compared

to contemporary CiM chip designs.

Moreover, our work shows the possibility of utilizing native

backprop-based training algorithms for SCNNs. Even though the

topic of on-chip learning is highly convoluted, some researchers

are experimenting with mixed-signal circuits to train ANNs

directly on a neuromorphic chip with Backprop (Greenberg-

Toledo et al., 2019; Krestinskaya et al., 2019). Based on our results,

we can also consider using similar training circuits for Spiking

ANNs.

The future continuation of this research work can entail the

investigation of on-chip learning and optimizing the impact of

spike encoding error on the overall classification performance of

the network.

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


D
o
rz
h
ig
u
lo
v
a
n
d
S
a
x
e
n
a

1
0
.3
3
8
9
/fn

in
s.2

0
2
3
.1
1
7
7
5
9
2

TABLE 5 Energy consumption estimation and benchmarking for the SCNN with the Max VM potential based MaxPool with a 10% window.

Dataset I&F layer 1 average
count spike fires

I&F layer 2 average
count spike fires

I&F layer 3 average
count spike fires

MOps/image pJ/synOp µJ per inference TOPS/W

This work

MNIST 47,621 11,910 1,965 27.52 0.85 147† 234.4

FashionMNIST 46,682 9,595 2,306 25.72 0.85 146† 236.5

CIFAR10 41,849 12,898 4,098 25.55 0.85 181† 473.6

SNN implementations

Valentian et al. (2019)

ReRAM-based one-layer SNN for MNIST classification 17–180 – –

Frenkel and Indiveri (2022)

Spiking RNN in 28 nm FDSOI SRAM for gesture recognition 5.3 46.1 –

Wang et al. (2021)

SNN in 65 nm for keywords spotting 1.5 – –

Liu et al. (2022)

Asyncronous SNN in 180 nm for ECG classification 0.53 – –

ReRAM compute-in-memory macros for data classification

Liu et al. (2020)

Analog ReRAM-based two-layer perceptron for MNIST classification – – 78.4

Chang et al. (2022)

General purpose binary ReRAM/SRAM-based compute-in-memory 40 nm macro – – 26.56

Hung et al. (2022)

ReRAM-based compute-in-memory macro in 22 nm for CIFAR10 classification – – 61.8

†Energy consumption estimates based on the crossbar array and neural peripheral circuits.

F
ro
n
tie

rs
in

N
e
u
ro
sc
ie
n
c
e

1
7

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fnins.2023.1177592
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

Data availability statement

The raw data supporting the conclusions of this

article will be made available by the authors, without

undue reservation.

Author contributions

AD developed the experimental procedures, implemented

and simulated the methods, and drafted the manuscript. VS

contributed to the methodology development and manuscript

edits. All authors contributed to the article and approved the

submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., et al. (2021). CNN
variants for computer vision: history, architecture, application, challenges and future
scope. Electronics 10:2470. doi: 10.3390/electronics10202470

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010). “A theoretical analysis of feature
pooling in visual recognition,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning, ICML’10 (Madison, WI: OmniPress),
111–118.

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybern. 95, 1–19. doi: 10.1007/s00422-006-0068-6

Chang, M., Spetalnick, S. D., Crafton, B., Khwa, W.-S., Chih, Y.-D., Chang, M.-
F., et al. (2022). “A 40nm 60.64TOPS/W ECC-capable compute-in-memory/digital
2.25MB/768KB RRAM/SRAM system with embedded cortex M3 microprocessor
for edge recommendation systems,” in 2022 IEEE International Solid- State Circuits
Conference (ISSCC), Vol. 65, 1–3. doi: 10.1109/ISSCC42614.2022.9731679

Chen, R., Ma, H., Guo, P., Xie, S., Li, P., and Wang, D. (2018). “Low latency
spiking convnets with restricted output training and false spike inhibition,”
in 2018 International Joint Conference on Neural Networks (IJCNN), 1–8.
doi: 10.1109/IJCNN.2018.8489400

Choi, S., and Park, J. (2020). “Early termination of STDP learning with spike counts
in spiking neural networks,” in 2020 International SoC Design Conference (ISOCC)
(Yeosu: IEEE), 75–76. doi: 10.1109/ISOCC50952.2020.9333061

Cramer, B., Billaudelle, S., Kanya, S., Leibfried, A., Grübl, A., Karasenko, V., et al.
(2022). Surrogate gradients for analog neuromorphic computing. Proc. Natl. Acad. Sci.
U.S.A. 119:e2109194119. doi: 10.1073/pnas.2109194119

CWRU (2023). Case Western Reserve University Ball Bearing Dataset. Available
online at: https://engineering.case.edu/bearingdatacenter (accessed February 15, 2023).

Danial, L., Pikhay, E., Herbelin, E., Wainstein, N., Gupta, V., Wald, N., et
al. (2019). Two-terminal floating-gate transistors with a low-power memristive
operation mode for analogue neuromorphic computing. Nat. Electron. 2, 596–605.
doi: 10.1038/s41928-019-0331-1

Datta, G., and Beerel, P. A. (2022). “Can deep neural networks be
converted to ultra low-latency spiking neural networks?,” in Proceedings of
the 2022 Conference & Exhibition on Design, Automation & Test in Europe,
DATE ’22 (Leuven: European Design and Automation Association), 718–723.
doi: 10.23919/DATE54114.2022.9774704

De Geronimo, G., O’Connor, P., and Kandasamy, A. (2002). Analog
CMOS peak detect and hold circuits. Part 2. The two-phase offset-free and
derandomizing configuration. Nucl. Instrum. Methods Phys. Res. Sect. A 484,
544–556. doi: 10.1016/S0168-9002(01)02060-5

Delorme, A., Gautrais, J., Van Rullen, R., and Thorpe, S. (1999). SpikeNet: a
simulator for modeling large networks of integrate and fire neurons. Neurocomputing
26, 989–996. doi: 10.1016/S0925-2312(99)00095-8

Dorzhigulov, A., Mishra, S., and Saxena, V. (2022). “Hybrid CMOS-RRAM
spiking CNNs with time-domain max-pooling and integrator re-use,” in 2022
IEEE International Symposium on Circuits and Systems (ISCAS) Austin, TX: IEEE.
doi: 10.1109/ISCAS48785.2022.9937514

Esmanhotto, E., Brunet, L., Castellani, N., Bonnet, D., Dalgaty, T., Grenouillet,
L., et al. (2020). “High-density 3D monolithically integrated multiple 1T1R multi-
level-cell for neural networks,” in 2020 IEEE International Electron Devices Meeting

(IEDM) (San Francisco, CA: IEEE), 36.5.1–36.5.4. doi: 10.1109/IEDM13553.2020.937
2019

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,
R., Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-
efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–11446.
doi: 10.1073/pnas.1604850113

Frenkel, C., and Indiveri, G. (2022). “Reckon: a 28nm sub-mm2 task-agnostic
spiking recurrent neural network processor enabling on-chip learning over second-
long timescales,” in 2022 IEEE International Solid- State Circuits Conference
(ISSCC) (San Francisco, CA: IEEE), Vol. 65, 1–3. doi: 10.1109/ISSCC42614.2022.973
1734

Garg, I., Chowdhury, S. S., and Roy, K. (2021). “DCT-SNN: using DCT to
distribute spatial information over time for low-latency spiking neural networks,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
IEEE. doi: 10.1109/ICCV48922.2021.00463

Gaurav, R., Tripp, B., and Narayan, A. (2022). “Spiking approximations of the
maxpooling operation in deep SNNs,” in 2022 International Joint Conference on Neural
Networks (IJCNN) (Padua: IEEE), 1–8. doi: 10.1109/IJCNN55064.2022.9892504

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press.

Gopalakrishnan, R., Chua, Y., Sun, P., Sreejith Kumar, A. J., and Basu, A. (2020).
HFNet: a CNN architecture co-designed for neuromorphic hardware with a crossbar
array of synapses. Front. Neurosci. 14:907. doi: 10.3389/fnins.2020.00907

Greenberg-Toledo, T., Mazor, R., Haj-Ali, A., and Kvatinsky, S. (2019). Supporting
the momentum training algorithm using a memristor-based synapse. IEEE Trans.
Circuits Syst. I 66, 1571–1583. doi: 10.1109/TCSI.2018.2888538

Guo, S., Wang, L., Chen, B., and Dou, Q. (2020). An overhead-free max-pooling
method for SNN. IEEE Embedd. Syst. Lett. 12, 21–24. doi: 10.1109/LES.2019.2919244

Guo, W., Fouda, M. E., Eltawil, A. M., and Salama, K. N. (2021). Neural coding in
spiking neural networks: a comparative study for robust neuromorphic systems. Front.
Neurosci. 15:638474. doi: 10.3389/fnins.2021.638474

Guo, X., Bayat, F. M., Prezioso, M., Chen, Y., Nguyen, B., Do, N., et al. (2017).
“Temperature-insensitive analog vector-by-matrix multiplier based on 55 nm nor flash
memory cells,” in 2017 IEEE Custom Integrated Circuits Conference (CICC) (Austin,
TX: IEEE), 1–4. doi: 10.1109/CICC.2017.7993628

Hu, Y., and Pfeiffer, M. (2016). Max-pooling operations in deep spiking neural
networks. Neural Syst. Comput. Project Rep.

Hung, J.-M., Huang, Y.-H., Huang, S.-P., Chang, F.-C., Wen, T.-H., Su, C.-I.,
et al. (2022). “An 8-mb dc-current-free binary-to-8b precision reram nonvolatile
computing-in-memory macro using time-space-readout with 1286.4-21.6tops/w for
edge-AI devices,” in 2022 IEEE International Solid- State Circuits Conference (ISSCC)
(San Francisco, CA: IEEE), Vol. 65, 1–3. doi: 10.1109/ISSCC42614.2022.9731715

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., and Keutzer, K.
(2016). Squeezenet: alexnet-level accuracy with 50x fewer parameters and<1mbmodel
size. arxiv: abs/1602.07360. doi: 10.48550/arXiv.1602.07360

IBM (2022a). IBM Analog Hardware Acceleration Kit Documentation, Analog
Module. Available online at: https://aihwkit.readthedocs.io/en/latest/api/aihwkit.
simulator.tiles.analog.html (accessed February 14, 2023).

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://doi.org/10.3390/electronics10202470
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1109/ISSCC42614.2022.9731679
https://doi.org/10.1109/IJCNN.2018.8489400
https://doi.org/10.1109/ISOCC50952.2020.9333061
https://doi.org/10.1073/pnas.2109194119
https://engineering.case.edu/bearingdatacenter
https://doi.org/10.1038/s41928-019-0331-1
https://doi.org/10.23919/DATE54114.2022.9774704
https://doi.org/10.1016/S0168-9002(01)02060-5
https://doi.org/10.1016/S0925-2312(99)00095-8
https://doi.org/10.1109/ISCAS48785.2022.9937514
https://doi.org/10.1109/IEDM13553.2020.9372019
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/ISSCC42614.2022.9731734
https://doi.org/10.1109/ICCV48922.2021.00463
https://doi.org/10.1109/IJCNN55064.2022.9892504
https://doi.org/10.3389/fnins.2020.00907
https://doi.org/10.1109/TCSI.2018.2888538
https://doi.org/10.1109/LES.2019.2919244
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.1109/CICC.2017.7993628
https://doi.org/10.1109/ISSCC42614.2022.9731715
https://doi.org/10.48550/arXiv.1602.07360
https://aihwkit.readthedocs.io/en/latest/api/aihwkit.simulator.tiles.analog.html
https://aihwkit.readthedocs.io/en/latest/api/aihwkit.simulator.tiles.analog.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

IBM (2022b). IBM Analog Hardware Acceleration Kit Documentation, Device
Configurations. Available online at: https://aihwkit.readthedocs.io/en/latest/api/
aihwkit.simulator.configs.devices.html (accessed February 14, 2023).

Ielmini, D., and Wong, H.-S. P. (2018). In-memory computing with resistive
switching devices. Nat. Electron. 1, 333–343. doi: 10.1038/s41928-018-0092-2

James, A., Krestinskaya, O., and Maan, A. (2020). Recursive threshold logic–a
bioinspired reconfigurable dynamic logic system with crossbar arrays. IEEE Trans.
Biomed. Circuits Syst. 14, 1311–1322. doi: 10.1109/TBCAS.2020.3027554

Javanshir, A., Nguyen, T. T., Mahmud, M. A. P., and Kouzani, A. Z. (2022).
Advancements in algorithms and neuromorphic hardware for spiking neural networks.
Neural Comput. 34, 1289–1328. doi: 10.1162/neco_a_01499

Keras (2022). Timedistributed Documentation. Available online at: https://keras.io/
api/layers/recurrent_layers/time_distributed (accessed February 13, 2023).

Khaddam-Aljameh, R., Stanisavljevic, M., Mas, J. F., Karunaratne, G., Braendli,
M., Liu, F., et al. (2021). “Hermes core–a 14nm CMOS and PCM-based in-memory
compute core using an array of 300PS/LSB linearized CCO-based ADCS and local
digital processing,” in 2021 Symposium on VLSI Technology (Kyoto: IEEE), 1–2.
doi: 10.23919/VLSICircuits52068.2021.9492362

Kim, S., Park, S., Na, B., and Yoon, S. (2020). “Spiking-yolo: spiking
neural network for energy-efficient object detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34 (New York, NY: AAAI), 11270–11277.
doi: 10.1609/aaai.v34i07.6787

Krestinskaya, O., Salama, K. N., and James, A. P. (2019). Learning in memristive
neural network architectures using analog backpropagation circuits. IEEE Trans.
Circuits Syst. I 66, 719–732. doi: 10.1109/TCSI.2018.2866510

Krizhevsky, A., and Hinton, G. (2009). Learning multiple layers of features from tiny
images (Master’s thesis). University of Toronto, Toronto, ON, Canada.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems, Vol. 25, eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Lake Tahoe,
NV: Curran Associates, Inc.).

Kwak, M., and Kim, Y. (2022). “Do not forget: exploiting stability-plasticity
dilemma to expedite unsupervised SNN training for neuromorphic processors,” in 2022
IEEE 40th International Conference on Computer Design (ICCD) (Lake Tahoe, CA:
IEEE), 419–426. doi: 10.1109/ICCD56317.2022.00069

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,W., et al.
(1989). Backpropagation applied to handwritten zip code recognition. Neural Comput.
1, 541–551. doi: 10.1162/neco.1989.1.4.541

LeCun, Y. (1998). The MNIST Database of Handwritten Digits. Available online at:
http://yann.lecun.com/exdb/mnist/ (accessed February 14, 2023).

Li, J., Hu, W., Yuan, Y., Huo, H., and Fang, T. (2017). “Bio-inspired deep spiking
neural network for image classification,” in Neural Information Processing, eds D. Liu,
S. Xie, Y. Li, D. Zhao, and E. S. El-Alfy (Cham: Springer International Publishing),
294–304. doi: 10.1007/978-3-319-70096-0_31

Li, T., Bi, X., Jing, N., Liang, X., and Jiang, L. (2017). “Sneak-path based test
and diagnosis for 1r RRAM crossbar using voltage bias technique,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC) (Austin, TX: ACM), 1–6.
doi: 10.1145/3061639.3062318

Li, Y., He, X., Dong, Y., Kong, Q., and Zeng, Y. (2022). Spike calibration: fast and
accurate conversion of spiking neural network for object detection and segmentation.
arXiv preprint arXiv:2207.02702. doi: 10.24963/ijcai.2022/345

Lin, M., Chen, Q., and Yan, S. (2014). Network in network. arXiv[Preprint]. arXiv:
1312.4400. doi: 10.48550/arXiv.1312.4400

Lin, Z., Shen, J., Ma, D., and Meng, J. (2017). Quantisation and pooling method
for low-inference-latency spiking neural networks. Electron. Lett. 53, 1347–1348.
doi: 10.1049/el.2017.2219

Liu, Q., Gao, B., Yao, P., Wu, D., Chen, J., Pang, Y., et al. (2020). “33.2 a fully
integrated analog reram based 78.4tops/w compute-in-memory chip with fully parallel
mac computing,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC)
(San Francisco, CA: IEEE), 500–502. doi: 10.1109/ISSCC19947.2020.9062953

Liu, Y., Wang, Z., He, W., Shen, L., Zhang, Y., Chen, P., et al. (2022). “An 82nw
0.53pj/sop clock-free spiking neural network with 40 µs latency for AloT wake-up
functions using ultimate-event-driven bionic architecture and computing-in-memory
technique,” in 2022 IEEE International Solid- State Circuits Conference (ISSCC) (San
Francisco, CA: IEEE), Vol. 65, 372–374. doi: 10.1109/ISSCC42614.2022.9731795

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual
features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e30031.
doi: 10.1371/journal.pcbi.0030031

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., and Masquelier, T. (2019).
Spyketorch: efficient simulation of convolutional spiking neural networks with at most
one spike per neuron. Front. Neurosci. 13:625. doi: 10.3389/fnins.2019.00625

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven random
back-propagation: enabling neuromorphic deep learning machines. Front. Neurosci.
11:324. doi: 10.3389/fnins.2017.00324

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks. IEEE Signal Process. Mag. 36, 61-63.
doi: 10.48550/arXiv.1901.09948

Nguyen, D.-A., Tran, X.-T., Dang, K. N., and Iacopi, F. (2020). “A lightweight max-
pooling method and architecture for deep spiking convolutional neural networks,” in
2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (Ha Long Bay:
IEEE), 209–212. doi: 10.1109/APCCAS50809.2020.9301703

Nielsen, M. (2017). Neural Networks and Deep Learning, 1st Edn.

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., and
Benosman, R. (2015). Hfirst: a temporal approach to object recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 37, 2028–2040. doi: 10.1109/TPAMI.2015.2392947

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).
“Automatic differentiation in PyTorch,” in 31st Conference on Neural Information
Processing Systems (Long Beach, CA), 1–4. Available online at: https://openreview.net/
pdf?id=BJJsrmfCZ

Patel, K., Hunsberger, E., Batir, S., and Eliasmith, C. (2021). A spiking
neural network for image segmentation. arXiv preprint arXiv:2106.08921.
doi: 10.48550/arXiv.2106.08921

Qiu, K., Chen, W., Xu, Y., Xia, L., Wang, Y., and Shao, Z. (2018). “A peripheral
circuit reuse structure integrated with a retimed data flow for low power RRAM
crossbar-based CNN,” in 2018Design, Automation Test in Europe Conference Exhibition
(DATE) (Dresden: IEEE), 1057–1062. doi: 10.23919/DATE.2018.8342168

Rasch, M. J., Moreda, D., Gokmen, T., Le Gallo, M., Carta, F., Goldberg,
C., et al. (2021). “A flexible and fast pytorch toolkit for simulating training and
inference on analog crossbar arrays,” in 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS) (Washington DC: IEEE), 1–4.
doi: 10.1109/AICAS51828.2021.9458494

Rasmussen, D. (2019). Nengodl: combining deep learning and neuromorphic
modelling methods. Neuroinformatics 17, 611–628. doi: 10.1007/s12021-019-09424-z

Rathi, N., and Roy, K. (2020). Diet-SNN: direct input encoding with leakage
and threshold optimization in deep spiking neural networks. arXiv preprint
arXiv:2008.03658. doi: 10.48550/arXiv.2008.03658

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Saxena, V. (2020). “A process-variation robust RRAM-compatible CMOS neuron
for neuromorphic system-on-a-chip,” in Proceedings of the IEEE International
Symposium on Circuits & Systems (ISCAS) Seville: IEEE.

Saxena, V. (2021a). “A mixed-signal convolutional neural network using hybrid
cmos-rram circuits,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS) (Daegu: IEEE), 1-5.

Saxena, V. (2021b). Neuromorphic computing: from devices to integrated circuits.
J. Vacuum Sci. Technol. B 39:010801. doi: 10.1116/6.0000591

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020).
Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15,
529–544. doi: 10.1038/s41565-020-0655-z

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13:95.
doi: 10.3389/fnins.2019.00095

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015).
Striving for simplicity: The all convolutional net. arXiv [Preprint].arXiv: 1412.6806.
doi: 10.48550/arXiv.1412.6806

Su, J.-W., Chou, Y.-C., Liu, R., Liu, T.-W., Lu, P.-J., Wu, P.-C., et al. (2021).
“16.3 a 28nm 384kb 6t-sram computation-in-memory macro with 8b precision for
AI edge chips,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC)
(San Francisco, CA: IEEE), Vol. 64, 250–252. doi: 10.1109/ISSCC42613.2021.93
65984

Sze, V. (2020). “Tutorial 10: how to understand and evaluate deep learning
processors,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC) San
Francisco, CA: IEEE.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2020). How to evaluate deep neural
network processors: Tops/w (alone) considered harmful. IEEE Solid State Circuits Mag.
12, 28–41. doi: 10.1109/MSSC.2020.3002140

Thiele, J. C., Bichler, O., and Dupret, A. (2018). Event-based, timescale invariant
unsupervised online deep learning with STDP. Front. Comput. Neurosci. 12:46.
doi: 10.3389/fncom.2018.00046

Vaila, R., Chiasson, J., and Saxena, V. (2019a). Deep convolutional spiking
neural networks for image classification. arXiv preprint arXiv:1903.12272.
doi: 10.48550/arXiv.1903.12272

Vaila, R., Chiasson, J., and Saxena, V. (2019b). “Feature extraction
using spiking convolutional neural networks,” in Proceedings of the
International Conference on Neuromorphic Systems (New York, NY:
Association for Computing Machinery), 1–8. doi: 10.1145/3354265.33
54279

Frontiers inNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://aihwkit.readthedocs.io/en/latest/api/aihwkit.simulator.configs.devices.html
https://aihwkit.readthedocs.io/en/latest/api/aihwkit.simulator.configs.devices.html
https://doi.org/10.1038/s41928-018-0092-2
https://doi.org/10.1109/TBCAS.2020.3027554
https://doi.org/10.1162/neco_a_01499
https://keras.io/api/layers/recurrent_layers/time_distributed
https://keras.io/api/layers/recurrent_layers/time_distributed
https://doi.org/10.23919/VLSICircuits52068.2021.9492362
https://doi.org/10.1609/aaai.v34i07.6787
https://doi.org/10.1109/TCSI.2018.2866510
https://doi.org/10.1109/ICCD56317.2022.00069
https://doi.org/10.1162/neco.1989.1.4.541
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-319-70096-0_31
https://doi.org/10.1145/3061639.3062318
https://doi.org/10.24963/ijcai.2022/345
https://doi.org/10.48550/arXiv.1312.4400
https://doi.org/10.1049/el.2017.2219
https://doi.org/10.1109/ISSCC19947.2020.9062953
https://doi.org/10.1109/ISSCC42614.2022.9731795
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.3389/fnins.2019.00625
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.48550/arXiv.1901.09948
https://doi.org/10.1109/APCCAS50809.2020.9301703
https://doi.org/10.1109/TPAMI.2015.2392947
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
https://doi.org/10.48550/arXiv.2106.08921
https://doi.org/10.23919/DATE.2018.8342168
https://doi.org/10.1109/AICAS51828.2021.9458494
https://doi.org/10.1007/s12021-019-09424-z
https://doi.org/10.48550/arXiv.2008.03658
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1116/6.0000591
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.48550/arXiv.1412.6806
https://doi.org/10.1109/ISSCC42613.2021.9365984
https://doi.org/10.1109/MSSC.2020.3002140
https://doi.org/10.3389/fncom.2018.00046
https://doi.org/10.48550/arXiv.1903.12272
https://doi.org/10.1145/3354265.3354279
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dorzhigulov and Saxena 10.3389/fnins.2023.1177592

Valentian, A., Rummens, F., Vianello, E., Mesquida, T., de Boissac, C. L.-M., Bichler,
O., et al. (2019). “Fully integrated spiking neural network with analog neurons and
RRAM synapses,” in 2019 IEEE International Electron Devices Meeting (IEDM) (IEEE)
(San Francisco, CA: IEEE), 14.

Verma, N., Jia, H., Valavi, H., Tang, Y., Ozatay, M., Chen, L.-
Y., et al. (2019). In-memory computing: advances and prospects.
IEEE Solid State Circuits Mag. 11, 43–55. doi: 10.1109/MSSC.2019.292
2889

Wang, D., Kim, S. J., Yang, M., Lazar, A. A., and Seok, M. (2021). “A background-
noise and process-variation-tolerant 109nw acoustic feature extractor based on spike-
domain divisive-energy normalization for an always-on keyword spotting device,” in
2021 IEEE International Solid- State Circuits Conference (ISSCC) (San Francisco, CA:
IEEE), Vol. 64, 160–162. doi: 10.1109/ISSCC42613.2021.9365969

Wu, H., and Gu, X. (2015). “Max-pooling dropout for regularization of
convolutional neural networks,” in Neural Information Processing, eds S. Arik, T.
Huang, W. K. Lai, and Q. Liu (Cham: Springer International Publishing), 46–54.
doi: 10.1007/978-3-319-26532-2_6

Wu, X., and Saxena, V. (2018). Dendritic-inspired processing enables bio-
plausible STDP in compound binary synapses. IEEE Trans. Nanotechnol. 18, 149–159.
doi: 10.1109/TNANO.2018.2871680

Wu, X., Saxena, V., and Zhu, K. (2015a). Homogeneous spiking neuromorphic
system for real-world pattern recognition. IEEE J. Emerg. Select. Top. Circuits Syst. 5,
254–266. doi: 10.1109/JETCAS.2015.2433552

Wu, X., Saxena, V., Zhu, K., and Balagopal, S. (2015b). A CMOS spiking neuron
for brain-inspired neural networks with resistive synapses and in situ learning. IEEE
Trans. Circuits Syst. II 62, 1088–1092. doi: 10.1109/TCSII.2015.2456372

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12:331.
doi: 10.3389/fnins.2018.00331

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset
for benchmarking machine learning algorithms. arXiv [Preprint]. arXiv: 1708.07747.
doi: 10.48550/arXiv.1708.07747

Xie, S., Ni, C., Sayal, A., Jain, P., Hamzaoglu, F., and Kulkarni, J. P. (2021). “16.2
EDRAM-CIM: compute-in-memory design with reconfigurable embedded-dynamic-
memory array realizing adaptive data converters and charge-domain computing,” in
2021 IEEE International Solid- State Circuits Conference (ISSCC) (San Francisco, CA:
IEEE), Vol. 64, 248–250. doi: 10.1109/ISSCC42613.2021.9365932

Yakopcic, C., Alom, M. Z., and Taha, T. M. (2016). “Memristor crossbar
deep network implementation based on a convolutional neural network,” in 2016
International Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE),
963–970. doi: 10.1109/IJCNN.2016.7727302

Yan, Z., Zhou, J., and Wong, W.-F. (2021). Near lossless
transfer learning for spiking neural networks. Proc. AAAI
Conf. Artif. Intell. 35, 10577–10584. doi: 10.1609/aaai.v35i12.1
7265

Zhang, C., Xiao, Z., and Sheng, Z. (2022). A bearing fault diagnosis method
based on a convolutional spiking neural network with spatial–temporal feature-
extraction capability. Transp. Saf. Environ. 2022:tdac050. doi: 10.1093/tse/td
ac050

Zhang, J., Wang, R., Wang, T., Liu, J., Dang, S., and Zhang, G. (2022). A
configurable spiking convolution architecture supporting multiple coding schemes
on FPGA. IEEE Trans. Circuits Syst. II 69, 5089–5093. doi: 10.1109/TCSII.2022.319
9033

Zhao, B., Chen, S., and Tang, H. (2014). “Bio-inspired
categorization using event-driven feature extraction and spike-based
learning,” in 2014 International Joint Conference on Neural Networks
(IJCNN) (Beijing: IEEE), 3845–3852. doi: 10.1109/IJCNN.2014.688
9541

Frontiers inNeuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2023.1177592
https://doi.org/10.1109/MSSC.2019.2922889
https://doi.org/10.1109/ISSCC42613.2021.9365969
https://doi.org/10.1007/978-3-319-26532-2_6
https://doi.org/10.1109/TNANO.2018.2871680
https://doi.org/10.1109/JETCAS.2015.2433552
https://doi.org/10.1109/TCSII.2015.2456372
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1109/ISSCC42613.2021.9365932
https://doi.org/10.1109/IJCNN.2016.7727302
https://doi.org/10.1609/aaai.v35i12.17265
https://doi.org/10.1093/tse/tdac050
https://doi.org/10.1109/TCSII.2022.3199033
https://doi.org/10.1109/IJCNN.2014.6889541
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling
	1. Introduction
	2. Convolutional neural networks using ReRAM array
	2.1. Mixed-signal VMM using ReRAM crossbars

	3. Spike encoding and spiking neural networks
	3.1. Latency encoding
	3.2. Rate encoding
	3.3. Integrate and Fire encoding

	4. Sub-sampling by pooling operation
	4.1. MaxPooling in CNNs
	4.1.1. MaxPooling
	4.1.2. Average pooling
	4.1.3. Strided convolutional kernels

	4.2. Spatial MaxPooling in SNNs
	4.2.1. Maximum membrane potential
	4.2.2. MaxPool threshold
	4.2.3. First N spikes to arrive


	5. SCNN training using PyTorch framework
	5.1. SCNN training
	5.2. VM-based MaxPool with partial time window
	5.3. Training with limited weight resolution for the VM based MaxPool

	6. Mixed-signal circuit realization of SCNN
	6.1. Area-efficient CNNs using RRAM crossbar array
	6.2. Mixed-signal circuit for readout and temporal MaxPooling 
	6.3. Circuit simulation results

	7. Discussion and future work
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


