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Repetitive electrical nerve stimulation can induce a long-lasting perturbation

of the axon’s membrane potential, resulting in unstable stimulus-response

relationships. Despite being observed in electrophysiology, the precise

mechanism underlying electrical stimulation-dependent (ES-dependent)

instability is still an open question. This study proposes a model to reveal

a facet of this problem: how threshold fluctuation a�ects electrical nerve

stimulations. This study proposes a new method based on a Circuit-Probability

theory (C-P theory) to reveal the interlinkages between the subthreshold

oscillation induced by neurons’ resonance and ES-dependent instability of neural

response. Supported by in-vivo studies, this new model predicts several key

characteristics of ES-dependent instability and proposes a stimulation method

to minimize the instability. This model provides a powerful tool to improve our

understanding of the interaction between the external electric field and the

complexity of the biophysical characteristics of axons.

KEYWORDS

threshold fluctuation, neural modeling, Circuit-Probability theory, neural oscillation,

subthreshold oscillation

1. Introduction

Function electrical stimulation assists purposeful movement by increasing the plasticity

for motor function. By applying electrical stimulation to the paralyzed muscles, electrical

nerve stimulationmakes the coordinatedmuscle contract in a sequence that allows paralyzed

patients to perform tasks such as standing, walking, or grasping a key (Rushton, 1997;

Benabid, 2003; Peckham and Knutson, 2005; Dayan and Cohen, 2011; Sabbah et al.,

2011; Famm et al., 2013; Marquez-Chin and Popovic, 2020). However, more detailed

neurological mechanisms underlying electrical stimulation are still unclear. For example,

the electrical stimulation-dependent (ES-dependent) instability of neural response is a

well-known phenomenon. The axon’s excitability has a non-monotonic fluctuation with
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repetitive stimulation. This unstable excitability was observed

from single-cell-based patch-clamping electrophysiology (Bostock

and Grafe, 1985) and muscular response to functional electrical

stimulation (FES) (Potts et al., 1994; Bostock et al., 2005; Moldovan

and Krarup, 2006). It is widely believed that the origin of this

instability is the fluctuation of the axon’s threshold voltage.

Thus, this phenomenon is also called “threshold fluctuation” or

“excitability fluctuation” in previous studies (Ten Hoopen et al.,

1963; Potts et al., 1994; Kiernan et al., 1996; Bostock et al., 2005;

Moldovan and Krarup, 2006).

Since this instability will affect the FES performance of the

clinical treatment of diseases by electrical nerve stimulations,

it concerned the researchers in this area. Many experimental

studies have been conducted to investigate more detailed biological

mechanisms in order to minimize the unstable effect (Ten Hoopen

et al., 1963; Bostock and Grafe, 1985; Potts et al., 1994; Kiernan

et al., 1996; Chen et al., 1999; Shefner, 2001; Moldovan and Krarup,

2004, 2006; Bostock et al., 2005; Krishnan and Kiernan, 2006;

Krishnan et al., 2006; George and Bostock, 2007; Boërio et al.,

2009, 2011; Burke et al., 2009; Baumann et al., 2010; Trevillion

et al., 2010; Bucher and Goaillard, 2011; Sittl et al., 2011; Kudina

and Andreeva, 2014, 2017; Urriza et al., 2016; Jankowska et al.,

2017; Hageman et al., 2018; Kaczmarek and Jankowska, 2018;

Sleutjes et al., 2018; Jankowska and Hammar, 2021; Deletis et al.,

2022). Major experimental observations and concluded principles

of threshold fluctuation are summarized below.

The threshold fluctuation is caused by the perturbation of the

membrane potential of the axon, where the induced membrane

potential perturbation can last more than 100ms, longer than

the refractory period of the axonal action potential (Adrian and

Lucas, 1912; Gasser and Grundfest, 1936; Gilliatt and Willison,

1963; Raymond, 1979; Potts and Young, 1981; Barrett and Barrett,

1982; Stys and Ashby, 1990). Thus, it can be excluded that the

neural refractory period is the major factor contributing to the

ES-dependent instability (Potts et al., 1994).

The observed membrane potential perturbation happens in

the vicinity of the stimulating electrode (Bostock et al., 2005).

Therefore, although the EMG (Electromyography) signal is

involved in evaluating the change of excitability for most relevant

experiments, the muscle activation is irrelevant to the instability

(Potts et al., 1994; Bostock et al., 2005; Moldovan and Krarup,

2006).

Subthreshold stimulations can also induce threshold

fluctuation. Thus, the membrane potential perturbation happens

as long as local electrical stimulations are applied, whether the

action potential fires or not (Potts et al., 1994; Bostock et al., 2005;

Moldovan and Krarup, 2006).

The relationship between the electrical stimulation parameter

and the change in excitability is definitive (Bostock and Grafe, 1985;

Potts et al., 1994; Stys and Waxman, 1994; Kiernan et al., 1996;

Chen et al., 1999; Moldovan and Krarup, 2004, 2006; Bostock et al.,

2005; Krishnan et al., 2006; George and Bostock, 2007; Boërio et al.,

2009, 2011; Burke et al., 2009; Trevillion et al., 2010; Bucher and

Goaillard, 2011; Sittl et al., 2011; Hageman et al., 2018; Sleutjes et al.,

2018; Jankowska and Hammar, 2021). Previous studies assumed

noise as the origin of threshold fluctuation (Ten Hoopen and

Verveen, 1963; Lecar and Nossal, 1971), which contradicts the

experimental observation.

However, the precise mechanisms underlying the observed

ES-dependent instability remain unclear due to the lack of a

proper theoretical model. In this study, we conducted both in-

vivo and in-silico investigations to better understand this question.

Our theoretical model based on a Circuit-Probability theory (C-

P theory) (Wang et al., 2020) allows us to explore how the

stimulation parameters affect the instability. It reveals that the

subthreshold oscillation induced by neurons’ resonance, a well-

observed phenomenon inmany studies (Jahnsen andKarnup, 1994;

Puil et al., 1994; Gutfreund et al., 1995; Hutcheon et al., 1996),

is the primary factor in determining ES-dependent instability.

Meanwhile, our study provides a computational tool to characterize

neurological mechanisms underlying electrical stimulation better.

2. Method

2.1. Animals preparation

Male Sprague-Dawley rats (∼300 g) were used in experiments.

Rats were housed and cared for in compliance with the guidelines

of the Institutional Animal Care and Use Committee (IACUC)

and were humanely euthanized after the experiment. The rat was

placed in a transparent acrylic box and anesthetized with isoflurane

(Iflurin, RingPu, China; R500-Series, RWD Life Science, China).

Observe the paw retraction reflex and breathing rate to estimate the

depth of anesthesia. After deep anesthesia, the rat was placed on a

heating pad to maintain the body temperature at 37◦C and worn an

anesthesia mask during the experiment to ensure deep anesthesia.

Remove the fur on the legs, disinfect the surgical area with 75%

ethanol, and then expose and locate the sciatic nerve.

2.2. The electrical stimulation-dependent
instability

We evaluated the instability by recording the patterns of

kicking force of a rat’s leg under sciatic nerve stimulation

in-vivo. The experimental setup is shown in Figure 1A. A

homemade flexible neural probe (Figure 1B) with five channels

(Figure 1C) connected with an flexible printed circuit (FPC)

connector was implanted on the sciatic nerve, shown in Figure 1C.

The neural probe is of polyimide-Au-polyimide sandwiched

structure fabricated by micro-electro-mechanical system (MEMS)

technology. The detailed fabrication process is described in the

previous study (Lee et al., 2017). Since two branches of the sciatic

nerve, the tibial nerve and the common peroneal nerve, control the

opposite kicking, one branch was cut in the downstream location to

ensure a one-directional kicking. When an electrical stimulus (STG

4008, Multi-Channel Systems GmbH, Germany) was applied to the

neural probe, a kicking force (forward or backward, depending on

which branch was cut off) was recorded by the force gauge (ZL-X10

& ZL-620, Anhui Yaokun Biotechnology, China) connected to the

rat’s leg with a wire.

The stimulation protocol is shown in Figures 1E1–E3. Each

stimulation train contains five pulses with 16.7ms as the latency

(Figure 1E1). Each train generates one force pulse with a period of
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FIGURE 1

The testing setup, stimulation protocol and the result sample. (A) The testing setup for measuring the force generated by sciatic nerve stimulations;

(B) The fabricated flexible neural probe used for sciatic nerve stimulations; (C) The electrode pads on the neural probe for stimulations; (D) The

flexible neural probe implanted to the sciatic nerve; (E1) The stimulation protocol. Each stimulation train contains 5 current pulses with 16.7ms as

latency. The latency between each train is 1 s. (E2) The sample of measured force showing non-monotonous fluctuation. f1∼f30 are the force pulses

generated by the 30 pulse tains in (E1). (E3) A sample of the instability curve of the measured force, defined as ξe =
Fstd

Fmean
, by changing the

current amplitudes.

1 s. The detailed current waveforms, current amplitudes, and pulse

widths will be provided for each test are shown in Table 1.

Figure 1E2 shows a typical sample of the measured force with

specific testing parameters (Table 1-e2). The recorded force pulses

show a non-monotonous fluctuation, indicating ES-dependent

instability. The instability in the in-vivo experiment, ξe, is

defined as the standard deviation vs. the average value of the

force amplitude:

ξe =
Fstd

Fmean
(1)

An example of ξe curves is shown in Figure 1E3 by stimulating

the nerve with a range of stimulus amplitudes. We identified

a ES-dependent ξe pattern in terms of the ξe peak amplitude

and position. This ES-dependent ξe is the major focus of

this study.

2.3. Modeling instability by C-P theory

2.3.1. A brief illustration of C-P theory
The major principle of the C-P theory can be explained by:

1. The electric field (E-field) across the axon membrane evokes

action potentials. Since the phospholipid bilayer of a cell

membrane can be modeled as a capacitor, this E-field is

proportional to the cross-membrane potential, which is the

voltage upon the capacitor of the cell membrane.

2. Since the input current and the generated voltage on the cell

membrane do not share the same waveform, we need to build

a circuit to calculate the voltage waveform.

3. There is a threshold voltage of nerve stimulation. Therefore, only

the part of the voltage waveform exceeding the threshold has a

probability of evoking the action potential.

Therefore, to calculate the probability proposed in Figure 2, we

need two components. One is the equivalent circuit to duplicate

the subthreshold oscillation. Another is the probability calculation

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1178606
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yu et al. 10.3389/fnins.2023.1178606

TABLE 1 Parameters of in-vivo experiments.

No Waveform Pulse
width (µs)

Current
amplitude (µA)

Fig1(E2) 200 100

Fig1(E3) 200 100:10:200, 200:20:380

Fig2(F) 100,200,400 55:5:150

Fig4(C1) 100 80:10:350

Fig4(C2) 300 80:10:350

Fig4(C3) 400 100:10:200,200:20:380

Fig5(B1) 100:100:800 55:5:150

Fig9(A–C)red 200 24:1:30, 30:2:50,

50:5:100, 100:20:160

Fig9(A—C)blue 200 38:2:60, 60:5:80,

80:10:160

Fig10(B1&B2) 400 110:10:340

Fig10(C1&C3) 200 55:5:150

Fig10(C2) 300 55:5:150

Fig12(A–C) 200 18

based on the oscillating voltage. Our previous study demonstrated

that this oscillating voltage could be duplicated by an RLC circuit

shown in Figure 2B (Wang et al., 2020). In the circuit component,

we build an RLC circuit to represent the passive property of

neural tissue (Figure 2B). The capacitor CMembrane represents the

cell membrane. This circuit has an inductor L, which differs from

the RC circuit used in conventional models such as the Hodgkin-

Huxley model (H-H model) (Hodgkin and Huxley, 1952). We

detailedly discussed the physical origins of the inductive element

in the neural circuit (Wang et al., 2021). Generally, it has two

origins. One is from the spiraling Schmidt-Lanterman incisure

(SLI), the cytoplasmic channels in myelin sheaths. During the

action potential, a spiraling current within SLI will generate a

magnetic field, which functions similarly to a coil inductor. Thus,

myelin can function as a real inductor. The primary evidence of the

existence of this coil inductor is the non-random spiraling between

adjacent myelin sheaths (Wang et al., 2021) and the explanation of

Peter’s quadrant mystery by the current in SLI (Liu et al., 2022),

which are discussed in detail in our previous works. The second

origin comes from the flexoelectricity of cell membrane, which is

phenomenologically the same as piezoelectric effect (Petrov, 2006).

Since the equivalent circuit to model the piezoelectric effect always

follows a parallel RLC circuit, the flexoelectricity also contributes

an equivalent inductor in the neural circuit. Thus, the coil inductor

and the equivalent inductor are combined as one inductive element

in the RLC circuit used in this study. RP is the leakage resistance of

the circuit. RC and RL are the resistors connected in series with the

membrane capacitor and the inductor, respectively.

Figure 2D shows a typical subthreshold oscillation generated by

the RLC circuit in Figure 2B. This voltage oscillation was reported

in many biological experiments (Sjodin and Mullins, 1958; Araki

et al., 1961; Freeman, 1961; Ranck, 1963; Guttman, 1969; Mauro

et al., 1970; Scott, 1971; Takashima and Schwan, 1974; Hombl and

Jenard, 1984; Koch, 1984; Hutcheon and Yarom, 2000; Dwyer et al.,

2012; Mosgaard et al., 2015), particularly in the original study of

the H-H model (Hodgkin and Huxley, 1952). When the threshold

voltage is applied, the part of voltage exceeding the threshold will

be involved in the equation of probability calculation:

P = 1− e−α
∫

e
−(

β

|V(t)−VThr|
)

dt

This equation is proposed and explained by our previous

work on Circuit-Probability theory (Wang et al., 2020). α, β are

parameters to be tuned to fit the experimental data. VThr is the

threshold voltage, which is the difference between the resting

potential and threshold voltage in Figure 2A. Due to the voltage

oscillation, more than one block of the voltage waveform can be

involved in the probability calculus. In the case shown in Figure 2D,

three blocks are involved.

To better illustrate the C-P theory, we demonstrate how to

derive and predict the results of in-vivo testing from modeling.

The waveforms displayed in Figure 2C show the voltage oscillation

across the CMembrane, generated by applying currents with varying

amplitudes and pulse widths to the RLC circuit. As the current

amplitude (Figure 2C1) and pulse width (Figure 2C2) increase, the

effective areas for probability calculus also increase. Thus, we could

obtain a specific probability mapping (Figure 2E), where thick

curves can reproduce the measured force curves (Figure 2F) in in-

vivo testing. Notably, due to the difficulty in accurately selecting the

stimulation parameters during the testing process, the thin curves

in the probability mapping (Figure 2E) cannot be obtained through

in-vivo testing but can be simulated by C-P theory.

2.3.2. Modeling the e�ect of threshold fluctuation
The model involved in this study is based on the C-P theory,

which is briefly illustrated in Section 3.1. In this section, we

introduce how to involved the threshold fluctuation in the model.

It is known that a successful electrical stimulation of an

axon will activate an action potential (Figure 2A). However, if

the stimulus is insufficient to evoke an action potential, an

oscillating voltage waveform, which is normally called subthreshold

oscillation, will be recorded in the experiment of patch-clamp

(Figure 2A). This subthreshold oscillation is the voltage applied

to the cell membrane. Thus, the part of the voltage higher

than the threshold shall have a probability of evoking an action

potential. It is emphasized that the subthreshold oscillation may

not be really subthreshold. Part of the voltage still exceeds the

threshold, providing a certain probability of activating an action

potential. If the activation is failed, the recorded voltage is called

subthreshold oscillation.
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FIGURE 2

The concept of the C-P theory and the definition of instability in modeling. (A) The neural response of electrical stimulations: a suprathreshold

stimulation will generate an action potential, while a subthreshold stimulation will induce a subthreshold oscillation. (B) The equivalent circuit with an

RLC configuration to model the neurons. (C) The resultant voltage waveform across the CMembrane was recorded when a positive-first biphasic square

waveform current of varying amplitudes and pulse widths was applied. (D) The concept of C-P theory. The subthreshold oscillation can be duplicated

by the voltage response of the RLC circuit in (B). The part of the voltage exceeding the threshold will be involved in the calculation of the probability

of generating an action potential. (E) Probability calculation of di�erent current amplitudes by changing pulse widths (probability mapping). (F)

Measured force curves of di�erent current amplitudes by changing pulse widths in in-vivo testing. (G) The definition of ES-dependent instability:

assuming that the threshold will have a fluctuation in the range of ±, the instability in modeling is defined as ξs =
PThr+−PThr−

PThr
.

Since the VThr is the difference between the resting potential

and the threshold voltage in Figure 2A, the fluctuation of the

membrane potential, which is reported as the origin of the ES-

dependent instability (Potts et al., 1994; Bostock et al., 2005;

Moldovan and Krarup, 2006), can be modeled with a fluctuation of

VThr , as shown in Figure 2G. We assume that the threshold voltage

can only fluctuate within a region defined by 1, then the threshold

voltage can be changed from the upper limit VThr+1 to the lower

limit VThr−1, shown in Figure 2G. The instability in the simulation

can be defined as

ξs =
PThr+1 − PThr−1

PThr
(2)

where ξs refers to the instability in simulation. PThr , PThr+1

and PThr−1 are the calculated probability by setting their own

threshold voltages.

Now the threshold fluctuation is involved in the model and the

definition of instability in modeling is obtained.

2.3.3. Calculating the instability peaks in modeling
By using the C-P theory and the definition of instability in

Figure 2, the instability peaks observed in testing (Figure 1E3) can

be reproduced as shown in Figure 3.

A typical result of ξs by applying a positive-first biphasic square

wave current with 400 µs pulse width is shown in Figure 3A.

The curve has three peaks, reproducing the pattern shown in
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FIGURE 3

The illustrative explanation of the instability peaks in modeling. (A) Modeling results show several instability peaks in the instability curve by the

definition of ξs =
PThr+△−PThr−△

PThr
; (B) The voltage oscillation shows several oscillation peaks corresponding to the instability peaks in (A); (C) Illustrative

explanation about how the voltage oscillation peaks induce instability peaks; (D) The modeling of instability peaks by the definition of ξs =
P′ (I)
P(I)

.

Figure 1E3. Here we need to explain why our model can reproduce

the pattern of peaks in in-vivo tests.

For the representative voltage waveform shown in Figure 3B,

three oscillation peaks can exceed the threshold, named as Vp1, Vp2

and Vp2. Since these three voltage peaks are of different amplitudes,

they reach the threshold in series by increasing the current. When

the current is low, only Vp1 reaches the threshold (Figure 3C1), the

instability is

ξs =
PThr+1 − PThr−1

PThr
≈

PThr

PThr
= 100%

In this scenario, the instability reaches the maximum, shown as

the first peak, ξp1, in Figure 3A. Then the instability will decrease by

increasing the current until the second voltage peak, Vp2, reaches

the threshold, shown in Figure 3C2. It will also induce a local

maximum, ξp2. But because the total probability, PThr , on the

denominator is higher, the amplitude of the second instability peak,

ξp2, is lower than ξp1. Then by further increasing the current to

make Vp3 reach the threshold (Figure 3C3), a third instability peak,

ξp3, will appear, and its amplitude is lower than ξp2. In summary, an

instability peak will appear with a decreased amplitude whenever a

new voltage peak exceeds the threshold.

The definition of instability, ξs in Figure 3A is based on

the upper and lower limit of the threshold fluctuation, 1. The

amplitude of 1 will not change the qualitative results, which refer

to the number and position of those peaks of ξ , but will determine

the quantitative result, which refers to the height of the peaks. Here

we will conduct a further derivation to make the definition of ξ free

of 1.

The fluctuation of the threshold changes the area of the

voltage waveform involved in the probability calculus. Meanwhile,

changing the amplitude of the input current can induce the

equivalent effect. For example, increasing the threshold voltage is

equivalent to reducing the current amplitude, while decreasing the

threshold voltage is equivalent to increasing the current amplitude.

Thus, equation (2) can be rewritten into another form:

ξs =
PThr+1 − PThr−1

PThr
→ ξs =

P(I + 1I)− P(I − 1I)

P(I)
(3)

In this new equation (3), the fluctuation of the threshold is

replaced by a change in the input current.
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FIGURE 4

The patterns of the instability peaks in in-vivo tests are reproduced by modeling. (A1–A3) The heat map of the instability by changing both pulse

width and current amplitude; (B1–B3) The captured profile of the instability curve at a specific pulse width; (C1–C3) The measured instability curves

to be reproduced by (B1–B3).

Since

lim
1I→0

P (I + 1I) − P (I − 1I) =
dP

dI
× 21I

Then further derive the equation (3) as follow:

lim
1I→0

ξs =
dP

dI
×

21I

P(I)
(4)

Since 1I is always set as a constant, it can be neglected in the

qualitative modeling; the equation (4) can be written as follow:

ξs =
1

P(I)
×

dP

dI
=

P′(I)

P(I)
(5)

This new definition does not rely on the value of 1. The

instability curve in Figure 3D modeling by equation (5) can

generally reproduce the pattern in Figure 3A modeling by equation

(2). But the width and the position of the peaks will have a slight

shift, which is induced by reducing 1 to zero. In the following

sections, all simulation results used equation (5) as the definition

of ξs.

3. Results

3.1. The number and position of peaks

Based on the stimulus-response relationship given by the

C-P model, we generated a full mapping of the instability by

traversing all possible values of the current amplitude and the

pulse width while keeping the same waveform. The simulation

results will form a heat mapping shown in Figure 4A, called an

instability mapping. All modeling settings and parameters are listed

in Table 2. The result of the instability curve of a specific pulse

width is just the profile of one cross-section of the instability

mapping. In Figure 4A, the profiles captured at different pulse

widths show different patterns (Figure 4B). This changing trend

can also be observed in in-vivo testing (Figure 4C). Our model

closely reproduces the observed patterns in-vivo. It should be noted

that the current scales of instability curves in the in-vivo testing

and simulation are different due to the omission of delta in the

definition of instability and the uncertainty of threshold. Therefore,

the comparison between Figures 4B, C shows that our simulation

can only reproduce the relative scale of the curves and the scale

of the peaks. Still, the quantitative results can not be accurately

reproduced at present.
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TABLE 2 Parameters of modeling.

No RP(k�) RC(�) RL(k�) C(nF) L(H) α β Thr(V) 1(V) PW(µs) Current(µA)

Fig2(D)(G)/Fig3(B) 800 100 15 0.937 1.499 1,200 0.01 −8.5 ∼ 400 10:10:400

Fig2(C1) 800 100 15 0.907 1.499 1,200 0.01 −0.75 ∼ 100 50:25:200

Fig2(C2) 800 100 15 0.907 1.499 1,200 0.01 −0.75 ∼ 50:25:200 50

Fig2(E) 800 100 15 0.907 1.499 1,200 0.01 −0.75 ∼ 50:25:200 5:5:150

Fig3(A) 800 100 15 0.907 1.499 1,200 0.01 −1.28 0.07 400 5:5:150

Fig3(D) 800 100 15 0.907 1.499 1,500 0.04 −1.28 ∼ 400 2:5:150

Fig4(A1) 360 100 15 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig4(B1) 360 100 15 0.937 1.499 2,000 0.08 −5 ∼ 150 10:10:1000

Fig4(A2) 240 100 8 0.937 1.499 2,000 0.08 −2.5 ∼ 5:5:1000 10:10:1000

Fig4(B2) 240 100 8 0.937 1.499 2,000 0.08 −2.5 ∼ 350 10:10:1000

Fig4(A3) 80 100 5 0.937 1.499 1,450 0.02 −4.6 ∼ 5:5:1000 15:15:900

Fig4(B3) 80 100 5 0.937 1.499 1,450 0.02 −4.6 ∼ 800 15:15:900

Fig5(A1) 100 100 15 0.937 1.499 1,200 0.01 −0.55 ∼ 5:5:800 10:10:250

Fig6(1,1) 40 100 0.1 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(1,2) 40 100 8 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(1,3) 40 100 15 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(2,1) 80 100 0.1 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(2,2) 80 100 8 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(2,3) 80 100 15 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(3,1) 120 100 0.1 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(3,2) 120 100 8 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig6(3,3) 120 100 15 0.937 1.499 2,000 0.08 −5 ∼ 5:5:1000 10:10:1000

Fig8(B&C) 500 100 10 1.2 0.55 1,200 0.01 −6 ∼ 1000 100

Fig8(D1) 500 100 10 0.2 0.55 1,200 0.01 −6 ∼ 5:5:1000 1:1:1000

Fig8(D2) 500 100 10 0.6 0.55 1,200 0.01 −6 ∼ 5:5:1000 1:1:1000

Fig8(D3) 500 100 10 1.2 0.55 1,200 0.01 −6 ∼ 5:5:1000 1:1:1000

Fig10(A1&A2) 120 100 0.1 0.937 1.499 2,000 0.08 −5 ∼ 100 15:15:500

3.2. The moving track of the peaks

It is clearly observed that each peak moves along a specific

track in the instability mapping. This moving track can also

be reproduced by our modeling results shown in Figure 5. In

Figure 5A1, we tune the modeling parameters to generate an

instability mapping to fit the in-vivo results shown in Figure 5B1.

In Figure 5A1, three peaks can be found, named as ξP1, ξP2 and

ξP3. Their moving tracks are labeled in Figure 5A2. The moving

tracks of ξP1 and ξP2 share a similar “L” shape. They have a large

divergence at the low pulse width and tend to merge at the high

pulse width. The moving track of ξP3 has an individual shape with

some oscillation.

The in-vivo results in Figure 5B1 can generally be fitted by

the modeling results in Figure 5A1. The data to generate the heat

map in Figure 5B1 is a sparse matrix, showing key features of the

instability mapping. We labeled the position of the peaks of in-

vivo testing in Figure 5B2. Based on the guidance of Figure 5A2,

it is found that the positions of the peaks also closely fit the

predicted moving tracks. The modeling parameters can be found

in Table 2.

Since the modeling parameters mainly determine the instability

mapping generated by C-P theory, we also generate some other

possible patterns of the instability mapping by changing the circuit

parameters. In this study, we only show how the patterns change

with the quality factor, Q = RP

√

CMembrane
L , and the resistor

connected in series with the inductor, RL.

In Figure 6, the quality factor, Q, mainly determines the spacing

between themoving tracks of the peaks. A lowQ factor will increase

the spacing, while a high Q factor will make the tracks closer to each

other. The resistor RL mainly determines the density of the peaks.

A lower RL generates more peak tracks.
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FIGURE 5

The moving tacks of instability peaks in in-vivo test are reproduced by modeling. (A1) The heat map of the instability by modeling; (A2) The tracks of

the three instability peaks in (A1); (B1) The measured heat map of the instability by in-vivo test; (B2) The recognized positions and tracks of the

instability peaks in (B1).

The patterns have quite complex changing trends, which cannot

be fully elucidated here. Figure 6 only demonstrates a facet of the

effect of the parameters on the modeling results, showing that the

patterns and tracks of the peaks are highly tunable. The modeling

parameters can be found in Table 2.

3.3. How to improve the ES-dependent
stability by parameter selection

Our modeling work also provides a possible method to

optimize the stimuli parameters to improve ES-dependent stability.

We make a case demonstration based on the modeling results in

Figure 5A1.

Since the C-P theory can generate the whole probability

mapping for all stimuli parameters, we can also generate a contour

map of the probability, as the gray lines shown in Figures 7A, C.

Improving stimuli parameters is to find a path from a very weak

stimulation (10%) to a very strong stimulation (90%) on the map

(Figure 7A) with the lowest mean instability.

Firstly, we demonstrate the improving method by a simple

parameter selection, which is fixing either the current amplitude or

the pulse width. In this case, the path of the parameter in Figure 7A

should be either a vertical straight line (fix the pulse width) or

a horizontal straight line (fix the current amplitude). Averaging

all the data points of the instability on each line for comparison,

and the results are shown in Figure 7B. For the situation of fixing

the current, the calculation results are shown as the yellow line

in Figure 7B. This data curve shows some fluctuation and reaches

the minimum at the current of 250 µA with mean instability of

about 0.001, which refers to the yellow horizontal line at the top of

Figure 7A. For the situation of fixing the pulse width, the results are

shown as the purple line in Figure 7B. It is a monotonous increasing

line with the pulse width. Thus, the minimal instability happens at

about 810 µs with mean instability of about 0.0104, which refers

to the purple line in Figure 7A. As seen, the instability of the purple

line is about 10 times higher than that of the yellow line. The reason

is that the vertical purple line inevitably goes through the region

with very high instability (indicated with red and yellow colors,

named as high instability region) at the bottom of Figure 7A, while

the yellow line is located at the top of Figure 7A, which is a region

with low instability. As seen, the key to improving the stability

is to avoid the high instability region. Meanwhile, the modeling

results in Figure 6 show that the high instability regions normally

distribute horizontally. Thus, horizontal lines have a better chance

of completely avoiding these regions. On the contrary, if the

horizontal line accidentally across one of the high instability regions

(which may happen in applications), all stimulations will exhibit

high instability. Thus, it is recommended that a proper instability

mapping, as in Figure 5A1, should be characterized to indicate

the high instability regions. Just by avoiding these regions, ES-

dependent stability can be significantly improved.

Apparently, if the parameter path is not a straight line, or

even not a continuous path, it is possible to avoid all high-

instability regions. To demonstrate this method, the instability of

along each contour line is calculated. As a case demonstration,
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FIGURE 6

A parameter comparison by modeling. The resistor connected in series with the inductor and the quality factor of the circuit are selected as the

variables.

the calculation results of the contour line of 70% are shown

in Figure 7D by setting pulse width and current as the x-

axis, respectively. As seen, even with the same probability, the

instability can have a dramatic difference by changing the stimuli

parameters. Here we give a rule for setting the threshold for stimuli

parameter selection:

ξThreshold=ξmin+(ξmax − ξmin)× 5%;

Here ξmax and ξmin refers to the maximum and minimum

instability on the map, respectively. The region higher than

ξThreshold is indicated with red color, while the region lower than

ξThreshold is indicated with green color. As seen in Figure 7C,

the green regions on the contour lines can roughly form

the area, which parameter path can go through with very

low instability.

This method may be challenging to apply in applications since

a fine-characterized instability mapping is very difficult and time-

consuming. The key inspiration of this modeling is that, even

with the same probability, which refers to the stimulation strength,

the instability can vary a lot by setting different parameters.

Therefore, a proper parameter selection can significantly improve

ES-dependent stability.

4. Discussion

4.1. The e�ect of the inductor involved in
the equivalent circuit of neural tissue

The most controversial part of the C-P theory is the inductive

factor involved in the equivalent neural circuit. Starting from the

cable theory and H-H model, a neural circuit of RC configuration

is always applied to model the axon. However, the passive voltage

response does follow an RLC circuit, which has been validated

by our previous works (Wang et al., 2020, 2021) and many

previous studies (Sjodin and Mullins, 1958; Araki et al., 1961;

Freeman, 1961; Ranck, 1963; Guttman, 1969; Mauro et al., 1970;

Scott, 1971; Takashima and Schwan, 1974; Hombl and Jenard,

1984; Koch, 1984; Hutcheon and Yarom, 2000; Dwyer et al.,

2012; Mosgaard et al., 2015). To further confirm the effect of the

inductor on ES-dependent instability, the modeling results using

an RC circuit (Figure 8A) are shown to make a comparison. A

typical RC voltage response by applying a square current pulse

is shown in Figure 8B. Due to the lack of oscillation, only one

voltage block can exceed the threshold. Thus, the calculated

probability shows a smooth increasing curve without any abrupt

change (Figure 8C). Therefore, only one instability peak will be

observed in modeling results (Figures 8D1–D3). The track of the
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FIGURE 7

The methods to improve the ES-dependent stability by selecting proper stimuli parameters. (A) An overlapping of the contour map and its instability

mapping. The horizontal yellow line is the parameter path with the minimal mean instability in all horizontal lines; the vertical purple line is the

parameter path with the minimum mean instability in all vertical lines. (B) The calculated mean instability of all horizontal lines (yellow) and vertical

lines (purple). (C) The same overlapping map as (A) with green region (low instability) and red region (high instability). (D) A case demonstration of the

instability calculation of the 70% contour line by setting current (upper) and pulse width (lower) as x-axis. The curve higher than ξThreshold is labeled in

red, while the curve lower than ξThreshold is labeled in green.

instability peak will form an “L” shape, which is not affected by

modeling parameters.

So based on our theory, if the neural circuit really follows

an RC configuration, there shall always be only one peak, which

is inconsistent with the experimental data. Meanwhile, compared

with the simple peak track in Figure 8D, the instability mapping

in Figure 5B1 shows a much more complex pattern of the tracks.

Therefore, an RLC circuit can reproduce the passive property more

accurately than an RC circuit.

4.2. The e�ect of current waveforms

Our model suggested that the instability is also affected by

the shape of the current waveform. To demonstrate this, two

current waveforms, square wave and sine wave, were involved in

the test shown in Figure 9. Figure 9A shows the measured force by

changing the current amplitude. The applied pulse width is 200

µs. The calculated instability is shown in Figure 9B. We set the

force as the x-axis, which provides a fair basis for the comparison

(Figure 9C). Our results indicated that the sine wave induced a

higher instability. It is worth investigating more with a wide range

of stimulation waveforms and parameters in future studies.

4.3. Instability vs. linearity

It is expected to minimize the instability of the electrical

stimulation. Meanwhile, it is also expected to achieve a linear

control of the stimulation strength. However, based on our theory,

there is a trade-off between these two factors. Based on the

definition of instability, ξs =
P′(I)
P(I)

, it can be derived that the ξs

is directly proportional to P′(I), ξs∝ P′(I), while the linearity is

directly proportional to P′(I), Linearity∝ P′(I). Thus, the instability

ξs is directly proportional to the linearity, ξs∝ Linearity. It means

the instability tends to be high in the range of electrical stimulation,

which can provide a good linear relationship between the current

amplitude and the neural response. While in the range that the

strength of the neural response is not much affected by the current

amplitude, the stimulation will be more stable. Thus, there is a

trade-off between stability and stimulus settings.
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FIGURE 8

A comparison of the modeling by using an RC circuit. (A) The RC circuit used in modeling; (B) A representative voltage waveform (blue line) by

applying a square current (red dash line). Only the voltage (filled with orange color) exceeding the threshold (green line) is calculated in probability

calculus. (C) The probability is calculated by changing the current amplitude; (D1–D3) The heat map of the instability by changing the value of the

capacitance.

FIGURE 9

A comparison between square and sine current waveform. (A) The measured force; (B) The calculated instability curve; (C) Re-processed instability

curves by setting the force as x-axis.

A more illustrative explanation of this trade-off is shown in

Figure 10. Figure 10A1 shows the probability curve by changing

the current amplitude, which can generally duplicate the testing

results in Figure 10B1, the measured force by changing the

current amplitude. The model parameters can be found in

Table 2. In Figure 10A1, the probability curve is not smooth.

Besides the beginning section, there are another two positions

with abrupt changes labeled as circles with different colors. The

derivatives of the probability curve at the circles reach the local

maximum, corresponding to the three peaks in the instability curve

(Figure 10A2). In Figure 10B1, similar abrupt change points can

also be found. The instability curve in Figure 10B2 suggests that the

peaks happen at the position of these abrupt changes. More similar

data of in-vivo testing are shown in Figure 10C.

This study first proposed and validated the trade-off between

stability and linearity in electrical stimulation. The prediction and

explanation of this trade-off show that our theory does not only fit

the testing data but also elucidates its mechanism.

4.4. The issue of historical path divergence

We proposed a new concept called historical path divergence. It

is essential to understand the phenomenon of continuous electrical

nerve stimulation. A brief illustration of this concept is shown in

Figure 11.

In Figure 1E3, the fluctuation of the measured

force demonstrated a non-monotonic trend. So, it
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FIGURE 10

The modeling and in-vivo results show the trade-o� between ES-dependent stability and linearity. (A1) A representative probability curve of

modeling showing several abrupt change points; (A2) The calculated instability curve shows the positions of the peaks corresponding to the

positions of the abrupt change points; (B1) A presentative force curve of the in-vivo test showing several abrupt change points; (B2) The instability

curve shows the positions of the peaks corresponding to the positions of the abrupt change points. (C1–C3) The force-current curve with error bar

(blue) and the instability-current curve (orange) shows other results of square wave tests on the sciatic nerve.

FIGURE 11

The illustrative explanation of the historical path divergence issue.

can be inferred that the state change of the neuron,

which refers to the threshold fluctuation, is determined

by both the electrical input and the real-time

neuron states.

At the beginning of the electrical stimulation, all neurons are

at state S0, which means no state change. Since all neurons are in

the same state, they are synchronized. After the first stimulation is

applied, two possible outcomes might occur: S1 (generate AP) and
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FIGURE 12

The testing data to validate the historical path divergence issue. (A) The five measured force curves with the same testing parameters, and the

synchroized and asynchronized area in (C); (B) The standard deviation of the force curve in (A). Every five points in (A) are calculated as one data

point in (B); (C) The first fifteen points of the five curves in (A) are compared. The changing trends are labeled in colors (red refers to increasing, and

green refers to decreasing).

S0 (no AP). Since the number of state combinations for all neurons

increases, they are less synchronized or more asynchronous (that is,

neurons tend to have different states).

Each state can have two possible outcomes when the subsequent

stimulation is applied. Therefore, the number of possible states is

increased, causing decreased synchronicity of neurons.

The stimulus-induced historical paths formed a binary tree

in Figure 11. The synchronicity of the states of all neurons will

determine the observed instability. When the synchronicity is

higher, such as state S0, all neurons tend to have the same state

change post-stimulus. This state change can either increase or

decrease excitability. Therefore, the observed force will have a more

evident fluctuation trend, either increasing or decreasing. With

subsequent stimulations, neurons tend to be asynchronous. Some

may increase, and some may decrease. Thus, the observed force

fluctuation will not have an evident changing trend. In other words,

the measured force can be more stable.

At the beginning of the stimulation, the synchronicity across

neurons is high. Thus, the resulting force tends to have a more

evident changing trend withmore increased instability. Meanwhile,

this evident changing trend is the same in all testing trials. However,

with subsequent stimuli, this evident changing pattern tends to

disappear, and the force tends to be more stable.

The abovementioned conclusions are validated by the in-vivo

experiments shown in Figure 12. Figure 12A shows the curves

of five testing trials with the same stimulation parameters. The

standard deviation (SD) can represent the instability of the curve.

To show the change in the SD with time, the SD is calculated with

each 5 data points (Figure 12B). SD is high at the beginning and

soon decreases to a certain level, showing the trend that the force

becomes more stable with time. Figure 12C only shows the first 15

data points of the force curve in Figure 12A. The changing trend

is labeled with colors (green refers to decrease, and red refers to

increase). Only at the beginning stage (the first 4 data points), all

force curves show the same decreasing trend.

The data analysis in Figure 12 shows the effect of the historical

path divergence. Continuous stimulation will diverge the historical

paths of all neurons and reduce instability. Thus, instability is

always the highest at the beginning stage.

5. Limitations

Although we can reproduce the patterns of peaks in the

modeling results, the heights of the peaks are not accurate. Several

factors might limit the modeling accuracy.

5.1. The parameters in the C-P theory are
not accurate

We cannot precisely assign the parameters in C-P theory. Our

previous work developed the C-P theory to build the mathematical

relation between the electrical input and the neural response, which

is similar to the H-H model. However, unlike the H-H model, the

C-P theory can describe macroscopic electrical nerve stimulation.

Thus, those parameters involved in the model are not measurable.

Meanwhile, due to the high nonlinearity of the model, it is also

difficult to precisely estimate these parameters. Currently, we assign

the value of each parameter by the exhaustive method, which can

roughly reproduce the distinctive features of the testing results,

such as the number and position of the peaks.
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5.2. The value of threshold fluctuation is
unknown

The instability’s origin is known as the membrane potential

fluctuation. However, it is difficult, if not impossible, to measure

the value and range of the membrane potential fluctuation in-vivo.

This value will quantitatively affect the height of the peaks in our

modeling results but does not affect the general patterns. Therefore,

we give a new definition of instability free of the value of membrane

potential fluctuation, P′

P , which is more suitable for qualitatively

reproducing the patterns of the peaks.

5.3. The definitions of instability of in-vivo
testing and modeling are not consistent

The instability of in-vivo testing is based on themeasured force’s

standard deviation (SD). However, the SD cannot be generated

in our modeling. Instead, we used the difference between the

maximum and minimum probability, which positively correlated

with the SD. This inconsistency will not affect the reproduction of

the patterns but will forbid us from acquiring the accurate height

of peaks.

6. Conclusion

There is much-growing evidence that the performance

of electrical stimulation cannot be significantly improved by

merely optimizing stimulus parameters without considering the

complexity of the biophysical characteristics of the target nerve

system. Under certain specific stimuli parameters, the ES-

dependent instability can reach a local maximum. We investigated

the characteristics of ES-dependent instability by the Circuit-

Probability theory. Ourmodel reveals several critical characteristics

of the instability peaks. Firstly, the instability peaks’ physical

origin is the axon’s oscillatory nature, whose passive electric

property shall be modeled by an RLC circuit. Thus, due to the

complexity of the RLC circuit’s voltage response, the measured

instability peaks will follow certain patterns which our model

can reproduce. On this basis, ES-dependent stability can be

improved by selecting appropriate parameter paths to bypass

the instability peaks. We demonstrated different methods to

search optimal parameter paths, either a continuous straight

path or a discontinuous arbitrary path, to minimize the total

instability of traversing all probability levels. Meanwhile, in our

model, the measured pattern of instability peaks of in-vivo

testing is derived from the passive response of neural circuits.

It substantially supports the necessity of adding an inductive

factor in neural circuits. Moreover, our model reveals the trade-

off between ES-dependent stability and linearity. That is, given a

current range that allows linear control of stimulation strength,

the stability of neural response tends to be low. Finally, our

model proposes a new perspective to investigate electrical nerve

stimulation: the historical path divergence that predicts ES-

dependent instability changes with the stimulation duration, which

means that the instability is always the highest in the initial

stage of stimulation, and gradually decreases with the increase of

stimulation duration.
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