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Introduction: Primary dysmenorrhea (PDM) is a common condition among 
women of reproductive age, characterized by menstrual pain in the absence of 
any organic causes. Previous research has established a link between the A118G 
polymorphism in the mu-opioid receptor (OPRM1) gene and pain experience in 
PDM. Specifically, carriers of the G allele have been found to exhibit maladaptive 
functional connectivity between the descending pain modulatory system and 
the motor system in young women with PDM. This study aims to explore the 
potential relationship between the OPRM1 A118G polymorphism and changes in 
white matter in young women with PDM.

Methods: The study enrolled 43 individuals with PDM, including 13 AA homozygotes 
and 30 G allele carriers. Diffusion tensor imaging (DTI) scans were performed 
during both the menstrual and peri-ovulatory phases, and tract-based spatial 
statistics (TBSS) and probabilistic tractography were used to explore variations 
in white matter microstructure related to the OPRM1 A118G polymorphism. The 
short-form McGill Pain Questionnaire (MPQ) was used to access participants’ 
pain experience during the MEN phase.

Results: Two-way ANOVA on TBSS analysis revealed a significant main effect 
of genotype, with no phase effect or phase-gene interaction detected. Planned 
contrast analysis showed that during the menstrual phase, G allele carriers had 
higher fractional anisotropy (FA) and lower radial diffusivity in the corpus callosum 
and the left corona radiata compared to AA homozygotes. Tractographic analysis 
indicated the involvement of the left internal capsule, left corticospinal tract, and 
bilateral medial motor cortex. Additionally, the mean FA of the corpus callosum and 
the corona radiata was negatively correlated with MPQ scales in AA homozygotes, 
but this correlation was not observed in G allele carriers. No significant genotype 
difference was found during the pain-free peri-ovulary phase.
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Discussion: OPRM1 A118G polymorphism may influence the connection 
between structural integrity and dysmenorrheic pain, where the G allele could 
impede the pain-regulating effects of the A allele. These novel findings shed 
light on the underlying mechanisms of both adaptive and maladaptive structural 
neuroplasticity in PDM, depending on the specific OPRM1 polymorphism.
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1. Introduction

Primary dysmenorrhea (PDM) is a common gynecological 
disorder among young women characterized by menstrual pain in 
the absence of any observable pelvic abnormalities (Habibi et al., 
2015; Iacovides et al., 2015). PDM is primarily caused by uterine 
myometrial hypercontractility and vasoconstriction, which can 
be  attributed to various factors such as an increase in 
prostaglandin, cytokines, and vasopressin (Berkley, 2013; Ferries-
Rowe et al., 2020). In addition, PDM can be linked to abnormal 
pain control mechanisms, as evidenced by structural and 
functional changes in pain processing networks (Berkley, 2013; 
Low et al., 2018). PDM is often associated with functional pain 
disorders and chronic pain conditions such as irritable bowel 
syndrome, fibromyalgia, chronic fatigue syndrome, and lower 
back pain in adulthood (Altman et al., 2006; Berkley, 2013; Chung 
et  al., 2014; Tu et  al., 2020). It is suggested that maladaptive 
changes in the descending pain modulation system (DPMS) in 
young women with PDM may contribute to the high incidence of 
comorbidity with functional pain disorders in later life (Wei 
et al., 2016a).

During menstruation, individuals with PDM have been found 
to experience pelvic floor hypersensitivity (Iacovides et al., 2015; 
Lima et al., 2019). Pelvic muscle training, such as Kegel exercises, 
has demonstrated positive effects on managing pelvic pain of 
various types, including PDM (Ortiz et al., 2015; ElDeeb et al., 
2019; Scott et  al., 2020). It has been reported that the 
representation of the pelvic floor muscle in the motor cortex 
involves overlapping areas of the medial primary motor cortex 
(M1) and the supplementary motor area (SMA) (Yani et al., 2018). 
To define these regions of interest in our study, we referred to 
them as the medial motor cortex (MMC), which includes the 
medial M1 and pre-SMA/SMA regions. Recent research has 
suggested a possible link between dysmenorrhea and motor cortex 
dysfunction (Kutch and Tu, 2016). Our previous study has also 
revealed abnormal functional connectivity between the 
periaqueductal gray (PAG) and MMC in young women with PDM 
implicating possible dysregulation of the motor system and DPMS 
(Wei et al., 2016b). Therefore, it is crucial to investigate further 
the relationship between sensorimotor representation and pelvic 
pain processing in PDM.

The substitution of adenine with guanine at codon 118 
(A118G) in the mu-opioid receptor (OPRM1) gene results a single 
nucleotide polymorphism (SNP) that has been associated with 
decreased OPRM1 expression (Zhang et al., 2005), heightened 

pain sensitivity (Yao et al., 2015), and increased analgesic use (Sia 
et al., 2008). OPRM1 is responsible for the pain-reducing effects 
of opioids within the central nervous system, and individuals 
carrying the G allele may be at a higher risk for developing chronic 
pain (Fields, 2004). According to our previous study using 
functional magnetic resonance imaging (fMRI), there is evidence 
to suggest that variations in pain perception and neural regulation 
in individuals may be  attributed to differences in the OPRM1 
genotype, specifically affecting the functional connectivity 
between the sensorimotor and DPMS brain regions (Wei et al., 
2017). The study found that active cortical modulation may 
be present during menstrual pain and that this may explain why 
AA homozygotes rated their pain experience lower than G allele 
carriers. Additionally, studies have suggested that white matter 
properties in the brain may predict pain chronification (Mansour 
et al., 2013). However, the current relationship between OPRM1 
A118G polymorphism and white matter changes in women with 
PDM is currently unknown.

Neuroimaging alterations during menstruation (painful state) 
were regarded as state changes, whereas alterations during the peri-
ovulatory phase (pain-free state) were regarded as trait changes 
(Wei et  al., 2016a). Specifically, our voxel-based morphometric 
study of gray matter volume found that PDM may be associated 
with cyclic state changes during the menstrual phase (MEN) in 
PDM subjects (Tu et  al., 2013). Furthermore, our resting state 
fMRI-functional connectivity study revealed that only the G allele 
carriers of PDM subjects, compared to controls, may have 
hyperconnectivity in the PAG- MMC network during the MEN, 
implicating subclinical dysregulated pain modulation (Wei et al., 
2017). This dysfunctional DPMS involving the MMC and PAG is a 
common factor in many chronic pelvic pain disorders (Kutch and 
Tu, 2016; Wei et al., 2017).

Our investigation aimed to assess the potential link between 
white matter alterations and the OPRM1 A118G polymorphism in 
individuals with PDM, utilizing diffusion tensor imaging (DTI) 
(Le Bihan et al., 2001; Nucifora et al., 2007). We employed the 
tract-based spatial statistics (TBSS) method and probabilistic 
tractography (Behrens et  al., 2003a) to analyze white matter 
connectivity. TBSS is a voxel-wise, data-driven approach that 
allows for the calculation of DTI metrics in white matter tracts. 
Our study specifically focused on investigating whether the 
OPRM1 A118G polymorphism is associated with state or trait 
changes in white matter connectivity in individuals with PDM, 
with an emphasis on the connectivity between the motor cortex 
(particularly MMC) and DPMS.
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2. Materials and methods

2.1. Subjects

The participants were selected based on the following 
criteria: (1) a menstrual cycle of approximately 27–32 days, (2) 
right-handedness as determined by the Edinburgh Handedness 
Inventory, and (3) a history of menstrual pain lasting more than 
6 months, with an average pain score greater than 4 on a 0–10 
verbal numerical scale (VNS) for the past 6 months under 
routine management for those with PDM. Subjects were 
excluded if they met any of the following conditions: (1) use of 
any medications, contraceptives, or hormone supplements in the 
6 months prior to the study, (2) pituitary gland disease, (3) 
organic pelvic disease, (4) psychiatric or neurological disorders, 
(5) head injury with loss of consciousness, (6) pregnancy or 
plans to conceive, (7) history of childbirth, (8) metal implants, 
pacemakers, claustrophobia, or any contraindications to 
MRI. Participants were not allowed to take analgesics 24 h before 
the experiment. All subjects with PDM were diagnosed by a 
gynecologist and underwent a pelvic ultrasound to rule out 
organic pelvic diseases.

2.2. Experimental design

Blood samples were collected at the outset of the study for genetic 
analysis, but the participants’ genotypes were kept unknown until the 
scanning session. The short-form McGill Pain Questionnaire (MPQ) 
(Melzack, 1987) was used to access participants’ pain experience 
during the MEN phase. Two MRI scans, including T1 and DTI 
images, were performed at two time points during the menstrual 
cycle: during menstruation (days 1–3, MEN phase) and during the 
periovulatory phase (days 12–16, POV phase). For further information 
on the genetic analysis, please refer to our published article (Wei 
et al., 2016b).

2.3. Image acquisition

The imaging data for all participants was collected using a 3.0 T 
MRI scanner (Magnetom Trio Tim, Siemens, Erlangen, Germany), 
located at the National Yang-Ming University. Diffusion weight 
image (DWI) was acquired using 30 different directions and a 
b-value of 900 s/mm2, in addition to a single b-value of 0 s/mm2 
image. The imaging parameters for DWI were set as TR/
TE = 7,900 ms/79 ms, bandwidth = 1,346 Hz/Px, 70 slices with a 
thickness of 2 mm and no interslice gaps, a field of view of 
256 × 256 mm2, a matrix size of 128 × 128, and a voxel size of 
2 × 2 × 2 mm3, with 3 excitations and an acquisition time of 13 min 
and 4 s. High-resolution T1-weighted images (T1WI) were obtained 
with the imaging parameters set as TR/TE = 2,530 ms/3.03 ms, 
inversion time = 1,100 ms, bandwidth = 130 Hz/Px, 192 slices with a 
thickness of 1 mm, a field of view of 224 × 256 mm2, a matrix size of 
224 × 256, and a voxel size of 1 × 1 × 1 mm3, a flip angle of 7 degrees 
and an acquisition time of 5 min and 23 s.

2.4. Image preprocessing

The DTI images were processed using FMRIB Software Library 
(FSL) v5.01 from the Oxford Center for Functional Brain MRI 
(Jenkinson et al., 2012). To perform the TBSS analysis, several steps 
were followed. First, the DTI images were corrected for eddy current 
distortion and movement, then registered to each participant’s 
corresponding b0 image with affine registration using the FMRIB 
Diffusion Toolbox (Andersson et al., 2007). Participants with head 
motion greater than 3 mm were excluded. The DWI runs were then 
averaged to improve the signal-to-noise ratio of the image. A binary 
brain mask of each subject was created using the individual average, 
and non-brain tissue was removed using the brain extraction tool 
(BET) (Smith, 2002). The DTIFIT function in FDT was used to fit the 
DTIs using a linear least square algorithm, generating DTI maps that 
assessed white matter integrity by measuring DTI metrics, including 
fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity 
(RD), and axial diffusivity (AD). FA measures the difference between 
the largest eigenvalue and the other two and reflects the white matter 
microstructure. MD provides an average of all three eigenvalues and 
is sensitive to changes in cellularity, edema, and necrosis. An increase 
in RD, which is the average of the second and third eigenvalues, 
suggests demyelination in the white matter. AD, which only considers 
the first eigenvalue, tends to change with white matter pathology 
(Tromp and Scalars, 2016).

The standard TBSS procedure was then employed to analyze the 
results which included several steps (Smith et  al., 2006). First, all 
subjects were aligned into a common space using a representative 
subject as the registration target. Non-linear alignment was performed 
on all FA images, and linear registration was performed on the 
MNI152 atlas template. The combined transformation was used to 
align all subjects’ FA images into the MNI152 space, creating a study-
specific mean FA atlas. A skeletonized mean FA image was created by 
thinning all aligned FA images with a threshold of >0.2. The FA map 
of each subject was projected onto the FA skeleton by searching 
perpendicular to the local skeleton structure. Then voxel-wise 
statistics analysis across subjects was performed on the skeleton-space 
FA data. The other DTI metrics, including MD, RD, and AD, were 
evaluated in a similar way to the FA analysis to gain a deeper 
understanding of the brain’s microstructural integrity of subjects 
with PDM.

2.5. Statistical analyses and tractographic 
visualization

2.5.1. Demographic information and 
psychophysiological measurements

The data analysis was conducted using GraphPad Prism 9 
(version 9.1.1). As some of the psychophysiological data did not 
adhere to a normal distribution, a non-parametric analysis was 
employed, and the findings were presented as median (range). 
Statistical significance was considered when the value of p was 
less than 0.05. The chi-square test was utilized to examine the 

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation

https://doi.org/10.3389/fnins.2023.1179851
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation


Hsu et al. 10.3389/fnins.2023.1179851

Frontiers in Neuroscience 04 frontiersin.org

Hardy–Weinberg equilibrium of the OPRM1 genotype 
distribution. The Mann–Whitney U test was utilized to examine 
the impact of genotype on demographic factors such as the 
Edinburgh Handedness Inventory score and MPQ scores.

2.5.2. Image analysis and tractographic 
visualization

In the current study, a two-way ANOVA was used to examine 
the main effects and interactions of genotype and phase in the 
TBSS analysis of white matter microstructure. The FA skeleton 
map was analyzed using the FEAT function in FSL (Woolrich 
et al., 2004). Planned contrast methods were utilized to investigate 
genotype differences in each phase, with a two-sample t-test 
employed to detect subtle but potentially important findings (Wu 
and Slakter, 1990; Lee et al., 2018; Li et al., 2021). Non-parametric 
tests based on FSL permutation were used to compare the FA, 
with multiple comparisons corrected using the threshold-free 
cluster enhancement (TFCE) method at a significance level of 
p < 0.05 and a minimum cluster size of 30 voxels (Winkler et al., 
2014). Additionally, the MD, RD, and AD metrics were also 
evaluated using TBSS procedure. The white matter label atlas of 
Johns Hopkins University-International Consortium for Brain 
Mapping (JHU-ICBM-DTI-81)2 was used to identify significant 
differences in white matter tracts as regions of interest (ROI). To 
facilitate better visualization, the thresholded TBSS images were 
enhanced to have a thicker appearance.

To confirm the location of TBSS clusters within the motor 
system fiber tracts, the study employed probabilistic tractography 
using a composite mask composed solely of all significant FA 
seeds, as previously described (Szabó et al., 2012; Borich et al., 
2013). FA was selected as the primary metric because it provides 
a comprehensive measure of diffusivity and directionality, and 
holistically captures microstructure changes (Alexander et  al., 
2007; Tromp and Scalars, 2016). Tractography was initiated using 
the composite mask as the starting point, without utilizing any 
restricted waypoint or termination masks. BEDPOSTX in FDT 
was utilized to estimate the diffusion parameter, with two 
probabilistic fiber directions burned 900 times for tractography 
(Behrens et  al., 2003b). The DTIs were registered to T1 and 
transformed into standard space (MNI 152) through nonlinear 
registration with FDT registration (Andersson et al., 2007). The 
final tractographic analysis included tracing 5,000 probabilistic 
streamlines from each voxel within the TBSS seed, using a 
curvature threshold of 0.2 and a step length of 0.5. The study 
combined data from all subjects using FSLeyes3 and applied a 
threshold of 5,000 for each subject, followed by a threshold of 
300,000 streamlines for visualization.

2.5.3. Correlation analysis between DTI metrics 
and pain behavior

To explore the connection between white matter plasticity and 
pain experience, we performed a Spearman’s correlation analysis on 
the FAs of the identified clusters. For each subject, we extracted the 

2 https://identifiers.org/neurovault.image:1401

3 https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes

mean FA value from each ROI mask. The correlation between these 
values and MPQ scores was examined because the OPRM1 A118G 
polymorphism may affect the pain perception of individuals (Wei 
et al., 2017).

3. Results

3.1. Subjects

Participants were sourced through internet advertisements. 
Hundred and ten subjects with primary dysmenorrhea meet the 
inclusion criteria and were enrolled initially. Six participants 
were excluded from the study due to the presence of secondary 
dysmenorrhea, as detected by a pelvic ultrasound exam 
conducted by the gynecologist (HTC). Twelve subjects were 
excluded due to incidental abnormal brain findings identified in 
their MRI scans, and 35 subjects declined to participate. The final 
sample size consisted of 57 PDM patients who completed the 
two-phase study that involved behavioral assessments and 
neuroimaging scans.

Of these, 14 subjects with PDM were excluded further due to a 
high probability of premenstrual dysphoric disorder and disruption 
of daily life, poor data quality, or head motion greater than 3 mm 
during the scan. Finally, the study included 43 PDM patients (13 with 
AA genotype, 25 with AG genotype, and 5 with GG genotype, with a 
mean age of 23 [10] years) (Figure 1).

3.2. Genetic data and clinical 
characteristics

The distribution of the A118G gene in the PDM subjects (p = 0.38) 
did not deviate from the Hardy–Weinberg equilibrium. The AG 
heterozygotes and GG homozygotes were combined as G allele 
carriers, based on their similar clinical characteristics (Sia et al., 2008). 
There were no significant differences in demographic variables such 
as age, gynecological age, menstrual cycle, education, body mass index 
(BMI), or Edinburgh Handedness Inventory scores among the 
different genotypes (Table 1).

The subjects in the study had a long history of menstrual pain, 
with a median duration of 9 years (range 14 years), and pain lasting 
approximately 2 days per menstrual cycle (median [range] = 2 [4.9]). 
Over half of the subjects with PDM (55.8%) reported missing school 
or work due to their menstrual pain, and 44.18% of them required 
analgesics. However, there were no significant differences in the 
history of menstrual pain, duration of pain per cycle, or scores on the 
McGill Pain Questionnaire among the different genotypes (Table 1).

3.3. Differences in tract diffusion 
measurements

A two-way ANOVA on TBSS analysis revealed a significant effect of 
genotype without any phase-gene interaction in PDM. Planned contrast 
analysis did not find any significant genotype differences (trait changes) 
during the POV phase. Compared to AA homozygotes, PDM individuals 
with the G allele displayed a state change during the MEN phase 
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(planned contrast), characterized by increased FA and decreased RD in 
the corpus callosum (primarily in the body region and adjacent 
splenium) as well as the corona radiata (specifically the left superior and 
left posterior regions). All these regions are known to have projection 
fibers to the motor cortex (Hofer and Frahm, 2006; Park et al., 2008; Jang, 
2009; Moeller et al., 2015). In addition, G allele carriers demonstrated 
decreased regional white matter RD in the left superior longitudinal 
fasciculus, which is thought to contain projection fibers to the motor 
cortex (Janelle et al., 2022), compared to AA homozygotes (Table 2 and 
Figure 2). Probabilistic tractography analysis (FA seeds only) revealed 
the involvement of the left internal capsule, left corticospinal tract, and 
bilateral MMC (cf. Hofer and Frahm, 2006; Figure 3).

3.4. Correlation analysis

Table  3 illustrates that among AA homozygotes, the study 
discovered a negative correlation between the mean FA of the body of 
corpus callosum and the pain rating index (affective), as well as a 
negative correlation between the mean FA of the left posterior corona 
radiata and the pain rating index (sensory) of McGill Pain 
Questionnaire. Moreover, the study observed a positive correlation 
between the mean RD of the body of corpus callosum and the pain 
rating index (affective) in AA homozygotes. However, no significant 
correlation was found between DTI metrics and MPQ scales in G 
allele carriers.

FIGURE 1

The subject flowchart. At the outset, 110 subjects with primary dysmenorrhea were enrolled, as indicated in the flowchart. However, six subjects were 
excluded due to secondary dysmenorrhea, 12 were excluded due to abnormal brain findings, and 35 declined to participate. Only 57 subjects 
successfully completed the two-phase study. Among them, seven subjects were excluded due to premenstrual dysphoric disorder (PMDD), one due to 
poor data quality, and six due to excessive head motion (>3 mm) during the scan. Consequently, the final sample size was 43 subjects.

TABLE 1 Demographic data and baseline information.

AA homozygotes (n = 13) G allele carriers (n = 30) Value of p

Calendar age (year) 23.0 (9.0) 23.0 (8.0) 0.27

Gynecological age (year) 12.0 (10.0) 10.0 (12.0) 0.07

Menstrual cycle (day) 29.5 (5.5) 29.0 (5.5) 0.69

Education (year) 16.0 (3.0) 16.0 (4.0) 0.27

BMI 20.6 (12.0) 20.5 (11.8) 0.20

Edinburg handedness 90.0 (60.0) 90.0 (60.0) 0.82

McGill pain (PRI_total) 32.0 (37.0) 34.0 (54.0) 0.87

PRI_sensory 16.0 (25.0) 18.0 (28.0) 0.55

PRI_affective 4.0 (10.0) 4.5 (11.0) 0.89

PRI_evaluation 5.0 (4.0) 5.0 (4.0) 0.56

PRI_miscellaneous 9.0 (12.0) 9.0 (15.0) 0.61

Present pain 3.0 (3.0) 3.0 (4.0) 0.82

Data are presented as median (range). The non-parametric Mann–Whitney U (two-tail) test was conducted for between-group comparisons. BMI, body mass index; PRI, pain rating index.
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4. Discussion

Our study depicts that the OPRM1 A118G polymorphism subtly 
influences the white matter microstructure during the painful MEN 
phase, but not during the pain-free POV phase. Specifically, AA 
homozygotes and G carriers exhibit different state changes. The 
current findings are consistent with our previous study which found 
that individuals with PDM who carry the G allele have a maladaptive 
motor cortex and descending pain modulatory systems (Wei et al., 
2017). The present study further demonstrated that G allele carriers 
with PDM have higher FA and lower RD in the corpus callosum and 
the left corona radiata during the menstrual phase, as compared to AA 
homozygotes. TBSS-tractography analysis showed that these 
differences involved the left internal capsule, left corticospinal tract, 
and bilateral MMC. However, in AA homozygotes, the mean FA of the 
corpus callosum and the corona radiata was negatively correlated with 
pain-related scales, which was not present in the G allele carriers. 
These results suggest that the OPRM1 A118G polymorphism may play 
a critical role in modulating dysmenorrheic pain and that the 
neuromodulatory capacity of the A allele may be reduced in the G 
allele group. Such menstrual phase related rapid structural alterations 
is corroborated by our previous voxel-based morphometric study of 
gray matter volume in PDM (Tu et al., 2013).

The corpus callosum is involved in selective attention (Banich, 
2003) and pain perception (Stein et al., 1989). Damage to the corpus 
callosum can result in somatosensory processing disorders, disrupted 
emotional regulation, and decreased working memory capacity 
(Luerding et al., 2008; Short et al., 2013; Kim et al., 2014; Fang et al., 
2017). Numerous chronic pain conditions, such as pelvic pain 
(Woodworth et al., 2015), irritable bowel syndrome (Ellingson et al., 
2013; Fang et  al., 2017), low back pain (Kregel et  al., 2015), 
temporomandibular disorder (Moayedi et al., 2012), migraine (Yuan 
et al., 2012; Coppola et al., 2020), and fibromyalgia (Kim et al., 2014), 

are associated with corpus callosum white matter abnormalities. 
Agenesis of the corpus callosum has been associated with changes in 
sensory processing, such as a higher pain tolerance and threshold for 
pain perception (Demopoulos et  al., 2015). Moreover, the corpus 
callosum’s enhanced interhemispheric connectivity can modulate 
attentional capacity, enabling individuals to concentrate on a specific 
task while disregarding others (e.g., hypnotic analgesia) (Horton et al., 
2004). The corpus callosum consists of transcallosal fibers that connect 
the bilateral sensorimotor and superior frontal cortices, with a larger 
proportion of these fibers targeting the premotor, supplementary 
motor, and primary motor areas (Paul et al., 2007). The motor cortex 
has been pinpointed as playing a crucial role in modulating pain 
processes in PDM according to our previous functional MRI study 
(Wei et al., 2016a). In our current tractographic analysis of the PDM 
group, we found that the left corona radiata extends to the MMC, 
which corresponds to the motor representation of the pelvic floor 
muscle (Yani et  al., 2018). Dysfunction in these regions has been 
linked to chronic pelvic pain (Kutch and Tu, 2016), and persistent 
pelvic pain has been suggested to cause axonal reorganization of the 
corticospinal tract in this region (Huang et al., 2016). These findings 
collectively suggest that G allele carriers exhibit maladaptive changes 
in the corticospinal tract of the corona radiata.

The corona radiata is a projection of fibers to the internal capsule 
and corticospinal tract, which contains motor neurons responsible for 
voluntary fine muscle movements and posture. The observed negative 
correlation between pain experience and FA of the corona radiata in 
the AA homozygous group may be  attributed to learned motor 
responses that aim to adapt or alleviate pelvic pain physically (Huang 
et al., 2016). White matter integrity changes in the corona radiata, 
internal capsule, or corticospinal tract have been observed in many 
chronic pain conditions (Moayedi et al., 2012; Ellingson et al., 2013; 
Moana-Filho et al., 2013). This corticospinal tract is responsible for 
descending pain modulation and mediates inhibitory and facilitatory 

TABLE 2 Between genotype differences in TBSS analysis.

Cluster location x y z Value of p Cluster size
(voxel)

MEN phase, G allele carriers >AA homozygotes

Body of corpus callosum FA –17 –9 36 0.044 312

Splenium of corpus callosum FA −13 −36 26 0.046 35

Left superior corona radiata FA −17 −9 37 0.044 85

Left posterior corona radiata FA −22 −32 30 0.046 79

MEN phase, AA homozygotes > G allele carriers

Body of corpus callosum RD 7 19 18 0.048 175

Splenium of corpus callosum RD −13 −36 26 0.048 45

Left superior corona radiata RD −18 −20 36 0.048 65

Left posterior corona radiata RD −19 −40 36 0.046 101

Left superior longitudinal fasciculus RD −43 −42 3 0.048 51

POV phase, G allele carriers >AA homozygotes

NS

POV phase, AA homozygotes > G allele carriers

NS

TBSS, tract-based spatial statistics; OPRM1, mu opioid receptor; POV, periovulatory phase; MEN, menstrual phase; FA, fractional anisotropy; RD, radial diffusivity. All clusters are significant 
at FWE-corrected p < 0.05, cluster voxel > 30.
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influences on spinal nociceptive transmission (Fishman et al., 2009). 
Several animal studies indicate that therapeutic motor stimulation, 
including stimulation of the sensorimotor cortex, can modulate the 
nociceptive response by activating the C fiber of the dorsal horn 
(Rojas-Piloni et al., 2010). Clinical studies that use repetitive motor 
cortex stimulation techniques, including transcranial magnetic 
stimulation (TMS), motor cortex stimulation (MCS), and transcranial 
direct current stimulation (tDCS), for treating neuropathic pain also 
suggest that top-down modulation of the thalamus, basal ganglia, and 
PAG in the brainstem leads to descending inhibition of the spinal cord 
(Garcia-Larrea and Peyron, 2007). Studies have shown that elevated 
FA in the corona radiata is not only present in individuals with PDM 

but also in those with other chronic pelvic pain conditions (Kilpatrick 
et al., 2014; Farmer et al., 2015; Kutch et al., 2015; Huang et al., 2016). 
It has been suggested that corticospinal excitability is reduced in 
response to acute muscle pain as a protective mechanism against 
further injury (Burns et al., 2016).

Our research revealed that the OPRM1 A118G polymorphism is 
associated with genetic differences in FA and RD in certain white 
matter tracts, suggesting that it may affect axonal structure and 
myelination. Alterations in white matter integrity can occur through 
changes in axonal structure, myelination, fiber organization, and 
branching (Basser and Jones, 2002; Song et al., 2002; Bammer, 2003; 
Apkarian et al., 2005). For instance, FA may reflect myelination in 

FIGURE 2

Between-genotype differences of DTI metrics. TBSS analyses showed group difference in FA and RD in the OPRM1 A118G polymorphism during the 
MEN phase. (A) Blue regions indicate areas showing significantly lower FA in AA homozygotes compared to G carriers. (B) Red regions indicate 
significantly higher RD in AA homozygotes. The labeled clusters (white arrows) are significant at TFCE/FWE-corrected p < 0.05, cluster voxel >30, 
thickened for better visualization, and overlaid on the white matter skeleton (shown in green). The group differences are observed in the body of the 
corpus callosum, superior corona radiata, and posterior corona radiata. (C) The FA value (mean ± SD) of significant regions extracted from (A,B) for 
visualization. FA, fractional anisotropy; RD, radial diffusivity; MEN, menstrual; TFCE, threshold-free cluster enhancement; FWE, family-wise error; SD, 
standard deviation; TBSS, tract-based spatial statistics; L, left; R, right; Asterisks (*) indicate significant difference by TBSS procedure.
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specific regions of interest, while RD may indicate changes in 
membrane permeability and myelination (Tromp and Scalars, 2016). 
Decreased FA and increased RD have been linked to several chronic 
pain conditions, indicating changes in axonal structure, branching, or 
fiber crossing (Ellingson et al., 2013; Farmer et al., 2015; Kregel et al., 
2015). On the contrary, one study has reported that women with PDM 
have higher FA in the corpus callosum and corticospinal tract, which 
correlates with the duration of pain (Liu et al., 2016). Our findings 
indicate that G allele carriers have higher FA and lower RD compared 
to AA carriers in the corpus callosum and corona radiata in MEN 
phase. However, there were no significant differences in MD and AD 
between the gene groups, suggesting that neuro edema, necrosis, and 
prominent white matter pathology (Tromp and Scalars, 2016) are not 
involved in the structural modulation of the brain in PDM by the 
OPRM1 A118G polymorphism. While G carriers have higher FA in 
the corona radiata, the strong correlation observed between MPQ 
scores and the FA of the corona radiata (as well as the RDs of other 
white matter tracts) in the AA homozygous group is diminished in the 
group of individuals carrying the G allele (Table  3), indicative of 
dysregulated pain modulation of white matter tract during the 
stressful pain in G allele carrier PDM subjects. The discrepancy in the 
aforementioned studies of chronic pain disorders and PDM (acute 
cyclic pain in nature) pinpoints that the genotype-informed brain 
imaging approach is important in elucidating mechanisms and 

clarifying the discrepancies in the neuroimaging study of different 
types of clinical pain.

Although opioid receptors are absent in the primary motor area, 
other brain regions such as the primary somatosensory area, basal 
ganglia, and brain stem (particularly the PAG) contain abundant 
opioidergic neurons (Peckys and Landwehrmeyer, 1999; Kibaly et al., 
2019; Sjöstedt et  al., 2020). The primary somatosensory area is 
responsible for pain intensity recognition and perception (Vierck 
et al., 2013), while the basal ganglia, traditionally known as a motor 
hub, also have an important role in pain processing due to the 
significant overlap between the basal ganglion network and the 
sensorimotor network (Figley et al., 2017). In addition, the PAG, a key 
component of the descending pain modulatory system, also contains 
opioidergic neurons (Linnman et al., 2012). It is plausible that the 
OPRM1 polymorphism may directly or indirectly influence these hub 
regions involved in motor cortex-actuated descending pain 
modulation, leading to variations in pain experiences 
among individuals.

The exact cause of the observed left lateralized expression in the 
corona radiata and corticospinal tract in our study remains 
unknown. However, one possible contributing factor could 
be asymmetric opioid availability. Previous studies have suggested 
that mu-opioid receptors are more abundant in the right hemisphere 
(Kantonen et  al., 2020), while the OPRM1 gene has greater 

FIGURE 3

Motor system engagement revealed by TBSS-based tractography. The TBSS analysis generated probabilistic tractography (comprising all significant FA 
seeds in Table 2), which illustrates the connectivity between the bilateral MMC including medial M1 and pre-SMA/SMA (in green circle), all the way to 
the spinal cord via the corpus callosum, left internal capsule, and left corticospinal fiber pathways (in red/yellow). We visualize the result by aggregating 
data from all subjects and setting a threshold of 300,000 streamlines. The color bar indicates the number of streamlines traversing a voxel. TBSS, tract-
based spatial statistics; FA, fractional anisotropy; MMC, medial motor cortex; M1, primary motor area; SMA, supplementary motor area; L, left; R, right.

TABLE 3 Correlation between the TBSS results and the MPQ scores.

White matter tract Behavior data Value of p r

MEN phase, white matter regions of G allele carriers> AA homozygotes (mean FA)

AA homozygotes Body of corpus callosum PRI_affective 0.0103 −0.7503

Left posterior corona radiata PRI_sensory 0.04 −0.6328

G-allele carriers NS NS NS NS

MEN phase, white matter regions of AA homozygotes >G allele carrier (mean RD)

AA homozygotes Body of corpus callosum PRI_affective 0.0221 0.6930

G-allele carriers NS NS NS NS

TBSS, tract-based spatial statistics; MPQ, McGill Pain Questionnaire; MEN, menstrual phase; FA, fractional anisotropy; RD, radial diffusivity; PRI, pain rating index of MPQ; NS, non-
significant.
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expression in the left ventral horn of the spinal cord (Kononenko 
et  al., 2017). Nonetheless, the lateralization of clinical pain 
processing is a multifactorial phenomenon that involves various 
factors (Roza and Martinez-Padilla, 2021). Therefore, the 
asymmetrical gene distributions and expressions identified in 
previous studies may only partly explain the lateralized findings in 
our research. To gain a more comprehensive understanding of this 
topic, further investigation is necessary.

The study has some limitations that need to be considered. Firstly, 
the sample size, particularly in the AA group, was relatively small, but the 
distribution was in accordance with the Hardy–Weinberg equilibrium. 
Secondly, the use of 30 diffusion-direction tensor images without 
correction for top-down eddy current artifacts could affect the precision 
of the results. Further research with larger sample sizes and incorporating 
up-to-date techniques to correct for these pitfalls would be valuable to 
validate these findings.

To sum up, our study sheds light on the significance of the OPRM1 
A118G polymorphism for modulating structural integrity and 
dysmenorrheic pain in subjects with PDM. Individuals with AA 
homozygosity demonstrate better pain adaptability within the motor 
cortex-related pain modulation system, whereas those carrying the G 
allele display maladaptive changes. These genetic differences in white 
matter structure may contribute to variations in pain susceptibility and 
potentially lead to the chronic pain later in life. Our results provide 
insight into the neuroplasticity of the central nervous system in PDM and 
underscore the need for personalized pain management approaches. 
These findings highlight the impact of the OPRM1 A118G polymorphism 
on the microstructure of white matter in individuals with PDM and 
suggest potential avenues for future research.
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