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Purpose: Cataract is one of the leading causes of blindness worldwide,

accounting for >50% of cases of blindness in low- and middle-income countries.

In this study, two artificial intelligence (AI) diagnosis platforms are proposed for

cortical cataract staging to achieve a precise diagnosis.

Methods: A total of 647 high quality anterior segment images, which included

the four stages of cataracts, were collected into the dataset. They were divided

randomly into a training set and a test set using a stratified random-allocation

technique at a ratio of 8:2. Then, after automatic or manual segmentation of the

lens area of the cataract, the deep transform-learning (DTL) features extraction,

PCA dimensionality reduction, multi-features fusion, fusion features selection,

and classification models establishment, the automatic and manual segmentation

DTL platforms were developed. Finally, the accuracy, confusion matrix, and area

under the receiver operating characteristic (ROC) curve (AUC) were used to

evaluate the performance of the two platforms.

Results: In the automatic segmentation DTL platform, the accuracy of the model

in the training and test sets was 94.59 and 84.50%, respectively. In the manual

segmentation DTL platform, the accuracy of the model in the training and test sets

was 97.48 and 90.00%, respectively. In the test set, the micro and macro average

AUCs of the two platforms reached >95% and the AUC for each classification was

>90%. The results of a confusion matrix showed that all stages, except for mature,

had a high recognition rate.
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Conclusion: Two AI diagnosis platforms were proposed for cortical cataract

staging. The resulting automatic segmentation platform can stage cataracts more

quickly, whereas the resulting manual segmentation platform can stage cataracts

more accurately.

KEYWORDS

anterior segment images, artificial intelligence, cortical cataract, multi-feature fusion,
automatic segmentation

1. Introduction

Cataract is one of the leading causes of blindness worldwide,
accounting for over 50% of cases of blindness in low- and middle-
income countries (Wu et al., 2019). It is a visual impairment
characterized by cloudiness or opacification of the crystalline lens,
and most cataracts are age-related, although they can also be
attributed to disease, trauma, or congenital factors (Do et al., 2013;
Gao et al., 2015; Satyam et al., 2015). The pathogenesis of cataract is
quite complex and results from the long-term comprehensive effect
of various internal and external factors on the lens. Surgical removal
of the lens and implantation of intraocular lens are the only effective
treatments of a visually significant cataract (Son et al., 2022).

Cortical cataract is the most common type of the senile (age-
related) cataract. Depending on its severity, cortical cataract is
divided into four stages: (1) incipient stage, in which the lens
is partially opaque, with spokes and vacuoles, and wedge-shaped
opacity; (2) intumescent stage (immature stage), during which
lens thickness is increased and the depth of the anterior chamber
becomes shallow; (3) mature stage, in which the lens is completely
opaque; and (4) the hypermature stage, which has a shrunken
and wrinkled anterior capsule owing to water leakage out of the
lens and might also have calcium deposits. In the incipient stage,
because the lesion rarely involves the pupil area, vision is affected
rarely. Some measures can be taken to slow cataract progression,
such as by wearing anti-glare sunglasses (Gao et al., 2015). In the
intumescent stage, for patients with anatomic factors of angle-
closure glaucoma, an acute glaucoma attack can be induced by
anterior chamber shallowing. By the mature stage, the patient will
have severe vision loss and will require surgical treatment. In the
hypermature stage, patients will have serious complications, such as
phacolytic glaucoma and phacoanaphylactic uveitis. Therefore, for
timely cataract treatment, to prevent complications, and to improve
quality of life, accurate staging is important.

Currently, the diagnosis of cataract relies on the rich experience
of the ophthalmologist and slit-lamp biomicroscopy examination.
However, the distribution of medical resources is far from
satisfactory for cataract diagnosis and management (Wu et al.,
2019). The COVID-19 pandemic has also led to a shift from on-site
medical needs to telemedicine. In the previous research, Xie et al.
(2020) applied a semiautomated telemedicine platform combining
a deep learning system with human assessment to achieve the
best economic return for diabetic retinopathy (DR) screening in
Singapore, resulting in potential savings of approximately 20% of
the annual cost. Therefore, it is particularly important to develop
an artificial intelligence (AI) diagnosis platform for cataracts to

achieve high-precision automated diagnosis and lay the foundation
for the combination of AI and telemedicine in the future.

Recently, artificial intelligence (AI) has made remarkable
progress in medicine (Amjad et al., 2021). An increasing number
of AI diagnostic models for ophthalmologic diseases have been
proposed. Lin et al. (2020) used the random forest (RF)
and adaptive boosting (Ada) algorithms for the identification
of congenital cataracts. Gao et al. (2015) used deep-learning
algorithms to grade nuclear cataracts. Hasan et al. (2021) used a
transfer-learning algorithm to detect cataracts. All these models
exhibit excellent performance. However, to the best of our
knowledge, there has not been research applying AI for automatic
cortical cataract staging. Most previous studies used the traditional
machine learning or deep learning based on original slit-lamp
images. Compared with traditional methods, transfer-learning
represents an important way of solving the fundamental problem
of insufficient training data in deep learning (He et al., 2020).
In addition, for similar experimental conditions, a pre-trained
network can be adjusted quickly through transfer-learning, which
can reduce the training time greatly (Lin et al., 2021). It has also
been suggested that the image features derived from segmented
images yield increased accuracy than those from non-segmented
images (Zhang et al., 2020). Automatic segmentation can be faster
and more reproducible compared with manual delineation but
might not have the same accuracy as manual segmentation (Huang
et al., 2019; Tsuji et al., 2020).

Therefore, unlike previous studies, we combined segmentation
with a deep transfer-learning algorithm and multi-feature fusion to
create two AI platforms for automatic cortical cataract staging. One
is based on an automatic segmentation method, whereas the other
is based on a manual segmentation method; the flowchart of the
detailed processes within this study is shown in Figure 1.

2. Materials and methods

2.1. Data collection

We collected the anterior segment images of cataract-
affected eyes from the Department of Ophthalmology, Jiangxi
Provincial People’s Hospital. All images were diffuse-illuminated
photographs that were collected from the same slit-lamp digital
microscopy and taken by experienced ophthalmic technologists
using standardized techniques. All images were screened, the
images that clearly demonstrate the characteristics and reflect
different stages of cataracts were retained, and blurry images
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FIGURE 1

The flowchart of the detailed processes of the study: manual segmentation procedure (left), automatic segmentation procedure (right).

and images of corneal disease that affected lens observation
significantly were excluded. The screened high-quality images
were then divided randomly into a training and test set using a
stratified random-allocation technique at a ratio of 8:2, in which
stratification was by staging of cortical cataracts. This means the
distribution of data in each stage was random in both the training
and testing sets.

2.2. The region of interest delineating
and cataract labeling

An experienced ophthalmologist used the LabelMe software
to delineate the region of interest (ROI), which was the
lens regions of the images. Based on the diagnostic reports
obtained from the electronic medical record system and combined
with the opacity of the lens in the images, the ROIs were
labeled as “label 0”, indicating the incipient stage, “label 1”,
indicating the intumescent stage (immature stage), “label 2”,
indicating the mature stage, and “label 3” indicating the
hypermature stage.

2.3. Establishment of the automatic
segmentation DTL platform

2.3.1. Establishment of the automatic
segmentation model

First, we trained the automatic segmentation model with the
FCNResnet50 architecture. The FCN model ‘learns’ a pixel’s class
by finding optimal values for the model parameters through
minimizing the prediction error against the target data set (Larsen
et al., 2021). The images that the experienced ophthalmologist had
delineated the lens regions of were then used as the gold standard.
The model was run for 30 ‘epochs’, each time training on 80% of the
dataset and evaluating model performance on a 20% hold-out set.
Finally, the trained model was applied to the whole dataset and the
segmentations of lens regions were obtained.

2.3.2. Deep fusion features extraction
First, the alexNet, googleNet, and resnet18 models were

pretrained on the natural image dataset ImageNet dataset1,

1 www.image-net.org/
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respectively. Then the pretraining parameters obtained from
the ImageNet dataset were used to initialize our models. The
resulting pretrained alexNet, googleNet, and resnet18 models
were then utilized to extract DTL features from the output of
the avgPool layer, respectively. To reduce dimensionality, we
employed principal components analysis (PCA). Subsequently,
we utilized channel concat to combine the output features
after PCA dimension reduction, and this resulted in the deep
fusion features.

2.3.3. Feature selection
The final deep fusion features used to construct the model

were selected in the training set. The least absolute shrinkage and
selection operator (LASSO) algorithm was used to construct the
feature selection model. First, all the deep fusion features were
standardized to a mean of 0 and a variance of 1 by the regularization
method. The formula used is shown here:

column =
column−mean

std

Then, the LASSO model selected features using a tuning
parameter (λ). The optimal λ was chosen based on a ten-fold cross-
validation. Depending on the regulation weight λ, LASSO shrinks
all regression coefficients toward zero and sets the coefficients of
many irrelevant features exactly to zero (Lao et al., 2017). The
features with non-zero coefficients were retained.

2.3.4. Establishment of the classification model
After features selection, the selected features were used

to establish the classification models. Seven machine-learning
algorithms were imported from the scikit-learn python library
to establish seven classification models, respectively, including
naive bayes (NB), support vector machines (SVM), extremely
randomized trees (Extra Trees, ET), extreme gradient boosting
(XGBoost, XGB), light gradient boosting machine (LightGBM),
gradient boosting (GB), and multilayer perceptron (MLP) models.
To prevent overfitting, five-fold cross-validation was used to fit
each classification model.

2.4. Establishment of the manual
segmentation DTL platform

Manual segmentation of the DTL platform included manual
segmentation, deep fusion features extraction, feature selection,
and the classification model establishment.

The rest was the same as the automatic segmentation
DTL platform, except that the segmentation was different.
First, based on the lens regions delineated by an experienced
ophthalmologist, a ROI was segmented manually from each image.
Then, based on the ROI, as with automatic segmentation
DTL platform, pretrained alexNet, pretrained googleNet,
and pretrained resNet18 models were used to extract DTL
features, respectively. Next, PCA was used for dimensionality
reduction. The reduced DTL features were fused. The LASSO
model was used to select features. Finally, seven different
classification models, NB, SVM, ET, XGB, LightGBM, GB, and
MLP were established.

2.5. Model validation and performance
evaluation

The trained models were applied to the test set for independent
testing. Different quantitative metrics, such as pixel accuracy
(PA), intersection over union (IoU), and Dice coefficient (Dice),
were adopted to evaluate the performance of the automatic
segmentation model and the classification model. PA is the
simplest indicator of image segmentation, which is the percentage
of correctly classified pixels out of the total pixels in each
image (Larsen et al., 2021). IoU is a concept used in object
detection, which measures the overlap between two boundaries:
the predicted boundary and the truth boundary (Kim and Hidaka,
2021). The higher the IoU, the more accurate is the position
of the prediction boundary. The Dice coefficient is a score
that indicates the similarity between two samples (Takahashi
et al., 2021). It used to measure the amount of overlap of
regions.

To the classification models, the classification accuracy,
confusion matrix, and the receiver operating characteristic (ROC)
curve and area under the ROC curve (AUC) were also introduced to
evaluate the performance. The classification accuracy is computed
as the ratio of the correctly classified number of samples
and the total number of samples (Masood and Farooq, 2019).
The confusion matrix is a visualization tool used typically in
multiclass supervised learning and contains information about
the actual classifications and the classifications predicted by a
classification model (Bang et al., 2021). ROC curve and AUC
was another class of indicators to evaluate the classification
accuracy. The closer the ROC curve is to the upper left corner,
the larger the AUC value, and the better the classification
effect.

2.6. Statistical analysis

ROI was delineated, segmented, and labeled using an open-
source annotation tool LabelMe. All statistical calculations and
the drawing of statistical graphs were performed in Python
(version 3.9.7).

3. Results

3.1. Imaging dataset

A total of 647 high quality anterior segment images were
included into the dataset. One hundred ninety one incipient stage
images, 171 intumescent stage images, 100 mature stage images and
183 hypermature stage images. Through stratified random division,
with 80% of the images used for training and 20% for testing.
517 images were included in training set, of these, included 153
incipient stage images, 136 intumescent stage images, 80 mature
stage images and 147 hypermature stage images. One hundred
thirty images were included in test set, of these, included 38
incipient stage images, 35 intumescent stage images, 20 mature
stage images and 36 hypermature stage images.
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FIGURE 2

Diagrams of comparisons between automatic and manual segmentation: original images of cataracts at different stage (A–D); the corresponding
automatic segmentation mask (A1–D1); the corresponding manual segmentation mask (A2–D2).

3.2. Segmentation performance of the
automatic segmentation model

The whole automatic segmentation process took 2 min and
43 s. While the manual segmentation process from the experienced
ophthalmologist required approximately a week. The segmentation
results graph of the automated and manual segmentations as shown
in Figure 2. The visualization of the FCNResnet50 model training
process was shown in Figure 3. The loss value decreases gradually
with epoch and stabilizes at 5 epochs, and the accuracy reaches
95% in the test set. It can be seen that the contours obtained
manually often fit better with the true contour of the lens compared
with the automatic segmentation. And the results of automatic
segmentation showed that the PA was 98.9, the mean IoU was 93.3,
and the mean Dice score was 96.4%.

3.3. Results of the feature extraction and
fusion

In the automatic segmentation platform, the automatic
segmentation lens images were input to the three pretrained

models, the extracted features were output from the last fully
connected layer. 512, 1024, 9216 DTL features of each image were
extracted from pre-trained alexNet, pre-trained googleNet and pre-
trained resNet 18, respectively. After PCA dimension reduction,
31 features of each image from each model were obtained. And
then after features fusion, the feature subset included 93 features of
each image were obtained. In the manual segmentation platform,
the manual segmentation lens images were input to the three
pretrained models. After features extraction, PCA dimension
reduction and features fusion, the 93 features of each image
were also obtained.

3.4. Results of feature selection

The optimal λ (λ = 0.025595) was chosen based on a ten-
fold cross-validation. Depending on the optimal λ, 49 features
were retained in the automatic segmentation platform, including
21 features of alexNet model, 12 features of resNet model and
16 features of googleNet model. 51 features were retained in the
manual segmentation platform, including 20 features of alexnet
model, 17 features of resNet model and 14 features of googleNet
model. The selection process was shown in Figure 4.
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FIGURE 3

The loss convergence and accuracy curves of FCNResNet50 model in the test. The loss convergence curve (left), the pixel accuracy (PA) and
Intersection over Union (IoU) curve (right).

FIGURE 4

The figure of LASSO coefficient distribution (left): the colored curve shows the path of the coefficients for each input feature as lambda varies; the
figure of partial likelihood deviation of the LASSO coefficient distribution (middle): the vertical dashed line represents the optimal value of the
regularization parameter determined by cross-validation; feature weight coefficient graph (right). Automatic segmentation platform (A–C); manual
segmentaion platform (D–F).

3.5. The classification performance of the
automatic segmentation DTL platform
and the manual segmentation DTL
platform

By five-fold cross-validation, the result of classification
accuracy revealed that the accuracy of SVM model was the best
in both the automatic segmentation DTL platform or the manual
segmentation DTL platform. In the automatic segmentation DTL
platform, the accuracy of the model in the training set and the test
set were 94.59 or 84.50%, respectively. In the manual segmentation
DTL platform, the accuracy of the model in the training set and

the test set were 97.4 or 90.00%, as shown in Table 1. The range of
classification accuracy rates were shown in Figure 5.

The result of AUC also revealed that the performance of
SVM model was best in both two platforms. In the automatic
segmentation DTL platform, the micro and macro average AUC
of SVM model both were 96% in the test set. In the manual
segmentation DTL platform, the micro and macro average AUC
of SVM model both were 97% in the test set. And in both two
platforms, the AUC for each classification was all more that 90%
in the test set. As shown in Figure 6.

The results of 4 × 4 matrix show the number of correct and
incorrect classifications by the SVM model in each stage of cataract.
In the automatic segmentation DTL platform, the recognition rates
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TABLE 1 The accuracy of classification models in the automatic and
manual segmentation DTL platforms.

Group Model name Accuracy Train/Test

Manual NaiveBayes 81.82% Train

NaiveBayes 79.23% Test

SVM 97.48% Train

SVM 90.00% Test

ExtraTrees 100% Train

ExtraTrees 80.77% Test

XGBoost 96.71% Train

XGBoost 78.46% Test

LightGBM 96.71% Train

LightGBM 78.46% Test

GradientBoosting 89.17% Train

GradientBoosting 72.31% Test

MLP 95.94% Train

MLP 78.46% Test

Automatic NaiveBayes 73.55% Train

NaiveBayes 69.77% Test

SVM 94.59% Train

SVM 84.50% Test

ExtraTrees 100% Train

ExtraTrees 58.14% Test

XGBoost 100% Train

XGBoost 66.67% Test

LightGBM 94.79% Train

LightGBM 63.57% Test

GradientBoosting 84.94% Train

GradientBoosting 54.26% Test

MLP 92.66% Train

MLP 75.97% Test

of incipient stage, intumescent stage, hypermature stage were all
high. The hypermature stage had the highest recognition rate.
Of the 36 images, 34 of them were correctly recognized (94.5%)
and only 2 were incorrectly recognized (5.5%). While, the mature
stage had the lowest recognition rate. Of the 20 images, 14 of
them were correctly recognized (70%) and 6 were incorrectly
recognized (6%). In the manual segmentation DTL platform, the
results also show that all stages except for mature had high
recognition rate. Of the 20 images in the mature stage, 15 of
them were correctly recognized (75%) and 5 were incorrectly
recognized (5%). The recognition rate of the intumescent stage was
highest, of the 35 images, 34 of them were correctly recognized
(97.1%) and only 1 were incorrectly recognized (2.9%) as shown
in Figure 7.

In addition to the SVM model, we also drew the ROC
curves and confusion matrix of the other models, which
included NB, ET, XGB, LightGBM, GB, and MLP models of the
manual segmentation platform and the automatic segmentation
platform. The ROC curves of other models were shown in the

Supplementary Figures 1, 2. The confusion matrix of other models
were shown in the Supplementary Figures 3, 4.

4. Discussion

Precision medicine is an emerging medical model that has
great promise for the prevention, diagnosis, and treatment of
many diseases (McGonigle, 2016). Accurate staging of cataracts
is a precise classification of the different states and processes
of a disease, which is the embodiment of precision medicine
strategies. It is also essential to planning of appropriate treatment,
assessing outcome, and future prognosis. The establishment of an
automated cataract diagnosis platform not only makes medical
services more convenient and efficient, but also contributes to
epidemic prevention and control. In this study, we developed two
AI platforms based on using a deep transfer-learning algorithm
and a multi-feature fusion method. The results of our study
indicated that both platforms can stage cataract well. In the
automatic segmentation DTL platform, the segmentation process
completed in just 2 min and 43 s, with training and test set
accuracies of 94.59 and 84.50% respectively. On the other hand,
the manual segmentation DTL platform required approximately
a week for an experienced ophthalmologist to manually segment.
However, the model achieved higher accuracies in the training
and test sets, at 97.48 and 90.00%, respectively. On the whole, the
manual segmentation DTL platform was more precise, whereas the
automatic segmentation DTL platform was more rapid.

The grading of cataracts is based on the opacity of the lens,
and good segmentation performance is the basis of classification.
The difference in the tissue outside the lens might affect the
classification results. In the automatic segmentation DTL platform,
based on the FCNResnet50 model, we have presented a method for
the automatic segmentation of the lens from cataract images. The
segmentation results showed that the proposed model was able to
segment the lens accurately. Compared with previous research, the
PA, IoU, and Dice improved by 8.4, 14.9, and 9.5%, respectively (Cai
et al., 2021).

In previous studies, Gao et al. (2015) used a deep learning
method to grade nuclear cataracts, but the accuracy only reached
70%. Lin used a convolutional recursive neural network to
develop an AI platform for diagnosing childhood cataracts and
the accuracy was 87.4%, whereas the accuracy of our study
reached 90.00%. In addition to the task itself, the reason is
possibly caused by the algorithmic upgrading. In this study,
we adopt three pretrained models trained on the ImageNet
and then fine-tuned into our dataset, which makes up for the
insufficient datasets and leads to a reduction in the learning
time. We also adopt the early fusion approaches for the
classification task. Early fusion is also called feature level fusion,
which emphasizes data combination before the classification
(Zhang et al., 2017), which reduced the influence of single
feature inherent defects and realized feature complementarity.
Multiple studies have also confirmed that the combination
of different features presents better classification results than
individual features (Fang et al., 2019; Wan and Tan, 2019;
Nemoto et al., 2020).

Comparing the results of the ROC curves of the two
platforms, the macro average calculates the indicators of
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FIGURE 5

Boxplots for the range of accuracy of each classification model, the automatic segmentation platform (left); the manual segmentation platform
(right).

FIGURE 6

The ROC curves of SVM model of two different platforms in the test set. The automatic segmentation platform (A); the manual segmentation
platform (B), “Class 0” indicated incipient stage, “class 1” indicated intumescent stage, “class 2” indicated mature stage, and “class 3” indicated
hypermature stage.

FIGURE 7

The confusion matrix of the SVM model of two different platforms in the test set. Each column represents the predicted class and each row of the
matrix represents the actual class. The automatic segmentation platform (A); the manual segmentation platform (B). “Label 0” indicated incipient
stage, “label 1” indicated intumescent stage, “label 2” indicated mature stage, and “label 3” indicated hypermature stage.

each class independently and then takes the mean value
to treat all classes equally; the micro average aggregates
the contributions of all classes to calculate the average

indicator (Huang et al., 2022). The results of the two
platforms can reach >95%, indicating that both show good
performance. The AUC for each classification was >90% in the
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test set, indicating that both platforms have excellent classification
accuracy.

The confusion matrices showed the prediction results of each
sample in the test set. Although the results showed that all stages,
except for mature, had high recognition rate, the probabilities of
correct identification (PCIs) of mature stage in the two platforms
achieved >70%. The images of the mature stage were misassigned
to the hypermature stage easily. The major reason for this result
might be that the staging of the cataracts is determined by the
opacity of the lens, also, sometimes it is hard to define clear
boundaries of adjacent stage, and a large sample size might be
required. Compared with other stages, the sample size of the mature
stage was the smallest.

This study had some other limitations. All data are only based
on the diffuse-illuminated photographs, it is important to note
that slit-lamp photography, fundus photography, and clinical data
can also provide valuable insights into the disease. And this study
was only based on clinical diagnosis of the disease; however,
individualized treatment is an integral and mandatory part of
precision medicine. Therefore, in future studies, we will increase
the sample size and combine multiple modal data to combine
diagnosis and treatment, to build a more perfect and convenient
AI platform for clinical diagnosis and treatment.

5. Conclusion

In this study, two AI diagnosis platforms have been proposed
for cortical cataract staging. Through the multi-feature transfer-
learning method combined with an automatic or manual
segmentation algorithm, the resulting automatic segmentation
platform can stage cataracts more quickly, whereas the resulting
manual segmentation platform can stage cataracts more accurately.
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