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Emotion recognition plays an essential role in interpersonal communication.

However, existing recognition systems use only features of a single modality for

emotion recognition, ignoring the interaction of information from the di�erent

modalities. Therefore, in our study, we propose a global-aware Cross-modal

feature Fusion Network (GCF2-Net) for recognizing emotion. We construct a

residual cross-modal fusion attention module (ResCMFA) to fuse information

from multiple modalities and design a global-aware module to capture global

details. More specifically, we first use transfer learning to extract wav2vec 2.0

features and text features fused by the ResCMFA module. Then, cross-modal

fusion features are fed into the global-awaremodule to capture themost essential

emotional information globally. Finally, the experiment results have shown that

our proposed method has significant advantages than state-of-the-art methods

on the IEMOCAP and MELD datasets, respectively.

KEYWORDS
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1. Introduction

In recent years, speech plays an important role in daily communication. It contains

not only the textual content but also the emotional message that the speaker intends to

convey (Sreeshakthy and Preethi, 2016). The same text with different tones of voice conveys

different emotions. To improve the convenience of life, speech emotion is widely used in

the field of HCI (Hartmann et al., 2013). Take the ubiquitous virtual voice assistants (such

as Alexa, Siri, Google Assistant and Cortana), they must infer the user’s emotions and

respond appropriately to enhance the user experience (Dissanayake et al., 2022). In the driver

emotion detection system, when the system detects that the driver is excited, exhilarated,

depressed or tired, a safety alert will be issued in time to avoid traffic accidents. The online

distance-assisted teaching system allows teachers to identify the emotional state of students

in order to adjust the teaching style and pace. In addition, emotion recognition has important

implications in healthcare. It can help doctors better understand the patient’s psychological

state to facilitate recovery. However, most HCI products obey the external commands of

humans in a foolish way. There are fewHCI products that can determine the inner emotional
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state of humans from external commands. Therefore, how to

make machines correctly recognize emotional states needs further

research, and speech emotion recognition needs more attention

(Schuller, 2018; Fan et al., 2022).

However, humans express emotions not only through speech

but also in many other ways, such as text, body gestures, facial

expressions (Zhang et al., 2022), and electroencephalography

(EEG) (Chang et al., 2022, 2023; Han et al., 2022). Chakravarthi

et al. (2022) proposed an automated CNN-LSTM with the ResNet-

152 algorithm to identify emotional states from EEG signals.

Additionally, Wu et al. (2023) developed a novel experimental

paradigm that allows odors dynamically participate in different

stages of video-evoked emotions, to investigate the efficiency of

olfactory-enhanced videos in inducing subjects’ emotions. Thus,

understanding the emotions expressed in an utterance requires a

comprehensive understanding of various modalities. People also

usually use changes in body movements to express emotions,

for example, when the head sinks between the shoulders, no

movement or crouching will be recognized as fear. Facial emotion

recognition has become an important topic in the field of computer

vision and artificial intelligence due to its great academic and

commercial potential (Ko, 2018). Khaireddin and Chen (2021)

used a single network VGGNet to achieve optimal results on

the FER2013 dataset without using additional training data. Cho

et al. (2019) used LSTM to extract acoustic features and parallel

convolution with several different kernels to extract different levels

of contextual information from word sequences. Zhao et al. (2022)

proposed a multi-granularity framework that can extract frame-

level speech embeddings and segment-level embeddings including

phoneme, syllable, and word-level speech embeddings. Although in

some cases, facial expressions can be more effective in conveying

feelings. Due to difficulties in data collection, publicly available

datasets often do not have enough speakers to properly cover

individual differences in emotional expression. First, compared

to other modalities, speech and text data are easy accessible

than other data. They are also the most intuitive expressions in

communication. Second, audio features and text features have

extremely high similarity in time series and can be transformed

into each other. Finally, audio and text are the most common

modality combinations, and many advanced comparison methods

exist. Therefore, in our study, we select only speech and text

modalities for emotion recognition.

Speech emotion recognition uses audio signals to simulate

human perception and infer emotion categories (Babu et al.,

2021). Since the emotional features of various emotional speech

are distinct, the machine classifies the emotions based on

this variability. Speech emotion recognition is a technique

that uses machines to learn the difference between emotion

features and implement emotion classification by building emotion

classification models. So far, speech is one of the most studied

modalities in ER (Venkateswarlu et al., 2022). In the early stage,

researchers proposed machine models focused on Support Vector

Machines (SVM) (Jain et al., 2020), Gaussian mixture models

(GMM) (Kandali et al., 2008), and Hidden Markov models

(HMM) (Nwe et al., 2003). Machine models were developed

using engineering features (Ververidis and Kotropoulos, 2006;

Kishore and Satish, 2013), including Mel Frequency Cepstrum

Coefficient (MFCC), energy, pitch, etc. Jain et al. (2020) trained

SVM for emotion classification using features such as MFCC,

Linear Predictive Cepstral Coefficient (LPCC), energy, pitch and

speaker rate. Nwe et al. (2003) used LPCC to represent speech

signals and discrete hidden Markov models as classifiers. Yang

et al. (2022) utilized the self-paced regularization to find a better

factorized matrices by sequentially selecting data in the learning

process. Kwon et al. (2003) used quadratic discriminant analysis

(QDA) and SVM to classify the extracted engineering features

and demonstrated that pitch and energy are the most important

factors for speech emotion recognition. The performance of

traditional models is good or bad depending on the diversity

of features. Meanwhile, traditional machine learning methods

had proven to perform relatively well in emotion classification.

Researchers continue to explore other features or algorithms

to fit expressions of various emotions. With the advance in

deep learning techniques, deep neural networks have achieved

tremendous success (Zhang et al., 2021). Chan et al. (2016)

proposed a method to transcribe speech expressions into characters

for recognition. It generates character sequences without making

any independence assumptions. Ramet et al. (2018) added a

long and short-term memory neural network to the attention

mechanism that considers temporal information in speech during

the computation of the attention vector. Early engineering features

have been developed with the assistance of deep neural network

learning into advanced features extracted from raw waveforms

(Gao et al., 2019). Gao et al. (2019) tracked continuous mood

changes in arousal-valence two-dimensional space by combining

raw waveform signals and spectrogram inputs. Han et al. (2014)

first introduced deep learning to SER by using deep neural networks

(DNNs) to extract high-level features from raw audio. It uses deep

neural networks to generate probability distributions of emotional

states and construct discourse-level features, which are then fed

into an Extreme Learning Machine (ELM) to identify discourse-

level emotions. Zhu and Li (2022) used a global-aware fusion

module to capture the most important emotional information

across various scales. On the other hand, transfer learning is

extensively implemented in the SER field. Many approaches use

pre-trained self-supervised learning functions to handle various

downstream speech processing tasks such as telephone recognition

(PER), automatic speech recognition (ASR), etc. Yang et al.

(2021) addressed the Speech processing Universal PERformance

Benchmark (SUPERB) task by learning a task-specific lightweight

prediction head on top of a frozen shared model. It has recently

been shown that superior speech representation can be obtained

using a pre-trained wav2vec 2.0 model with learnable weighting

to combine the local and contextual outputs of the models. Wang

et al. (2021) explored partial tuning and overall fine-tuning of

wav2vec 2.0 and HuBERT pre-trained models using a simple

proposed downstream framework in three non-ASR speech tasks

such as speech emotion recognition, speaker verification, and

spoken language understanding. Experimental results demonstrate

the superiority of the fine-tuned model in learning rhyme, vocal

pattern and semantics. Chen et al. (2022) used ECAPA-TDNN

as a downstream model to explore the limitations of speech

representation learned through different self-supervised targets and

datasets and used as an automatic speaker verification (ASV).
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In some natural environments, speech is not the best choice

for emotion recognition because it does not provide compelling

features. Many experiments have also demonstrated that neutral

recognition rates are extremely unsatisfactory compared to other

emotions. In this case, text information would be a preferable

choice instead of audio information for ER. Text emotion

recognition (TER) aims to utilize textual information in discourse

for emotion recognition. Early approaches typically used bag-of-

words to present textual information and then utilized machine

learning methods such as SVM and HMM to classify emotions

(Zhang and Zheng, 2016). With the rise of deep learning, deep

neural networks such as convolutional neural networks (CNN)

and long short-term memory (LSTM) are extensively used in TER

(Irsoy and Cardie, 2014; Chen et al., 2018).

Humans often use multiple methods to express their emotions

simultaneously, which makes emotion recognition an inherently

complex multimodal task. Speech emotion recognition requires

a thorough understanding of both the linguistic content of the

discourse (textual information) and the way of the speaker’s

pronunciation (audio information). It is an important challenge

for SER to effectively fuse these two types of information (Xu

et al., 2019). Audio information and text information come

from different modalities. Although there exists some correlation

among them, it is not an easy task to fuse them. Therefore,

integrating data from other modalities is the primary problem

(Cambria et al., 2017). The rise of attention mechanisms have

prompted many researchers to attempt fusing information from

other modalities using different attention mechanisms, such as

self-attention and cross-modal attention (Cao et al., 2021; Sun

et al., 2021; Wu et al., 2021). Self-attention mechanisms and

cross-modal attention mechanisms target different objects. Self-

attention mechanisms are typically used for unimodal emotion

recognition, whereas cross-modal attention mechanisms are used

for multimodal emotion recognition. Sun et al. (2021) used cross-

attention and self-attention mechanisms in parallel for inter- and

intra-modal interaction of audio and text. The invocation of

attention mechanisms dramatically improves the performance of

cross-modal models for ER. Therefore, we use the cross-modal

attention (CMA) mechanism to fuse audio and text features in our

study. In order to obtainmore effective cross-modal fusion features,

we propose a ResCMFA module based on the CMA for SER.

Although these approaches have achieved considerable success,

several key issues remain to be addressed. First, the emotion of

the utterance is usually closely related to the context. However,

most discourse-level feature modeling approaches do not capture

enough contextual information. Second, the interaction between

audio and text often changes the expressed emotional state.

Relying on audio or textual information alone does not provide

sufficient robustness in emotion recognition. Therefore, increasing

attention devote to the use of cross-modal methods. Our study

compensates for the shortcomings of using only audio modalities

by adding textual information to the audio information. Through

cross-modal attention mechanisms, we effectively combine audio

information with textual information. The inclusion of the

global-aware block allows our proposed model to extract sufficient

contextual information about the utterances.

In a word, in this paper, we propose a global-aware Cross-

modal feature Fusion network (GCF2-Net) that extracts features

from different modalities by constructing a residual cross-modal

fusion attention (ResCMFA) layer and designing a global-aware

fusion module. The ResCMFA can dynamically fuse audio and text

information and the global-aware block can capture the emotional

information from the fusion features at multiple scales. First, we use

different pre-trained models as encoders for different modalities.

In this case, the audio encoder is the wav2vec 2.0 model and the

text encoder is the Roberta-base structure. Second, we designed the

residual cross-modal feature fusion module (ResCMFA) based on

CMA to fuse wav2vec 2.0 features and text features. It uses text

features and audio features as the query, key and value of CMA,

respectively. This approach maps different modal information to

each other’s feature potential space for generating emotionally

relevant representations. The residual structure reduces themissing

information caused by audio features and text features passing

through crossmodal attentionmechanisms, linear layers, etc. Third,

we introduce a global-aware fusionmodule to handle the significant

emotional information of different modalities. Finally, we use ASR

as an auxiliary task to eliminate text contextual bias. This approach

better takes into account the natural monotonic alignment between

audio features and text features. Our GCF2-Net model achieves

state-of-the-art (SOTA) results on the IEMOCAP and MELD

datasets. The main contributions of the work are outlined below

as a summary.

• We propose a novel cross-modal fusion network

called GCF2-Net for recognizing different emotions in

utterances. A residual cross-modal fusion attention module

(ResCMFA) is constructed to fuse information from different

modalities and aggregate features at different levels through

residual connections.

• We design a new global-aware fusion module to grab the

most crucial emotional information across multiple scales

and capture global information. Our study displays the great

potential of information fusion among different granularities.

• Experiments demonstrate our GCF-Net model achieves state-

of-the-art ER results on the IEMOCAP and MELD datasets.

On the IEMOACAP dataset, our proposed GCF-Net model

improves by 1.65% in WA and 1.10% in UA compared

to the state-of-the-art results. On the MELD dataset, our

proposed GCF-Net model improves the accuracy by 1.90%

and the weighted average F1 by 1.10% compared to the

state-of-the-art results.

The rest of the paper is organized as follows: Section 2

reviews related work on unimodal and multimodal emotion

recognition. Section 3 describes our proposed model in detail.

Section 4 verifies the validity of each block in our model

through ablation experiments, and we summarize the paper

in Section 5.
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2. Related work

2.1. Unimodal emotion recognition

From traditional machine learning to deep learning, speech

has been the most studied modality in ER. The proposal of

transfer learning has further contributed to the development of

SER. Transfer learning is commonly used to solve the problem

of insufficient data. Compared to other modal recognition tasks,

sparse speech data can easily lead to overfitting problems as neural

networkmodels cannot learn the actual data distribution. However,

the proposed wav2vec 2.0 solves this issue. The wav2vec 2.0 is

a framework for obtaining speech representations through self-

supervision (Baevski et al., 2020). The wav2vec 2.0 is initially

applied to ASR by training on large amounts of unlabeled speech

data and then fine-tuning the labeled data to achieve automatic

recognize human’s speech. And the wav2vec 2.0 features are rich

in rhythmic information. Pepino et al. (2021) used the wav2vec

2.0 representation as the feature extractor for SER. Makiuchi

et al. (2021) proposed a new cross-representation model to

reconstruct low-level Mel spectrograms from wav2vec 2.0 speech

representations and then combine two audio features and text

features for ER. Therefore, we choose the wav2vec 2.0 model as

the audio encoder. Inspired by Cai et al. (2021), we find that

the selection of a suitable auxiliary method contributes to the

performance of SER. In the training phase, combining the ASR task

calculates the CTC loss of the minimized network to optimize the

loss function.

Pang and Lee (2004) proposed a TER method that that

emotion analysis aims to identify the viewpoint behind the text

span and propose to apply text classification techniques to the

subjective part of the document. The emergence of the transformer

technology has accelerated the process of TER. There are two

mainstreammodels for TER, including scratch-trainedASRmodels

and word embedding models. The word embedding models

include Word2Vec (Mikolov et al., 2013) and GloVe (Pennington

et al., 2014). Mikolov et al. (2013) computed continuous vector

representations of words, providing state-of-the-art performance

to measure syntactic and semantic word similarity. Pennington

et al. (2014) trained only the non-zero elements of the word-word

co-occurrence matrix, rather than the entire sparse matrix or a

single contextual window in a large corpus. This method effectively

exploits statistical information, which produces a vector space

with meaningful substructure. These word embedding models

are unsupervised. They have achieved great success in emotion

analysis in natural language processing (NLP). However, these

models have a very significant limitation. Since these models do

not consider word ordering when modeling, they lose the syntactic

and semantic understanding of the words. The introduction of the

bert model solves the problem (Devlin et al., 2018). Compared

to word embedding models like GloVe, the transformer-based bi-

directional pre-trained bert model has superior performance in

terms of word representation. The bert model successfully extracts

contextual representations from text data by masking the language

model (MLM) pre-training target. Some researchers have even

combined bert-based embedding with speech-based representation

to improve the performance of ER (Pepino et al., 2020). Wu

et al. (2021) proposed a novel two-branch neural network model

structure consisting of temporally synchronous branching (TSB)

and temporally asynchronous branching (TAB). TSB combines

speech and text modalities at the input window frame and then

uses pooling across time to form a single embedding vector.

TAB integrates sentence text embeddings from multiple contextual

discourses into another embedding vector to provide cross-talk

information. Li et al. (2020) proposed a transformer-based EDC

context and speaker-sensitive model by adding a transformer on

the conversational side. The approach encodes individual sentences

with bert and then performs multi-task learning on auxiliary

tasks using dialogue-level networks to produce a better potential

representation of the whole dialogue. The roberta model is an

enhanced version of the bert model (Liu et al., 2019). Compared

to bert, roberta’s model has a larger number of model parameters

and batch sizes, as well as uses more data to train. It presents

a set of important bert design choices and training strategies

and introduces alternatives that can improve the performance of

downstream tasks. Therefore, in this paper, we choose roberta-base

pre-trained model as a contextual encoder of textual information to

improve the model performance for SER.

Additionally, adding extra information to the text information

can also improve the performance of TER. Sheng et al. (2020)

used graph neural networks to encode inter-discourse and inter-

speaker relationship information and incorporated it into textual

information for ER. Wang et al. (2020) used an LSTM-based

encoder to encode the interlocutor itself and the interlocutor’s

related information. Then, multi-layer transformers are used to

enhance the encoding capability of the LSTM.

2.2. Cross-modal emotion recognition

Cross-modal emotion recognition aims to capture sufficient

emotional information from different modalities for ER. Various

modalities exist in current ER research, yet the most common

combination is speech and text (Girish et al., 2022). Cho et al.

(2019) used LSTM to extract acoustic features and parallel

convolution with several different kernels to extract different

levels of contextual information from word sequences. Zhao et al.

(2022) proposed a multi-granularity framework that can extract

frame-level speech embeddings and segment-level embeddings

including phoneme, syllable, and word-level speech embeddings.

Cross-modal models are divided into early fusion and late fusion

according to the time or stage of feature fusion (Tripathi et al.,

2018; Wang et al., 2019). Late fusion is usually combined with the

final decision scores of various modalities for emotion recognition.

It is a static fusion strategy that does not generate a novel

cross-modal fusion feature. Sebastian et al. (2019) used a late

fusion strategy for cross-modal emotion recognition. The method

uses LSTM-RNN and pre-trained word embeddings for text

emotion recognition and CNN with discourse-level descriptors

for speech emotion recognition. In contrast, early fusion focuses

on exploring the interactions between the original features of

different modalities (Poria et al., 2017). Ahn et al. (2022)

proposed to circulate multi-head attention in a fusion architecture,

which can select significant fusion representations and learn

the dynamics.
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Early fusion usually takes a tandem or attention mechanism

to fuse the characteristics of different modalities. The two fusion

methods have their own merits. Late fusion is effective for specific

modes, but it is not entirely practical for cross-modal interactions

(Georgiou et al., 2019). Previously, it was worth pointing out that

early fusion was not superior to late fusion (Poria et al., 2018b)

for ER. The emergence of cross-modal attention mechanisms has

accelerated the development of early fusion.

Early cross-modal fusion networks only cascaded features from

different modalities. This method does not effectively carry out

inter-modal interactions to obtain fusion features. The cross-modal

attention mechanism (CMA) can effectively infer the potential

relationships among different modalities (Choi et al., 2018; Krishna

and Patil, 2020). The CMA can dynamically fuse information

from different modalities by simulating the interaction between the

different modalities. The dynamic interaction among modalities

can improve the performance of the emotion recognition system.

Srivastava et al. (2022) used CMA to fuse audio and text features.

Then, CTC loss was calculated using ASR as an auxiliary task

for ER. Chudasama et al. (2022) used a multi-head attention

mechanism to fuse three modal features: visual, audio, and

text, respectively. Yoon et al. (2019) proposed a multi-hop

attention mechanism to infer the inter-modal correlations through

training automatically.

Therefore, to improve the performance of the proposed

method, we use the CMA attention mechanism as a fuser of the

different modal features in our model. The stacked combination

of multiple ResCMFA blocks forms our cross-modal attention

module. It provides a unique cross-modal interaction framework

for speech and text modality.

3. Proposed methodology

This section briefly describes the architectural design details

of the proposed framework. We propose a cross-modal emotion

recognition model that takes speech and text from conversations

as input and outputs the predicted emotions. Figure 1 shows the

specific architecture of the model. It has two main parts: SER

(gray) and ASR (green). SER mainly comprises two pre-trained

feature extraction models (wav2vec 2.0 model for audio features

and roberta-base model for text features), the ResCMFA module,

and the Global-Aware block. This part calculates the CrossEntropy

loss by predicting the emotion label and the true emotion label.

The ASR part calculates the CTC loss through the audio features of

the wav2vec 2.0 model and the corresponding text transcriptions.

Finally, we feed the extracted features into the fully connected layer

for classification to obtain the predicted emotion category.

3.1. Problem statement

The dataset D has k utterances ui, which correspond to the

labels li. Each utterance consists of a speech segment ai and a text

transcript ti, where ui ∈ (ai, ti). ti is either an ASR transcript or

a human-annotated. The proposed network takes ui as input and

assigns the correct emotion to any given discourse.

〈U , L〉 =
{

〈ai, ti〉 , li
}

; i ∈ [1, k] (1)

3.2. Feature encoder

For the audio pattern, we use a pre-trained wav2vec 2.0

model as the original audio extractor. The wav2vec2.0 model is

obtained from the pre-training checkpoints released by Facebook.

The wav2vec 2.0 features are rich in the rhythmic information

needed for emotion recognition. Comparing the two versions of the

wav2vec 2.0 model, we chose to use the wav2vec2-base architecture

with a dimension size of 768. The wav2vec2-base model consists

of a convolutional feature encoder and 12 stacked transformers

encoders. Here, we only use the state of the last layer of the pre-

trained model as input. The input audio data ai of the i
th utterance

into the pre-trained wav2vec 2.0 model to get the contextual

embedding representation ei
a, ei

a ∈ R
j·DW . The DW indicates the

size of the audio feature embedding, DW is 768. Thus, the ei
a can

be expressed as follows

e
a
i = 8wav2vec2.0 (ai) ∈ R

j×DW ; i ∈ [1, k] (2)

where 8wav2vec2.0 denotes the function of the pre-trained wav2vec

2.0 model as an audio feature processor. j depends on the size of

the raw audio and the CNN feature extraction layer in the wav2vec

2.0 model. This CNN layer extracts frames from the raw audio with

a stride of 20ms and a hop size of 25ms. In our experiments, it

is worth noting that the parameters of the CNN feature extraction

layer are fixed at a constant level.

For the text pattern, the popular roberta is used. It contains

a tokenizer and 12 transformers encoder. Compared with the

common bert model, roberta uses a dynamic adjustment mask

method to extract more effective text features. In our study, we

also choose roberta-base as our feature extractor with a dimension

size of 768. First, we should tokenize the input text data ti and add

separators 〈S〉 and 〈/S〉 to separate the sentences. Then, we are fine-

tuning the tokenized text data and the corresponding discourse to

prevent semantic confusion. Finally we feed the processed text data

into the transformers encoders to generate a feature map of size

m ∗DT . The extracted contextual embeddingA can be expressed as:

e
t
i = 8Roberta-base (ti) ∈ R

m×DT ; i ∈ [1, k] (3)

where 8Roberta-base denotes the text feature extraction module and

m depends on the number of tokens in the text. And DT is the

dimension of text feature embedding.

3.3. Feature fusion

Our residual cross-modal fusion attention module consists of

multiple ResCMFA block layers stacked as shown in Figure 1.

The ResCMFA block layer consists of two parallel fusion blocks

targeting different modalities, labeled as A-T ResCMFA block and

T-A ResCMFA block. The difference between the two ResCMFA

blocks are the Query, Key, and Value of the cross-modal attention
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FIGURE 1

The framework of the proposed method.

mechanism. The A-T ResCMFA block sends audio features (ei
a)

as Query, and text feature (ei
t) as Key and Value to the cross-

modal attention mechanism for the interaction of audio and text

information. And the T-A ResCMFA block uses text features (ei
t)

as Query, and audio features (ei
a) as Key, Value.

In Figure 2, we can see that a ResCMFA block consists

of a cross-modal attention mechanism, a linear layer, layer

normalization, a dropout layer and a residual structure. First,

audio features and text features interact through a cross-modal

attention mechanism. The CMA is based on a multi-head attention

mechanism to better fuse audio features and text features. Then, the

interacted features pass through a linear layer, layer normalization,

GeLU and dropout layer. Finally, it is connected to the initial audio

features (A-T ResCMFA block) or text features (T-A ResCMFA

block) of the block through a residual structure. The residual

structure can reduce the missing audio information and text

information in the fusion features and protect the integrity of

the information.

F
i
fusion1 = 81

(

e
a
i , e

t
i

)

(4)

where 81 represents the learning function of the proposed 1st A-T

ResCMFA or T-A ResCMFA.

In addition, the output of the first ResCMFA block combined

with the initial audio features or text features are feed into the

second ResCMFA block. In this way, multiple ResCMFA blocks are

stacked together to generate the corresponding cross-modal fusion

feature FiA−Tm
and F

i
T−Am

.

A− T : F
i
A−Tm

= 8m

(

. . .
(

82

(

F
i
fusion1, e

t
i

)))

, wherem ∈ [1,N]

(5)
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FIGURE 2

A-T residual cross-modal fusion attention block.

T − A : F
i
T−Am

= 8m

(

. . .
(

82

(

F
i
fusion1, e

a
i

)))

, wherem ∈ [1,N]

(6)

Our fusion strategy is quite different from the previously

proposed cross-modal fusion. To better integrate cross-modal

information, we will always keep the Key and Value, the different

values of each ResCMFA block as the initial audio and text feature

of the module. The outputs of the last two ResCMFA blocks are

concatenated to generate the final cross-modal fusion feature.

F
cross-modal
fusion = Concate

(

F
i
A−Tm

, FiT−Am

)

(7)

As the ResCMFA module extracts local fusion features, we

consider associative features and enhance feature communication.

From Figure 1 we can see that the fused features that pass

through the ResCMFA module are fed to the global-aware block

(Liu et al., 2021). The global-aware block can globally capture

the rich emotional information contained in the fused features,

which consists of two fully connected layers, a convolutional

layer, two normalization layers, a GeLU activation function and

a multiplication operation. The output dimensions of the first

and last fully connected layers in the module are 4Df and Df

(the size of Df is 768), respectively. After the GeLU activation

function projection, the output is split into 2Df along the feature

size. The multiplication operation enhances feature mixing across

dimensions. Finally, the output of the global-aware module is

integrated for classification.

Fglobal-aware = 8global-aware

(

F
cross-modal
fusion

)

(8)

yi = FC
(

Fglobal-aware

)

∈ R
C (9)

where 8global−aware is the function of cross-modal fusion

features through the Global-Aware block. C is the number of

emotional categories.

3.4. CTC layer

In the training phase, we update the gradients by two loss

functions (CrossEntropy loss and CTC loss). CTC is the standard

technique for mapping input signals to output targets when they

don’t have the same length and no alignment information is

provided. Here, the length m of the speech signal is usually

significantly longer than the length j of the text transcription. CTC

loss is used as a loss function to effectively back-propagate the

gradient. Thus, we calculate CTC loss by waw2vec 2.0 features ei
a

and text transcription information ti.

yi
a = sof tmax

(

ei
a
)

(10)

LCTC = CTC
(

yi
a, ti

)

(11)

where yai ∈ R
j∗V ,V = 32 is the size of our vocabulary list,

consisting of 26 letters in the alphabet and a few punctuationmarks.

In addition, we compute the CrossEntropy loss using the output

features yi of the global-aware block and the true emotion label li.

LCrossEntropy = CrossEntropy
(

yi, li
)

(12)

Finally, we introduce a hyper-parameter α that combines the two

loss functions into a single loss. α can effectively control the relative

importance of CTC loss.

L = LCrossEntropy + αLCTC,α ∈ (0, 1) (13)

4. Experimental evaluation

4.1. Experiment dataset

Under many existing techniques in SER literature, we trained

and evaluated all our models on the IEMOCAP and MELD (Poria

et al., 2018a) datasets. The IEMOCAP dataset, a multimodal

dataset, is the benchmark for emotion recognition research. It

contains 12 h of improvised and scripted audio-visual data from

10 UC theater actors (five males and five females) in five binary

sessions. The emotional information of each conversation is

presented in four ways: video, audio, transcription, and motion

capture of facial movements. In this experiment, we select audio

and transcript data to evaluate our model on the IEMOCAP

dataset. Like the majority of studies, we choose five emotions for

ER: happy, angry, neutral, sad, and excited. Since happy and excited

are highly similar, we label all excited sample data as happy. A total

of 5531 data are available and Table 1 shows the statistics of the

IEMOCAP dataset. We randomly divide the dataset into training

(80%) and testing (20%) parts with five-fold cross-validation to

evaluate our model (Xu et al., 2021).

The MELD dataset is derived from more than 1,400 dialogues

and 13,000 utterances from the TV-series Friends. Each utterance

is annotated by one of seven emotion labels (e.g., neutral, surprise,

fear, sadness, joy, disgust, anger). This dataset is extended for

multimodal scenes and it is the most used benchmark dataset for

multimodal emotion recognition. We split the dataset using the

predefined training/validation provided on the MELD dataset. The

details of the MELD dataset are shown in Table 2.
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TABLE 1 Statistics of the IEMOCAP dataset.

Emotion Number

Anger 1,103

Neutral 1,708

Happy 595

Excited 1,041

Sad 1,084

TABLE 2 Statistics of the MELD dataset.

Emotion Train + ev Test

Neutral 5,180 1,256

Surprise 1,355 281

Fear 308 50

Sadness 795 208

Joy 1,906 402

Disgust 293 63

Anger 1,261 345

4.2. Experiment setup

In this work, to explore the advantages of multimodality, we

construct two unimodal baselines using text and speech modalities.

Text baseline using roberta-base as the contextualized text encoder,

then classification using a single linear layer and softmax activation

function. The speech baseline used a similar setup as the text

baseline, replacing only the encoder with a pre-trained wav2vec 2.0

model. We use the Pytorch framework to build our model.

To compare with other approaches, we set the same

hyperparameters settings in this experiment. First, the batch size is

set to 2. In the training part, we calculate the loss by CrossEntropy

loss and CTC loss, and update the parameters of the model by

Adam optimizer with learning rate of 1e-5. The α is used to

control the intensity of CTC loss. For the testing part, we only

calculate the CrossEntropy loss. We evaluate the performance of

our proposed model by adopting two different evaluation metric

combinations for the two datasets. For IEMOCAP, we use WA

(weighted accuracy) and UA (unweighted accuracy) as evaluation

metrics. For MELD, we use Accuracy and Weighted average F1

as evaluation metrics. WA is the accuracy for all samples and

UA is the accuracy for each emotion category. The evaluation

metric combinations we selected are among the most used on the

IEMOCAP dataset. The calculation of these four evaluationmetrics

are shown as follows.

UA =

∑k
1

ni
Ni

k
, WA =

∑k
1 ni

∑k
1 Ni

(14)

TABLE 3 Comparison of results in di�erent modalities on the IEMOCAP

dataset.

Models WA UA

Only Roberta-base

(baseline)

69.89% 69.27%

Only Wav2vec 2.0

(baseline)

78.66% 79.76%

Roberta-base + Wav2vec

2.0

82.01% 82.80%

Accuracy = WA =

∑k
1 ni

∑k
1 Ni

precision =
ni

Mi
, recall =

ni

Ni
, F1 =

2× precision × recall

precision + recall

Weighted average F1 =

k
∑

1

Ni × F1i

N

(15)

where the Ni means the number of utterances in ith class, the Mi

represents the number of all emotions identified as ith class, the ni
means the number of correctly recognized utterances in ith class

and kmeans the number of classes.

4.3. Ablation studies

In this study, we have conducted several ablation studies on

the IEMOCAP and MELD datasets, respectively. The WA and

UA evaluation metrics are used to evaluate our model on the

IEMOCAP dataset. In addition, we evaluate our model by Accuracy

and Weighted average F1 evaluation metrics on the MELD dataset.

4.3.1. Results on the IEMOCAP dataset
To verify the impact of each mode, we train our proposed

network using only audio features or text features as input without

applying fusion modality. The audio features are wav2vec 2.0

features extracted by the pre-trained model wav2vec2-base. The

text features are extracted by a pre-trained model roberta-base.

Since the size of both audio features and text features are 768,

the cross-modal attention mechanism of ResCMFA can effectively

fuse the two features. From Table 3, we can see that the fusion

of two features combines the advantages of both features and

significantly improves the emotion recognition rate compared to a

single feature. The addition of text features improved 3.35% inWA

and 3.04% in UA compared to using only audio features.

In addition, we investigate the impact of the global-aware block

for our proposed model. The addition of the global-aware block

enables our proposed GCF2-Net to capture emotion information

from fusion features at multiple scales. According to Table 4, we

can see that adding global-aware blocks improves 1.09 and 1.07%

in WA and UA, respectively. Thus, it can demonstrate that the

global-aware block is able to extract more important emotional

information to improve the performance of our model.

With the addition of global-aware, we also set up ablation

experiments for the residual cross-modal fusion attention module
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TABLE 4 Comparison of results in the global-aware block.

Models WA UA

W/O global-aware block 80.92% 81.73%

GCF2-Net (ours) 82.01% 82.80%

TABLE 5 Comparison of results in di�erent number of ResCMFA modules.

m = i WA UA

1 79.29% 79.92%

2 79.56% 80.79%

3 81.10% 82.16%

4 82.01% 82.80%

5 80.47% 80.95%

Bold value indicates comparison of results of ResCMFA blocks.

TABLE 6 Comparison of results in di�erent values of α on the IEMOCAP

dataset.

α WA UA

0 81.10% 81.56%

0.001 81.65% 81.88%

0.01 80.47% 81.19%

0.1 82.01% 82.80%

1 76.22% 77.05%

Bold value indicates comparison of results on the IEMOCAP dataset.

(ResCMFA). Cross-modal attention mechanisms are multi-head

attention mechanisms using different modal features as input. It

can effectively fuse the features of two different modalities. Since we

have two types of ResCMFA blocks that are placed in parallel. This

allows to balance the weight of eachmodality feature. Therefore, we

verify the effect of different numbers of the ResCMFA block layer in

our proposedmodel. Table 5 shows the optimal model performance

when having four layers of ResCMFA blocks (m = 4). However, the

accuracy of the model decreases whenm = 5. We considerm = 4 as

our best choice.

In addition, after determining the optimal model structure, we

explore whether ASR as a secondary task contributes to emotion

recognition. It is known that the hyperparameter α can control the

intensity of CTC loss. Thus, we try to change α from 0 to 1 to obtain

a different acceleration. Table 6 shows the effect of different values

of α for our optimal model. We can learn that when α = 0.1, the

positive impact of CTC loss is the largest. However, when α = 1, the

addition of auxiliary tasks lowers the model recognition rate.

4.3.2. Results on the MELD dataset
For MELD dataset, we also perform ablation experiments

for audio features (wav2vec 2.0), text features (roberta-base),

and cross-modal fusion features (wav2vec 2.0 features and text

features). Table 7 shows the results of our proposed model on the

MELD dataset using different modalities features. From this table,

we can see that, unlike the IEMOCAP dataset, our model achieves a

TABLE 7 Comparison of results in di�erent modalities on the MELD

dataset.

Models Accuracy Weighted
average F1

Only Roberta-base

(baseline)

65.25% 62.82%

Only wav2vec 2.0

(baseline)

63.50% 60.85%

Roberta-base + wav2vec

2.0

69.75% 67.48%

TABLE 8 Comparison of results in the global-aware block on the MELD

dataset.

Models Accuracy Weighted
average F1

W/O global-aware block 68.12% 65.73%

GCF2-Net 69.75% 67.48%

TABLE 9 Comparison of result in di�erent number of ResCMFA modules

on MELD dataset.

m = i Accuracy Weighted
average F1

1 68.32% 66.43%

2 69.75% 67.48%

3 67.83% 65.86%

4 68.58% 66.48%

5 66.83% 64.94%

Bold value indicates comparison of results of ResCMFA blocks.

higher recognition rate for text features than audio features on the

MELD dataset. The fusion of the two modal features improved the

accuracy by 6.25% and the weighted average F1 by 6.63% compared

to using only audio features.

Then, we perform ablation experiments for the global-aware

blocks on theMELD dataset. Table 8 shows the experimental results

for our model with or without the global-aware block. We can see

that on the MELD dataset, the addition of the global-aware block

improves the accuracy by 1.63% and the weighted average F1 by

1.75%. This further demonstrates the validity of the addition of the

global-aware block to our proposed model.

Third, we conduct ablation experiments on ResCMFA block

layers. With the ResCMFA block, we can effectively fuse the

extracted audio features and text features. Table 9 shows the

experimental results for our proposed model adopting different

ResCMFA block layers on the MELD dataset. Unlike on the

IEMOCAP dataset, our model achieves optimal results on the

MELD dataset using two ResCMFA block layers (m = 2). Due to

the large number of neutral categories on the MELD dataset. We

speculate that too many ResCMFA block layers cause our proposed

model to easily confuse neutral and other emotions.

Finally, we set up ablation experiments for the hyperparameter

α to verify the effect of CTC loss on our proposed model. From

Table 10, we can see that the optimal result is obtained when α is

0.1. The addition of the auxiliary task improved the accuracy by

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1183132
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1183132

1.67% and the weighted average F1 by 1.53% compared to without

using ASR as an auxiliary task to calculate CTC loss. However, a

large value of α will make our proposed model too dependent on

CTC loss when updating parameters (only the training part).

TABLE 10 Comparison of results in di�erent values of α on the MELD

dataset.

α Accuracy Weighted
average F1

0 68.08% 65.95%

0.001 68.24% 66.44%

0.01 68.73% 66.92%

0.1 69.75% 67.48%

1 63.77% 62.41%

Bold value indicates comparison of results on the MELD dataset.

4.4. Error analysis

We visualize the performance and span of different modalities

in different emotional categories through a confusion matrix.

Figure 3 shows the confusion matrix for each modality on the

IEMOCAP dataset, including (Wav2vec 2.0, Roberta-base and

cross-modal fusion). Figure 4 shows the confusion matrix on the

MELD dataset.

As can be seen in Figure 3A, it incorrectly confuses happy and

neutral. Therefore, the recognition rate on these two emotions is far

lower than the other two emotions, especially the recognition rate

of anger reaches 86.94%. In general, most emotions are susceptible

to confusion with neutral. Our observations agree with other

studies reported on the IEMOCAP dataset (Yoon et al., 2018; Padi

et al., 2022), which argued that neutral is located at the center of the

activation space, making its discrimination from other categories

more challenging. Compared with Figures 3A, B has excellent

FIGURE 3

Experimental results in di�erent modalities on the IEMOCAP dataset. (A) wav2vec 2.0. (B) Roberta-base. (C) Cross-modal function.
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FIGURE 4

Experimental results in di�erent modalities on the MELD dataset.

effectiveness in predicting happiness. This result is reasonable,

compared to the audio signal data, happiness and other emotions

have a more significant difference in word distribution and can

provide more emotional information. On the other hand, sad has

the worst prediction and it has 23.71% confusion with neutral.

The model in Figure 3C compensates for the shortcomings

of the first two models (Figures 3A, B) by using the fusion of

two modal features. We can see that the prediction rate for

each emotion reaches 80% except for neutral. In particular, the

prediction of sad reached 91.27%. Unfortunately, the recognition

rate of anger and neutral is slightly reduced.

From Figure 4 we can see that the recognition rate of various

emotions is extremely unbalanced. Neutral emotions had the

highest recognition rate of 89.94%, however, the recognition rates

for fear and disgust were only 11.03 and 10.88%, respectively. This

may be because the number of neutral in the test set reached

almost 50%, resulting in many emotion categories being identified

as neutral. And the number of fear and disgust emotions is too

sparse leading to extremely few other emotions identified as fear

and disgust. The same conclusions are presented in Zhang et al.

(2019); Kim and Vossen (2021); Song et al. (2022).

4.5. Comparative analysis

As shown in Table 11, we compare cross-modal emotion

recognition models in WA and UA using the same modality data.

The IEMOCAP dataset is not equally distributed, so the WA and

UA enable to evaluate the classification ability of the model. It is

worth mentioning that we choose the same audio and text features

as Srivastava et al. (2022). However, the addition of the ResCMFA

TABLE 11 Comparison of experiment results of di�erent methods on the

IEMOCAP dataset.

Method WA UA

Xu et al. (2019) 70.40% 69.50%

Liu et al. (2020) 72.40% 70.10%

Makiuchi et al. (2021) 73.50% 73.00%

Cai et al. (2021) 78.15% –

Morais et al. (2022) 77.36% 77.76%

Srivastava et al. (2022) 77.64% –

Qian and Han (2022) 76.06% 77.45%

Li et al. (2022) 80.36% 81.70%

GCF2-Net 82.01% 82.80%

Bold value indicates comparison of results of different methods on the IEMOCAP dataset.

module and the global-aware block allows our proposed GCF2-

Net model to improve by 4.37% in WA. This further demonstrates

that the ResCMFA module and global-aware can better fuse the

emotional information of different modalities. In addition, our

proposed GCF2-Net model improves WA by 1.65% and UA by

1.10% over previous state-of-the-art methods (Li et al., 2022). It can

see that our model achieves state-of-the-art experimental results

on the WA and UA. The comparison further demonstrates the

validity of our proposed model. Compared with existing cross-

modal approaches, our proposed GCF2-Net network on MELD

dataset achieve a significant improvement over the state-of-the-

art cross-modal emotion recognition. Table 12 shows that our

proposed model improves the accuracy by 1.90% and the weighted

average F1 by 0.77% compared to the previous optimal model

(Chudasama et al., 2022). In addition, we discuss the calculation

complexity of our proposed model. The average duration of audio

on the IEMOCAP and MELD datasets is 4.5 seconds. Therefore,

we choose the audio of 4.5 s and the corresponding text as input

to calculate the model complexity. We set the audio size (245,768)

and the text size (22,768), our proposed model produces 128.63MB

parameters, the input size is 0.78 MB, and the forward/backward

process size is 83.94 MB. Our further work will also consider how

to reduce the model parameters.

In summary, compared with other existing methods, our

proposedmodel greatly improves all metrics. This can be attributed

to the fact that the wav2vec 2.0 features we extracted do not require

trimming the audio, thus preserving a large amount of emotional

information. According to Li et al. (2022), audio is clipped into 5

s and texts are clipped into 512 tokens by trimming or padding.

Second, the addition of global-aware enables our proposed model

to extract more global information. Finally, the CTC loss function

is used to back-propagate the gradient and further improves

the accuracy.

4.6. Discussion

Our proposedGCF2-Netmodel achieves state-of-the-art results

on both the IEMOCAP and MELD datasets. In our study,

we chose to integrate textual information into audio messages
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TABLE 12 Comparison of experiment results of di�erent methods on the

MELD dataset.

Method Accuracy Weighted
average F1

Zhang et al. (2019) – 57.40%

Mao et al. (2020) 65.66% 63.55%

Siriwardhana et al.

(2020)

64.30% 63.90%

Lian et al. (2021) 62.00% 60.50%

Xie et al. (2021) 65.00% 64.00%

Hu et al. (2022) 65.09% 65.51%

Song et al. (2022) – 66.50%

Chudasama et al. (2022) 67.85% 66.71%

GCF2-Net 69.75% 67.48%

Bold value indicates comparison of results of different methods on the MELD dataset.

because audio messages and textual information are closely

related to our communication. Tables 3, 7 show that cross-modal

emotion recognition achieves superior results than speech emotion

recognition or text emotion recognition. Figure 3 confusion matrix

further shows the superiority of cross-modal emotion recognition

on the IEMOCAP dataset. Speech emotion recognition performs

well on anger and sad, but poorly on happy and neutral. It is

easy to confuse neutral and happy. In contrast, text emotion

recognition performs well on happy and neutral. In Figure 3C, we

can observe that the best performance is achieved for cross-modal

sentiment recognition compared to using only audio modality

features. It greatly improves the rec ognition rate of happy

and sad, which reflects the synergistic property between audio

and text.

As can be seen from the ablation study in Section 4.3, each

block in our model plays a crucial role in the experimental

results. Tables 4, 8 show that cross-modal emotion recognition

achieves superior results than speech emotion recognition or text

motion recognition. First, we designed a ResCMFA block based

on CMA to fuse audio features (wav2vec 2.0) and text features

(roberta-base) from transfer learning. From Tables 5, 9 we can

see that our proposed model achieves optimal results in the 4-

layer (IEMOCAP dataset) and 2-layer (MELD dataset) ResCMFA

block layers, respectively. In addition, according to the Tables 4, 8

we can see that the inclusion of the global-aware block achieves

superior results on both datasets. The global-aware block is able to

capture emotional information in cross-modal fusion features from

different scales. Finally, the parameters of the model are updated in

the training part by computing CTC loss. From Tables 6, 10 we can

see that different intensity of CTC loss has different effects on our

proposed GCF2-Net model.

In addition, we discuss the calculation complexity of our

proposed model. The average duration of audio on the IEMOCAP

and MELD datasets is 4.5 s. Therefore, we choose the audio of

4.5 s and the corresponding text as input to calculate the model

complexity. We set the audio size (245,768) and the text size

(22,768), our proposed model produces 128.63 MB parameters, the

input size is 0.78 MB, and the forward/backward process size is

83.94 MB. Our further work will also consider how to reduce the

model parameters.

5. Conclusion

In this paper, we propose a novel deep learning architecture to

recognize speech emotion called global-aware cross-modal feature

Fusion Network (GCF2-Net). Firstly, we construct a residual

cross-modal fusion attention (ResCMFA) module that helps the

network to extract rich features from audio and text. Then, the

global-aware block is added after ResCMFA module to extract

emotion-rich features further globally. We also introduce ASR

as an auxiliary task to calculate CTC loss. Finally, experimental

results on the IEMOCAP dataset demonstrate that the ResCMFA

module, global-aware block, ASR to calculate CTC loss all improve

the performance of the model. In future work, we will explore

moremethods to improve the performance of cross-modal emotion

recognition. We endeavor to improve people’s happiness by

applying our approach to all areas of society, such as healthcare,

autonomous driving, smart Q&A, etc.
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