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Hearing loss places a substantial burden on medical resources across the world 
and impacts quality of life for those affected. Further, it can occur peripherally 
and/or centrally. With many possible causes of hearing loss, there is scope for 
investigating the underlying mechanisms involved. Various signaling pathways 
connecting gut microbes and the brain (the gut-brain axis) have been identified 
and well established in a variety of diseases and disorders. However, the role of 
these pathways in providing links to other parts of the body has not been explored 
in much depth. Therefore, the aim of this review is to explore potential underlying 
mechanisms that connect the auditory system to the gut-brain axis. Using 
select keywords in PubMed, and additional hand-searching in google scholar, 
relevant studies were identified. In this review we summarize the key players in 
the auditory-gut-brain axis under four subheadings: anatomical, extracellular, 
immune and dietary. Firstly, we  identify important anatomical structures in the 
auditory-gut-brain axis, particularly highlighting a direct connection provided by 
the vagus nerve. Leading on from this we discuss several extracellular signaling 
pathways which might connect the ear, gut and brain. A link is established between 
inflammatory responses in the ear and gut microbiome-altering interventions, 
highlighting a contribution of the immune system. Finally, we  discuss the 
contribution of diet to the auditory-gut-brain axis. Based on the reviewed 
literature, we  propose numerous possible key players connecting the auditory 
system to the gut-brain axis. In the future, a more thorough investigation of these 
key players in animal models and human research may provide insight and assist 
in developing effective interventions for treating hearing loss.
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1. Introduction

1.1. Problem statement

Hearing loss affects more than 20% of the global population, with 
severity ranging between moderate and complete loss of hearing in 
over 5% of people worldwide (Haile et al., 2021). Although the elderly 
(>70 years) and children below the age of 5 years are the most at-risk 
populations (Haile et al., 2021), hearing loss can occur at different ages 
and for various reasons (Zahnert, 2011). Hearing loss in adults and 
children can vary in severity (Gopinath et al., 2012; Tomblin et al., 
2015) and can occur in only one or both ears (Oh et  al., 2007; 
Fitzpatrick et  al., 2010; Golub et  al., 2018). There are four main 
categories of hearing loss – conductive, sensorineural, mixed and 
central hearing loss (Isaacson and Vora, 2003; Zahnert, 2011).

Conductive hearing loss occurs when the conduction of sound 
from the outer ear through the middle ear to the cochlear, within the 
inner ear, is disrupted (Carpena and Lee, 2018). This can result from 
damage to middle ear structures, such as the tympanic membrane, 
mastoid or ossicular chain (Kim et al., 2019). Infections of the middle 
ear (Graydon et al., 2017) or abnormal growths around the tympanic 
membrane (Martins et  al., 2012) can also lead to conductive 
hearing loss.

Sensorineural hearing loss (SNHL) results from signals being 
incorrectly relayed from the cochlea to the brain – either due to 
vibration signals not being correctly converted into electrical signals 
within the cochlea, or nerve injury (Carpena and Lee, 2018). 
Congenital SNHL can be genetically inherited or arise from viral 
infections such as congenital cytomegalovirus infection (van Beeck 
Calkoen et al., 2019). The toxic effects of chemotherapeutic drugs and 
antibiotics within the ear may also cause SNHL (Wang et al., 2015a; 
Garinis et al., 2017). Mixed hearing loss involves a combination of 
conductive hearing loss and SNHL.

Finally, central hearing loss involves disruption to the central 
auditory system – which begins with the auditory nerve exiting the 
cochlea and continues through to the auditory cortex of the brain 
(Zahnert, 2011). Central hearing loss and processing disorders of the 
central auditory system have many possible causes, including brain 
lesions (Jerger, 1987), meningitis infections (Kihara et al., 2012), brain 
injuries (Bergemalm and Lyxell, 2005; Oleksiak et al., 2012), strokes 
(Bamiou et al., 2012; Fujioka et al., 2020; Lachowska et al., 2021), 
multiple sclerosis (MS) (Matas et al., 2010; Valadbeigi et al., 2014), 
heavy metal poisoning (Dutra et  al., 2010; Alvarenga et  al., 2015; 
Castellanos, 2016), prenatal hypoxia (Jiang et al., 2008) and can also 
occur with age (Kim and Chung, 2013).

Many studies have investigated the underlying mechanisms 
responsible for hearing loss (Willems, 2000; Li et al., 2018; Chen et al., 
2019; Uchida et al., 2019) and have identified interventions that can 
prevent or delay its onset. However, there is still much to be understood 
about the auditory system, how it interacts with other parts of the 
body and how the burden of hearing loss can be addressed globally.

1.2. The auditory system

The auditory system can be divided into two clear components 
(Figure 1). The peripheral auditory system includes the structures of 
the outer, middle and inner ear where sound is received and converted 

into electrical signals. The central auditory system contributes to 
transportation of electrical auditory signals from the cochlea to the 
brain, where they are processed.

1.2.1. The peripheral auditory system
Auditory signals are directed into the ear canal by the pinna and 

travel through to the tympanic membrane, the lateral border of the 
middle ear (Alberti, 2001). The functions of the outer ear include 
filtering sound according to frequency, and also amplification of 
auditory signals (Sundar et al., 2021). The outer ear also plays an 
important role in directional hearing whereby, based on the frequency 
of sound and the timing at which it reaches each ear, the direction of 
the source can be determined (Fischer and Schäfer, 1991).

The middle ear spans from the tympanic membrane at the lateral 
side to the oval window of the cochlea at its medial end (Alberti, 
2001). There are three important bones involved in the transmission 
of sound through the middle ear: the malleus, incus and stapes 
(Alberti, 2001; Sundar et al., 2021). Sound is transmitted from the 
tympanic membrane and along these bones in the form of mechanical 
signals (Aernouts et al., 2012; Rusinek, 2021). Amplification of sound 
also takes place in the middle ear – this is vital due to the transfer of 
sound from air to fluid as it reaches the cochlea of the inner ear, upon 
which there is resistance due to an increase in density of the medium 
the sound is traveling through (Sundar et al., 2021). This concept has 
been termed “impedance matching” (Parent and Allen, 2010). The 
middle ear is also where connections to the nose and respiratory 
system occur through the eustachian tube and mastoid air cells, 
respectively (Alberti, 2001; Sundar et al., 2021).

In the inner ear, there are a number of important structures, 
including the vestibular labyrinth for balance and the membranous 
labyrinth within the cochlea (Alberti, 2001). Mechanical signals are 
converted to electrical signals here. As the stapes vibrates, this causes 
the fluid surrounding the membranous labyrinth also to vibrate 
(Alberti, 2001). The vibrations in fluid are converted into electrical 
action potentials, by which auditory signals are transmitted along the 
auditory nerve to the brain (Sundar et al., 2021).

1.2.2. The central auditory system
The auditory nerve marks the beginning of the central auditory 

system. Here the auditory system and brain intersect. Electrical signals 
are carried from the cochlea to the cochlear nucleus in the brainstem 
via this nerve (Celesia and Hickok, 2015). The signal is transmitted to 
the superior olivary complex, passed to the inferior colliculus, and 
then relayed to the medial geniculate body (Celesia and Hickok, 
2015). Finally auditory signals travel to the auditory cortex where the 
main signals are processed in the primary auditory cortex, while 
processing more detailed sound also requires the activity of secondary 
cortex regions (Patterson et al., 2002). White matter tracts connect 
structures of the central auditory system (Javad et al., 2014). Damage 
or disruptions to the peripheral auditory system can lead to 
detrimental effects downstream in the central auditory system (Syka, 
2002; Butler and Lomber, 2013).

1.3. The gut-brain axis

The gut-brain axis has become a major research focus as more 
studies have found links between the brain and microbial populations 
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of the gut. Disruption to the gut microbiome composition, commonly 
termed ‘gut dysbiosis’, has been observed in various diseases and 
disorders of the brain (Tremlett et al., 2017; Vogt et al., 2017; Haran 
et al., 2019; Romano et al., 2021). Disorders in the gut can also impact 
the brain and behavior (Gracie et al., 2017; van Langenberg et al., 
2017; Ng et al., 2018).

A number of mechanisms are believed to contribute to the 
bidirectional signaling between the brain and gut (Cryan et al., 2019). 
Various studies in animals and humans have identified the vagus 
nerve, hypothalamic–pituitary–adrenal (HPA) axis, the immune 
system, neurotransmitters and bacterial metabolites as probable 
regulators of gut-brain axis signaling (Ait-Belgnaoui et al., 2012; Iven 
et al., 2019; Lin et al., 2019; Strandwitz et al., 2019; Zhang et al., 2020; 
Kong et al., 2021). However, there is still much to be understood about 
these various signaling pathways and the roles they play in health 
and disease.

1.4. The gut-auditory axis

Various genes have been implicated in the development of the gut 
and ear (Bitner-Glindzicz et al., 2000; Stanchina et al., 2006; Crawley 
et al., 2014). As such, mutations in these genes can lead to disruptions 
in the function of the gut and can also impact the ear and hearing. For 
instance, a mutation in the ‘rearranged during transfer’ (RET) gene 
during the embryonic period is commonly associated with 
Hirschsprung’s disease in humans (Fadista et al., 2018). This gene is 
required for the establishment of the enteric nervous system (ENS) 
during development (Luesma et al., 2014). A study investigating the 
role of this gene in Hirschsprung’s disease showed that mutations in 
the c-RET and c-Ret genes also led to hearing loss in human and rodent 
models, respectively, (Ohgami et al., 2010). A more recent animal study 
has shown that mutations in this gene may additionally lead to 
underdevelopment of the cerebellum in the brain (Ohgami et al., 2021).

In mice with mutations in genes coding for SRY-related HMG-box 
10 (Sox10), endothelin-3 (Edn3) and endothelin-B receptor (Ednrb), 
excessive dilation of the colon and abnormal ENS development have 
also been previously observed (Stanchina et al., 2006). The authors 
suggested that terminal differentiation and apoptosis of neural crest 
cells may lead to fewer of these cells entering the gut regions during 
development – ultimately causing abnormal gut development which 
can shorten the lifespan of mice. Additionally, mutations in these 
genes were shown to reduce the number of melanocytes in the ear, 
where they are required for cochlea function (Stanchina et al., 2006). 
Furthermore, in mice with a dominant Sox10 mutation and double 
mutations in the Ednrb gene, there were absolutely no melanocytes 
present (Stanchina et al., 2006). Human research has also identified 
the importance of melanocytes (and the melanin pigment they carry) 
in ear development, while SOX10 is commonly used as a cell type 
marker for melanocytes (van Beelen et al., 2020), which reinforces the 
connection between ENS and hearing activity.

Mutations in the Usher type 1C (USH1C in humans, Ush1c in 
animals) gene likewise impact the ear and gut (Bitner-Glindzicz et al., 
2000; Crawley et al., 2014). Congenital SNHL and disruptions in gut 
function are reported in individuals with Usher type 1 syndrome 
(Bitner-Glindzicz et al., 2000). In vitro research and animal studies 
suggest that protein–protein interactions that maintain structure and 
stability between stereocilia of the ear and between microvilli of the 
gut, are impacted in Usher syndrome (Verpy et al., 2000; Siemens 
et al., 2002; Crawley et al., 2014). This is due to USH1C genes encoding 
harmonin, a protein that is important for creating protein complexes 
with cadherins, which if mutated leads to disruptions to the 
arrangement of microvilli and stereocilia (Siemens et  al., 2002; 
Crawley et al., 2014). Further, the organization of hair cells has been 
found to be affected in a small study of mice with mutations in Ush1c, 
and these mice did not respond at typical thresholds used for auditory 
brainstem response tests – while wild type mice had normal auditory 
brainstem response thresholds (Lentz et al., 2010). These findings 

FIGURE 1

A visual summary of the main components of the peripheral and central auditory systems. Inspired by previous figures of auditory anatomy (Cope 
et al., 2015; Nipa et al., 2020). A component of the figure used the following online resource which has Creative Commons CC0: https://openclipart.
org/detail/281964/ear-anatomy by GDJ; Creative Commons CC0.
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reinforce what has been found in other studies regarding the role of 
Ush1c in arrangement of hair cells, and it indicates that not only the 
peripheral auditory system is affected, but that the central auditory 
system is also impacted in Usher syndrome.

Therefore, these genetic disorders provide evidence of a link 
between the gut and the ear, providing the third arm in this 3-way 
relationship between the ear, gut and brain.

Several recent reviews have begun to touch on aspects of the 
auditory-gut-brain axis (Kociszewska and Vlajkovic, 2022; Megantara 
et al., 2022) or ear-gut axis (Denton et al., 2022), focusing largely on 
the role of the immune system and inflammation in establishing these 
connections. Furthermore, they address how neurotransmitters, 
metabolic activity and disruptions to protective barriers may play a 
role in diseases and disorders through which we  can observe 
interactions between the ear, gut and brain.

1.5. Aim

Although the gut-brain axis is a field of research that is rapidly 
gaining traction, there are many aspects that have yet to be explored 
in depth. One such aspect is the link between the auditory system and 
gut-brain axis. While evidence for a gut-ear axis is starting to 
be explored in conjunction with links to inflammation of the brain, 
there are many potential pathways of communication between the 
auditory system and gut-brain axis which are yet to be considered. As 
hearing loss contributes substantially to the burden of disease across 
the world, investigating a potential link between the auditory system 
and gut-brain axis may contribute valuable insight for treating diseases 
or disorders related to the ear and/or hearing. In exploring this, 
we might also build on mechanisms of hearing loss and on knowledge 
of underlying signaling pathways within the human body.

The ear has a microbiome of its own, which would be expected to 
communicate and interact with microbiomes located in other parts of 
the body, including the gut. Further, there are anatomical and 
physiological mechanisms which play a prominent role in both the 
auditory system and gut-brain axis (Klarer et al., 2014; Kondo et al., 
2020). The goal of this review is to identify studies which show a link 
between the auditory system and gut-brain axis, and to outline 
putative mechanisms by which these systems could interact.

2. Methodology

A scoping review of literature was carried out to identify papers 
of interest that could address the important topics in this field. 
PubMed was searched using various sets of keywords (Table 1), and 
additional hand-searching was done in Google Scholar and Science 
Direct. We summarize how many results were obtained using each set 
of keywords, as well as identifying which of these papers were 
ultimately included in the review.

3. Evidence of an auditory-gut-brain 
axis connection

Many of the key players that connect the gut microbiome and the 
brain may also provide a connection with the auditory system – here 

referred to as the auditory-gut-brain axis. An early study of patients 
with inflammatory bowel syndrome found differences in the 
processing of auditory signals compared to healthy individuals, 
particularly in the frontal lobe (Blomhoff et al., 2000). Since then, 
several research papers have provided additional evidence of 
connections between the ear, gut and brain.

A number of studies in animals have shown a plausible link 
between the auditory system and gut-brain axis. Following Pavlovian 
conditioning, in which rats were exposed to auditory stimuli prior to 
being shocked, rats in which afferent vagus nerve connections were 
surgically severed displayed a heightened fear response to auditory 
prompts, compared to rats that experienced sham procedures (Klarer 
et  al., 2014). This indicates that the vagus nerve – an important 
component of gut-brain axis signaling – plays an important role in 
regulating or diminishing fear following noise conditioning.

Chronic exposure to noise has been shown to disrupt the gut 
microbiome composition and result in amyloid-β build-up and 
cognitive decline in mice (Cui et al., 2018). Amyloid-β is a key marker 
associated with the development of Alzheimer’s disease, the most 
prevalent neurodegenerative disease (Ferreira et  al., 2015). 
Permeability of the intestine was also found to be impacted in noise-
exposed mice, while the integrity of the blood–brain barrier (BBB) 
tight junctions was compromised (Cui et al., 2018). Further, mice 
exposed to chronic noise showed increased inflammatory markers in 
their blood [inducible nitric oxide synthase, nuclear factor κB and 
interleukin (IL)-6] and alterations to microbiome functionality that 
are indicative of greater oxidative stress (Chi et al., 2021). Probiotic 
treatment has been shown to successfully treat behavioral changes 
resulting from noise-induced stress during fetal development in mice 
(Hadizadeh et al., 2019). Collectively, these findings reveal that noise 
can impact the gut-brain axis and they indicate a connection to the 
auditory system through multiple signaling pathways.

In another mouse model study investigating age-related hearing 
loss, ingestion of the H61 strain of heat-killed Lactococcus lactis 
improved hearing outcomes – as revealed by a lower auditory signal 
intensity required to generate a response in the brainstem (Oike et al., 
2016). This study provided evidence that the central auditory system 
can be affected by altering the microbial populations in the gut. In 
mice provided with a prebiotic diet with short chain fatty acid (SCFA) 
production properties – such as a fructo-oligosaccharide diet – 
up-regulations of brain-derived neurotrophic factor (BDNF) and 
SCFA receptor gene expression were measured within the inner ear 
(Kondo et al., 2020). As alterations to the gut microbiome composition 
were also observed by Kondo et al. (2020), this would indicate that 
diet-driven shifts in the microbiome can impact the ear on a gene 
expression level. More specifically, these shifts impacted BDNF 
expression, which is required for the survival of afferent neurons that 
transmit sensory signals to the central auditory system (Chacko 
et al., 2017).

A human study in one month-old infants using 
electroencephalography (EEG) has shown a link between antibiotic 
usage (ampicillin and gentamicin) and the response to auditory 
stimuli (Hickey et al., 2020). While infants typically have greater EEG 
signals in response to their mothers’ voices compared to the voice of 
a stranger, infants who received antibiotics showed a converse 
response (Hickey et al., 2020). In infants who received antibiotics, 
EEG signals in response to the voice of a stranger were lower in the 
frontal and central scalp regions, which are involved in processing 
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TABLE 1 PubMed keywords used in this review.

Review 
Section

Keywords used in PubMed Number of 
papers found 
with keyword 
search

Results from search included 
in this review

Section 3 (“gut-brain axis” [All Fields] OR “gut-brain-axis” [All Fields] OR “microbiota-gut-

brain axis”[All Fields] OR “microbiota-gut-brain-axis”[All Fields] OR 

“microbiome-gut-brain axis”[All Fields] OR “gut-microbiome-brain axis”) AND 

(“auditory” [All Fields] OR “ear” [All Fields] OR “ear” [MeSH Terms] OR 

“hearing” [All Fields] OR “hearing” [MeSH Terms] OR “noise”[MeSH Terms] OR 

“noise”[All Fields])

13 Chi et al. (2021), Cui et al. (2018), Hickey 

et al. (2020), Klarer et al. (2014)

Section 3 ((“gut”[All Fields] OR “stomach”[MeSH Terms] OR “stomach”[All Fields] 

OR”gastrointestinal”[All Fields] OR “intestinal”[All Fields] OR “intestines”[MeSH 

Terms] OR “intestines”[All Fields]) AND (“disease”[MeSH Terms] OR 

“disease”[All Fields] OR “disorder”[All Fields] OR “disorders”[All Fields])) AND 

(“ear”[MeSH Terms] OR “ear”[All Fields] OR “auditory”[All Fields] OR 

“hearing”[MeSH Terms] OR “hearing”[All Fields] OR “deafness”[MeSH Terms] 

OR “deafness”[All Fields])

1,507 Bitner-Glindzicz et al. (2000), Fang et al. 

(2020), Kondo et al. (2020), Leggio et al. 

(2007), Nadeem et al. (2017), Oike et al. 

(2016), Sonoyama et al. (2011), Stanchina 

et al. (2006)

Section 4.1.1 (“vagus nerve”[MeSH Terms] OR “vagus nerve”[All Fields]) AND (“ear”[MeSH 

Terms] OR “ear”[All Fields] OR “auditory”[All Fields] OR “hearing”[MeSH 

Terms] OR “hearing”[All Fields] OR “deafness”[MeSH Terms] OR “deafness”[All 

Fields])

776 Baig et al. (2019), Frangos et al. (2015), 

Klarer et al. (2014), Lehtimäki et al. (2013), 

Ventureyra (2000), Rong et al. (2016), 

Ylikoski et al. (2020)

Section 4.1.2 ((“nose”[MeSH Terms] OR “nose”[All Fields] OR “nasal”[All Fields] OR 

“nasopharynx”[MeSH Terms] OR “nasopharynx”[All Fields] OR 

“nasopharyngeal”[All Fields] OR “pharyngeals”[All Fields] OR “pharynges”[All 

Fields] OR “pharynx”[MeSH Terms] OR “pharynx”[All Fields] OR 

“pharyngeal”[All Fields] OR “nostril”[All Fields] OR “nostrils”[All Fields] OR 

“nare”[All Fields] OR “nares”[All Fields]) AND (“ear”[MeSH Terms] OR “ear”[All 

Fields])) AND (“microbiota”[MeSH Terms] OR “microbiota”[All Fields] OR 

“microbiome”[All Fields] OR “microbiomes”[All Fields] OR microflora OR 

metagenome OR virome OR mycobiome)

114 Brugger et al. (2019), Chan et al. (2017), 

Coleman et al. (2021), Frank et al. (2021), 

Johnston et al. (2019), Lee et al. (2021), 

Man et al. (2019), Xu et al. (2019), Xu J. 

et al. (2020)

Section 4.1.2 (“mouth”[MeSH Terms] OR “mouth”[All Fields] OR “oral”[All Fields]) AND 

(“ear”[MeSH Terms] OR “ear”[All Fields])) AND (“microbiota”[MeSH Terms] OR 

“microbiota”[All Fields] OR “microbiome”[All Fields] OR “microbiomes”[All 

Fields] OR microflora OR metagenome OR virome OR mycobiome)

41 Brugger et al. (2019), Frank et al. (2021), 

Lee et al. (2021), Man et al. (2019)

Section 4.1.3 (labyrinth OR motion sickness) AND (“ear”[MeSH Terms] OR “ear”[All Fields] 

OR “auditory”[All Fields] OR “hearing”[MeSH Terms] OR “hearing”[All Fields] 

OR “deafness”[MeSH Terms] OR “deafness”[All Fields]) AND (“gut”[All Fields] 

OR “stomach”[MeSH Terms] OR “stomach”[All Fields] OR”gastrointestinal”[All 

Fields] OR “intestinal”[All Fields] OR “intestines”[MeSH Terms] OR 

“intestines”[All Fields])

352 Kondo et al. (2020), Stanchina et al. (2006), 

Yates et al. (2014)

Section 4.2.1 (“HPA”[All Fields] OR “hypothalamic–pituitary–adrenal”[All Fields]) AND 

(“ear”[MeSH Terms] OR “ear”[All Fields] OR “auditory”[All Fields] OR 

“hearing”[MeSH Terms] OR “hearing”[All Fields] OR “deafness”[MeSH Terms] 

OR “deafness”[All Fields])

183 Graham and Vetter (2011), Newsom et al. 

(2020), Tahera et al. (2007)

Section 4.2.2 ((“neurotransmitter agents”[MeSH Terms] OR “neurotransmitter agents”[All 

Fields] OR “neurotransmitter”[All Fields] OR “neurotransmitters”[All Fields]) 

AND (“brain”[MeSH Terms] OR “brain”[All Fields])) AND (“ear”[MeSH Terms] 

OR “ear”[All Fields] OR “auditory”[All Fields] OR “hearing”[MeSH Terms] OR 

“hearing”[All Fields] OR “deafness”[MeSH Terms] OR “deafness”[All Fields])

5,120 Elgoyhen et al. (2009), Gawron et al. (2004), 

Jougleux et al. (2011), Klarer et al. (2014), 

Schmäl (2013), Sedley et al. (2015), Zhao 

et al. (2009)

Section 4.2.3 (“endocannabinoids”[MeSH Terms] OR “endocannabinoids”[All Fields] OR 

“endocannabinoid”[All Fields]) AND (“ear”[MeSH Terms] OR “ear”[All Fields] 

OR “auditory”[All Fields] OR “hearing”[MeSH Terms] OR “hearing”[All Fields] 

OR “deafness”[MeSH Terms] OR “deafness”[All Fields])

101 Ghosh et al. (2018), Newsom et al. (2020), 

Valdés-Baizabal et al. (2017), Zhao et al. 

(2009)

(Continued)
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auditory memory (deRegnier et  al., 2000; Hickey et  al., 2020). 
However, the amplitude reduction was even more drastic in response 
to hearing their own mothers’ voices (Hickey et  al., 2020). This 
indicates that treatment with ampicillin and gentamicin – which were 
found in other research to alter the infant gut microbiome composition 
(Fouhy et al., 2012) and have toxic effects on the nervous system (Grill 
and Maganti, 2011) – may impact the ability of infants to remember 
and process sound.

Finally, studies have shown that the gut microbiome can impact 
the central auditory system at a cognitive level. In a study of individuals 
with HIV, probiotic treatment over a period of 6 months was found to 
significantly improve both the ability to process auditory signals and 
auditory memory (Ceccarelli et al., 2017). This was seen by improved 
Rey Auditory Verbal Learning Test outcomes in these individuals 
compared to their scores prior to probiotic treatment, and also 
compared to control individuals with HIV who did not receive 
probiotics over the intervention period (Ceccarelli et al., 2017). In 
another study by Kort et al. (2021), children assessed with the Bayley 

Scales of Infant and Toddler Development were found to have a 
relationship between gut microbiome composition and language 
development. This study found that a higher abundance of Coprococcus 
eutactus, a producer of the short-chain fatty acid butyrate, was 
associated with better language outcomes (Kort et al., 2021).

4. Key players that connect the 
auditory system, gut microbiome, and 
brain

There are numerous signaling pathways through which the gut 
microbiota and brain are believed to communicate with each other 
(Long-Smith et al., 2020; Margolis et al., 2021). By briefly outlining the 
role of various mechanisms in the gut-brain axis, we aim to provide 
evidence for their contribution to the auditory-gut and auditory-brain 
axes based on animal and human research. Ultimately, we aim to 
identify key players of communication in the auditory-gut-brain axis. 

TABLE 1 (Continued)

Review 
Section

Keywords used in PubMed Number of 
papers found 
with keyword 
search

Results from search included 
in this review

Section 4.2.4 ((“bacteria”[MeSH Terms] OR “bacteria”[All Fields] OR “bacterial”[All Fields] 

OR “microbes”[All Fields] OR “microbial”[All Fields]) AND (“metabolite”[All 

Fields] OR “metabolites”[All Fields] OR “SCFA”[All Fields] OR “short chain fatty 

acids”[All Fields])) AND (“ear”[MeSH Terms] OR “ear”[All Fields] OR 

“auditory”[All Fields] OR “hearing”[MeSH Terms] OR “hearing”[All Fields] OR 

“deafness”[MeSH Terms] OR “deafness”[All Fields])

92 Fang et al. (2020), Kondo et al. (2020), 

Nadeem et al. (2017), Oike et al. (2016), 

Saha et al. (2016),

Section 4.3 (“immune”[All Fields] OR “autoimmune”[All Fields] OR “immunity”[All Fields] 

OR “autoimmunity”[All Fields] OR “inflammation”[MeSH Terms] OR 

“inflammation” [All Fields] OR “inflammatory”[All Fields] OR “cytokines”[MeSH 

Terms] OR “cytokines”[All Fields]) AND (“ear”[MeSH Terms] OR “ear”[All 

Fields] OR “auditory”[All Fields] OR “hearing”[MeSH Terms] OR “hearing”[All 

Fields] OR “deafness”[MeSH Terms] OR “deafness”[All Fields]) AND (“gut”[All 

Fields] OR “stomach”[MeSH Terms] OR “stomach”[All Fields] 

OR”gastrointestinal”[All Fields] OR “intestinal”[All Fields] OR “intestines”[MeSH 

Terms] OR “intestines”[All Fields])

634 Fang et al. (2020), Hickey et al. (2020), 

Kang and Im (2020), Leggio et al. (2007), 

Nadeem et al. (2017), Saha et al. (2016), 

Sonoyama et al. (2011)

Section 4.4.1 (“probiotics”[MeSH Terms] OR “probiotics”[All Fields] OR “probiotic”[All 

Fields]) AND (“ear”[MeSH Terms] OR “ear”[All Fields] OR “auditory”[All Fields] 

OR “hearing”[MeSH Terms] OR “hearing”[All Fields] OR “deafness”[MeSH 

Terms] OR “deafness”[All Fields])

101 Fang et al. (2020), Oike et al. (2016)

Section 4.4.2 (“choline”[MeSH Terms] OR “choline”[All Fields]) AND (“ear”[MeSH Terms] OR 

“ear”[All Fields] OR “auditory”[All Fields] OR “hearing”[MeSH Terms] OR 

“hearing”[All Fields] OR “deafness”[MeSH Terms] OR “deafness”[All Fields])

644 Cheng et al. (2008), Freedman et al. (2019), 

Na et al. (2021), Nair et al. (2004), Sedley 

et al. (2015), Stevens et al. (2008)

Section 4.4.3 (“iron”[MeSH Terms] OR “iron”[All Fields]) AND (“anaemia”[All Fields] OR 

“anemia”[MeSH Terms] OR “anemia”[All Fields]) AND (“ear”[MeSH Terms] OR 

“ear”[All Fields] OR “auditory”[All Fields] OR “hearing”[MeSH Terms] OR 

“hearing”[All Fields] OR “deafness”[MeSH Terms] OR “deafness”[All Fields])

184 Amin et al. (2013), Golz et al. (2001), 

Jougleux et al. (2011), Schieffer et al. 

(2017a), Schieffer et al. (2017b), 

Sundagumaran and Seethapathy (2019), 

Sundagumaran and Seethapathy (2020), Yu 

et al. (2014)

Section 4.4.4 (“vitamin b12”[All Fields] OR vitamin b12[MeSH Terms] OR “cobalamin”[All 

Fields] OR cobalamin[MeSH Terms]) AND (“ear”[MeSH Terms] OR “ear”[All 

Fields] OR “auditory”[All Fields] OR “hearing”[MeSH Terms] OR “hearing”[All 

Fields] OR “deafness”[MeSH Terms] OR “deafness”[All Fields])

188 Houston et al. (1999), Kisli and Saçmacı 

(2019), Péneau et al. (2013), Singh et al. 

(2016)
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These will be  discussed under four sub-headings: anatomical, 
extracellular, immune system and dietary mechanisms.

4.1. Anatomical mechanisms

4.1.1. The vagus nerve
The vagus nerve is a signaling pathway that has been clearly 

implicated in the gut-brain axis. It connects the medulla oblongata in 
the brainstem to the stomach and intestines (Breit et al., 2018). The 
vagus nerve plays an important role in the autonomic nervous system, 
regulating unconscious activity of the digestive system and various 
other organs of the body (de Lartigue, 2016; Breit et al., 2018). Of the 
vagus nerve fibers that connect the brain and gut, ~10–20% send 
signals from the brain to the gut while the remaining ~80–90% carry 
signals up from the gut to the brain (Breit et al., 2018).

Research has shown that severing the sub-diaphragmatic branch 
of the vagus nerve in mice changes the response to a challenge with 
the bacterial endotoxin component lipopolysaccharide (LPS) (Zhang 
et al., 2020). Peripheral introduction of LPS may cause behavioral 
changes through immune cell reactivity, including release of 
pro-inflammatory cytokines (Dantzer et al., 2008), indicating that 
disruptions to the gut barrier may have a neurological impact. Zhang 
et al. (2020) showed that while composition of the microbiome, spleen 
(a large immune organ) weight and behavior could be impacted by 
LPS, surgical severance of the sub-diaphragmatic vagus nerve branch 
prevented these effects of LPS. Severing this nerve normalized 
cytokine levels and bacterial composition (Zhang et al., 2020).

In addition to the branches of the vagus nerve that connect the gut 
and brain, there are several other branches. This includes the auricular 
branch, which provides a connection to various structures of the 
external ear (Frangos et al., 2015). Providing electrical stimulation 
through the vagus nerve is a technique that has been used for many 
years as a non-invasive means of treating patients with epileptic 
seizures (Elger et  al., 2000; Ventureyra, 2000). More recently, 
stimulation of the auricular branch has been identified as a promising 
treatment in a number of neurological disorders and injuries, 
including major depressive disorder (Rong et al., 2016) and stroke 
(Baig et  al., 2019). Animal research also indicates a possible 
therapeutic application for traumatic brain injuries (Pruitt et  al., 
2016), among other disease conditions. In a small cohort of adult 
females with inflammatory bowel syndrome, stimulation of the 
auricular branch of the vagus nerve was found to provide pain relief 
and to ease the severity of symptoms (Mion et al., 2020). The potential 
for auricular branch stimulation in treatment of tinnitus – a disease 
characterized by humming or ringing within the ears that could 
sometimes be caused by infection, brain damage or drug-induced 
ototoxicity – has also been established, with studies showing some 
alleviation of tinnitus-related stress and a reduction in tinnitus-related 
symptoms (Lehtimäki et al., 2013; Ylikoski et al., 2020). Moreover, by 
exploring the relationship between electrical activity of the gut and 
functional connectivity of the brain, auricular branch stimulation has 
recently been shown to reinforce the bidirectional connection between 
the gut and brain – specifically with regard to appetite (Müller 
et al., 2022).

Together these results provide evidence for an anatomical 
connection between the ear, gut and brain. Furthermore, they show 
that stimulating the auricular branch of the vagus nerve, from the 

external ear, can be used to treat disorders in all three parts of the body 
including depression, gut dysbiosis and tinnitus.

Finally, as previously mentioned, in rats exposed to Pavlovian fear 
conditioning, the vagus nerve plays an important role in determining 
the ability to modulate the pre-emptive fear responses to auditory 
prompts (Klarer et al., 2014). Klarer et al. (2014) found that with every 
round of auditory prompts followed by shock stimuli, the fear 
responses dissipated more quickly in control rats compared to rats 
with a severed vagus nerve. As such, an auditory-gut-brain link is 
established by the vagus nerve (Figure 2).

4.1.2. Oral, nasal, and respiratory tract 
microbiomes

The oral intake of probiotics can be used to treat ear infections 
such as otitis media (Rautava et al., 2008; Di Pierro et al., 2016). In 
addition, the introduction of probiotics in the form of a nasal spray 
– which can act via the eustachian tube – can allow otitis media to 
be  successfully treated (Roos et  al., 2001). The eustachian tube 
provides a connection from the nasopharynx to the middle ear 
(Alberti, 2001). Therefore, there is a possible link between the ear 
microbiome and oral, nasal or respiratory microbiomes.

Several reviews and research papers have looked at the relationship 
between the microbiome of the gut and those of the nasopharynx, 
mouth and lungs (Budden et al., 2017; Iwauchi et al., 2019; Benahmed 
et al., 2020; Thapa et al., 2020). A study by Budden et al. (2017) showed 
that the immune system may be a mechanism of communication 
between the lung and gut microbiomes. Thapa et al. (2020) provided 
evidence that antibiotics may alter both the nasopharyngeal and gut 
microbiomes. Disruptions to each of these microbiomes have also 
been suggested to contribute to brain disorders, such as Alzheimer’s 
and Parkinson’s diseases (Bell et al., 2019). Together these findings 
indicate that the microbiomes across the body are interconnected. 
Due to their anatomical proximity to the ear, the nasopharynx, oral 
and lung microbiomes may, therefore, provide another connection 
between the gut and ear (Figure 2).

Contrary to what would be expected, due to the close proximity 
to the ear, studies have found no clear similarities between the adenoid 
and ear microbiomes (Johnston et  al., 2019; Xu J. et  al., 2020). 
However, a number of studies have found similarities between the 
middle ear microbiome and the nasopharyngeal (Man et al., 2019), 
oropharyngeal (Lee et  al., 2021) or outer ear (Chan et  al., 2017) 
microbiomes in children with otitis media. This research suggests that 
microbes of the middle ear could originate from these neighboring 
microbiomes. The nasopharynx and outer ear are also likely sources 
of pathogens causing infections in the middle ear (Xu et al., 2019; 
Coleman et al., 2021; Frank et al., 2021). While research has suggested 
that there is not sufficient evidence of a link between the 
nasopharyngeal and ear microbiomes (Brugger et al., 2019), other 
research has indicated that the nasopharynx microbiome may be even 
more effective for predicting the outcome of otitis media infection 
than characterizing the middle ear microbiome (Man et al., 2019).

Evidence suggests that the respiratory tract microbiome may also 
be  related to the microbiome of the middle ear (Kolbe et  al., 2019; 
Jörissen et al., 2021). In the microbiome of children with otitis media, 
respiratory conditions such as asthma influence the ear microbiome 
composition (Kolbe et al., 2019). Moreover, research has identified that 
Streptococcus salivarius (S. salivarius), a bacterial species which populates 
the mouth and gut in early neonatal development (Kaci et al., 2014) and 
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which is commonly found in the respiratory tract (Jörissen et al., 2021), 
may have a beneficial influence on the ear microbiome. The K12 strain 
of S. salivarius has specifically been recognized as a potential probiotic 
for treating otitis media, due to the ability of this strain to target and 
suppress pathogenic bacteria in the ear (Di Pierro et al., 2015; Chen et al., 
2021; Jörissen et al., 2021). The production of bacterial peptides known 
as ‘bacteriocins’, which can interfere with growth of other bacteria, makes 
bacterial strains such as Lactobacillus salivarius PS7 and S. salivarius 
24SMB particularly interesting with regard to their potential for treating 
middle ear infections (Santagati et  al., 2012; Marchisio et  al., 2015; 
Cárdenas et al., 2019).

Research also reveals links between the nasopharyngeal microbiome 
and the brain. A study of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV2) showed that the virus can infect the brain and it 
implicated the mucosal membranes lining the nose as a probable route of 
entry (Meinhardt et al., 2021). Pathogens that cause meningitis – an 
infection of the membranes surrounding the brain – were also shown, 
through a few small case studies, to originate in the nasopharynx (de 
Andrade et  al., 2003; Lauderdale et  al., 2005). Several reviews have 
discussed the role of the nasopharynx and nasopharyngeal microbiome 
in the development of pneumococcal meningitis (Bogaert et al., 2011; 
Subramanian et al., 2019; Dietl et al., 2021). Together, these findings 
suggest that infections originating in the nasopharynx can impact 
the brain.

Finally, studies of patients with nasopharyngeal carcinoma have 
found that otitis media infections may be  a contributing factor in 
bacterial infections of the brain (Huang et al., 2003; Fang et al., 2012). 
Disruptions to the BBB during radiotherapy treatment were suggested 
to play a role in triggering infections of the brain (Fang et al., 2012). 
Although these studies do not explicitly state that pathogenic microbes 

are transferred between the nasopharynx, ear and brain, this may explain 
these findings.

4.1.3. The labyrinth in motion sickness
Motion sickness provides evidence of yet another connection 

between the ear, gut and brain (Yates et  al., 2014; Figure  2). The 
vestibule in the labyrinth of the inner ear is required for balance and 
has been implicated in motion sickness. Patients with lesions in the 
labyrinth or individuals who undergo surgical removal of the labyrinth 
are not as prone to motion sickness as healthy individuals (Johnson 
et al., 1999; Dai et al., 2007). Ultimately, a confusion of signals being 
received in the brain, from the ears and eyes during motion, are 
believed to trigger motion sickness (Schmäl, 2013).

Proton channels were shown to play a role in neuronal signaling 
to the area postrema, within the medulla oblongata, which may 
contribute to motion sickness in rats (Shinpo et al., 2012). However, 
there is much debate as to whether the area postrema is in fact 
involved in motion sickness (Sutton et al., 1988).

Arginine vasopressin, vasopressin receptors and aquaporin make 
up a signaling pathway within the inner ear which contributes to motion 
sickness in rats (Xu L.-H. et al., 2020). This research found that rotation 
(to induce motion sickness) resulted in greater aquaporin 2 expression 
in structures of the inner ear, as detected using immunohistochemical 
staining. Additionally, Xu L.-H. et al. (2020) used real time quantitative 
PCR, Western Blot and enzyme-linked immunosorbent assay (ELISA) 
techniques to show a sudden, short-lived increase in arginine 
vasopressin and a more delayed, but longer-lasting, increase in 
aquaporin in the blood. Xu L.-H. et al. (2020) also found an initial 
decrease in vasopressin receptor expression in the inner ear. While 
direct arginine vasopressin treatment and vasopressin receptor agonists 

FIGURE 2

Outline of potential anatomical mechanisms that could connect the auditory-gut-brain axis. These include the vagus nerve, the nasal/oral microbiome 
and the motion sickness pathway. Dotted lines indicate possible pathways of microbe communication. Components of this figure used the following 
online resources which all have Creative Commons CC0: https://openclipart.org/detail/35791/brain-01 by rejon; https://openclipart.org/
detail/269019/ear by CCX; https://www.needpix.com/photo/169098/intestines-bowel-guts-intestinal-gastrointestinal-digestive-system-abdominal-
biology-science; https://openclipart.org/detail/184612/nose by Frankes.
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promoted motion sickness in animal models, vasopressin receptor 
antagonists could prevent motion sickness (Xu L.-H. et al., 2020).

While motion sickness largely involves the stomach and can result 
in disruptions in the movement of and signaling to the gut (Wolf, 
1943; Koch, 2014), the microbiome might also be involved in motion 
sickness. In a small study involving 19 participants, it was found that 
probiotic treatment may effectively treat motion sickness, particularly 
seasickness (Srivastava et al., 2021). Moreover Srivastava et al. (2021) 
carried out additional analysis to explore the functional profiles of the 
microbiomes of individuals receiving probiotics compared to controls. 
They found that probiotic treatment resulted in a greater presence of 
genes encoding enzymes important for breaking down carbohydrates 
(Srivastava et al., 2021). Finally, endocannabinoid signaling was also 
implicated in motion sickness, with reductions in systemic 
endocannabinoid concentrations and receptor numbers observed in 
individuals experiencing motion sickness (Choukèr et al., 2010).

Although the mechanisms involved remain to be elucidated, there 
is clear evidence that the ear, brain and gut are all involved in motion 
sickness. Some of the extracellular mechanisms underlying motion 
sickness will be discussed further in Section 4.2.

4.2. Extracellular mechanisms

There are several extracellular signaling pathways through which 
gut-brain axis communication can occur. These include HPA axis, 
neurotransmitter, endocannabinoid and bacterial peptide signaling. 
Evidence suggests that these may also provide a connection to the 
auditory system, strengthening the auditory-gut-brain axis hypothesis 
(Figure 3).

4.2.1. The hypothalamic–pituitary–adrenal axis 
and stress

The HPA axis, a neuroendocrine signaling mechanism which 
mediates the release of stress hormones, has been clearly implicated in 
the gut-brain axis (Sudo et al., 2004; Dinan et al., 2006; Ait-Belgnaoui 
et al., 2012; Azzam et al., 2017). A greater response to stress is mounted 
in germ-free mice, as seen by higher corticosterone and 
adrenocorticotropic hormone (ACTH) levels in limbic regions of the 
brain compared to specific pathogen-free (SPF) mice (Sudo et al., 2004). 
Sudo et al. (2004) found that this is exacerbated in mice orally provided 
with Escherichia coli alone. However, in mice inoculated with 
Bifidobacterium infantis alone, or receiving a fecal microbiota transplant 
from SPF mice, the stress response was restored to SPF mouse levels 
(Sudo et al., 2004). The authors concluded that during neurodevelopment 
the composition of the gut microbiome may influence the negative 
feedback regulation of the HPA axis. Probiotic treatment with 
Lactobacillius farciminis in mice was also found to restore the 
hypothalamic levels of corticotropin-releasing factor (CRF), which are 
elevated in response to stress related to restriction of movement 
(Ait-Belgnaoui et al., 2012).

In patients with irritable bowel syndrome (IBS), circulating 
ACTH and cortisol levels were significantly elevated, compared to 
healthy controls, following intravenous CRF treatment (Dinan et al., 
2006). This implicates the HPA axis in a gut disorder which can lead 
to behavioral changes (Gracie et al., 2017), providing evidence of HPA 
axis function in the human gut-brain axis.

In a small human study, the HPA axis was additionally found to 
impact the production of ghrelin, a hormone largely produced in 
the gut (Azzam et  al., 2017). Azzam et  al. (2017) showed that 
elevated cortisol levels in the blood (which can be driven by ACTH 

FIGURE 3

Extracellular signaling pathways connecting the ear, gut and brain. These pathways could also play an important role within the auditory-gut-brain axis. 
Red and green lines indicate feedback inhibition and the pathway through which hormone release is activated in the HPA axis, respectively. Dotted 
lines show pathways through which evidence suggests the ear, gut and brain communicate with each other. Components of this figure used the 
following online resources which all have Creative Commons CC0: https://openclipart.org/detail/38533/brain-side-cutaway by rejon; https://
openclipart.org/detail/269019/ear by CCX; https://www.needpix.com/photo/169098/intestines-bowel-guts-intestinal-gastrointestinal-digestive-
system-abdominal-biology-science.
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production), rather than greater ACTH levels in the brain itself, are 
responsible for inducing ghrelin production. A recent review shows 
that specific gut microbes and microbial metabolites can regulate 
ghrelinergic activity (Leeuwendaal et  al., 2021). Furthermore, a 
study in rats showed that peripheral injection of ghrelin into 
dopaminergic neurons enhances dopamine release, an effect 
suspected to be  due to increased acetylcholine release driving 
nicotinic cholinergic receptor (nAChR) function (Jerlhag et  al., 
2012). Interestingly, a review discussing the role of these cholinergic 
receptors (α-9, α-10nAChR) expressed in the auditory pathway, 
suggested that these receptors serve as hypothetical drug target sites 
on which, for example, receptor modulators or antagonists can act 
to treat hearing loss or complications in the auditory system 
(Elgoyhen et al., 2009).

Studies have demonstrated the importance of the HPA axis in 
regulating the activity of the auditory system. Research in mice 
revealed that pre-exposure to low-level sound can act via the HPA axis 
to minimize the harmful effects of high decibel sounds in the inner 
ear following noise-induced trauma (Tahera et al., 2007). Tahera et al. 
(2007) showed that the HPA axis can be  stimulated, leading to a 
greater release of corticosterone and ACTH into the blood, together 
with greater expression of glucocorticoid receptors (GRs) in the 
cochlea and paraventricular nucleus. Ultimately, GRs move to the 
spiral ganglion neurons where they may impact downstream processes 
(Tahera et  al., 2007). The protection provided by prior auditory 
stimulation was reversed with GR antagonists or through the surgical 
removal of the adrenal glands (Tahera et al., 2007).

Murine studies further revealed that corticotropin-releasing factor 
receptors (CRFR1) are expressed within the inner ear and may act 
within their own signaling network or interact with the larger HPA 
axis (Graham and Vetter, 2011). As previously mentioned, probiotics 
can favorably impact the responses of mice to auditory stressors 
(Hadizadeh et al., 2019). While mice exposed to auditory stress during 
fetal development had higher corticosterone, Hadizadeh et al. (2019) 
showed that prenatal and postnatal oral probiotic treatment can 
restore corticosterone levels.

In human studies, the HPA axis has been implicated in tinnitus. 
Adults with tinnitus were found to have slower, less-pronounced 
cortisol responses following social and psychological stress tests 
(Hébert and Lupien, 2007). Together these studies indicate that the 
HPA axis can act on the ear and may, therefore, provide another 
connection between the auditory system and the gut-brain axis.

4.2.2. Neurotransmitters
Neurotransmitters are chemicals that are released into the 

synaptic clefts between neurons, in response to an electrical signal, 
and can drive or inhibit action potentials in adjoining neurons 
(Patri, 2019). The communication between neurons mediated via 
neurotransmitters is required for brain functions and behaviors that 
include learning and memory, sleep and mood (Mendelson, 2001; 
Seyedabadi et al., 2014; Wilkinson and Sanacora, 2019). Although 
neurotransmitters are generally produced within the nerves 
themselves (Oda, 1999; Tian et al., 1999; Patri, 2019), immune cells 
such as T cells may also be a source of neurotransmitters (Rosas-
Ballina et al., 2011).

Additionally, bacteria in the gut have been found to release 
neurotransmitters as a product of their metabolic activity (Barrett et al., 
2012). Probiotic treatment in mice has been shown to influence the levels 

of neurotransmitters, such as gamma-aminobutyric acid (GABA) and 
glutamate, in the brain (Janik et  al., 2016). Providing animals with 
microbial transplantations to mimic autism- and schizophrenia-like 
profiles resulted in changes, respectively, in the behavior of their young 
(Qi et al., 2021) or in the animals themselves (Zhu et al., 2020). Moreover, 
neurotransmitter signaling was found to be affected in these studies, 
albeit temporarily in the schizophrenia models (Zhu et al., 2020; Qi et al., 
2021). While the offspring of dams provided with microbes from patients 
with autism displayed lower systemic GABA and norepinephrine (Qi 
et  al., 2021), animal models of schizophrenia had reduced systemic 
dopamine and lower enteric GABA (Zhu et al., 2020).

These chemicals, which play a crucial role in signaling between 
the brain and many parts of the body (including the gut), provide a 
further mechanism which may connect the gut-brain axis to the ear. 
Animal studies have shown the importance of GABA, an inhibitory 
neurotransmitter, in the long-term survival and functionality of inner 
ear nerves (Maison et al., 2006). Further, a relationship was observed 
between age-related hearing loss and a reduction in various 
neurotransmitter receptors (acetylcholine, N-methyl-D-aspartate and 
GABA receptors) on spiral ganglia of the inner ear in mice (Tang et al., 
2014). This would limit the ability of neurotransmitters to act in the 
ear. A study in rats also found that acetylcholine-specific 
(“cholinergic”) neurons may contribute to motion sickness, as 
introducing acetylcholine receptor inhibitors was able to reduce 
motion sickness-related symptoms (Qi et  al., 2019). This finding 
supports a potential contribution to auditory-gut-brain axis signaling.

Furthermore, research in humans revealed a contribution of 
neurotransmitters in tinnitus (Sedley et al., 2015). Sedley et al. (2015) 
used magnetic resonance spectroscopy to investigate metabolic 
activity and GABA levels in the brain. They found that GABA levels 
were lower in the auditory cortices of adults presenting with unilateral 
tinnitus compared to healthy controls of a similar age and with 
comparable hearing test outcomes (Sedley et al., 2015).

Therefore, neurotransmitters play important roles in both the 
inner ear (Qi et  al., 2019) and primary auditory cortex (Sedley 
et al., 2015).

4.2.3. Endocannabinoids
Endocannabinoids are interesting in that they prevent the release 

of neurotransmitters from the presynaptic cleft in a feedback manner, 
where they are themselves released from the postsynaptic neurons 
(Alger, 2013). They play a role in the gut-brain axis, acting on signaling 
pathways such as the vagus nerve and HPA axis (DiPatrizio, 2016; 
Sharkey and Wiley, 2016). In a study where the Cre/loxP system was 
used to knock out cannabinoid receptors specifically in neurons of the 
vagus nerve, motility of the gut was increased in mice (Vianna et al., 
2012). Further, restraint stress activates the HPA axis and results in the 
release of glucocorticoids in mice – a process that endocannabinoids 
inhibit once the stress-triggering factor has been removed (Hill et al., 
2011). Hill et al. (2011) found that knocking out the cannabinoid 
receptors, or treating mice with cannabinoid receptor antagonists, 
resulted in corticosterone being released at higher levels for a longer 
period of time – indicating an extended stress response in the absence 
of endocannabinoid signaling.

Endocannabinoid/cannabinoid receptor signaling was found to 
influence the negative feedback loops of the HPA axis in rats 
following noise-induced stress – revealing a connection to the 
auditory system (Newsom et  al., 2020). Newsom et  al. (2020) 
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showed that auditory-related stress led to higher systemic levels of 
stress hormones, increased transcription of genes encoding 
cannabinoid receptors in the adrenal gland and greater transcription 
of the c-fos gene within various brain regions including central 
auditory regions. Furthermore, antagonists to cannabinoid 
receptors drove elevations in blood corticosterone in these mice 
(Newsom et al., 2020). This suggests yet another possible signaling 
pathway in the auditory-gut-brain axis.

Activation of cannabinoid receptors was also found to safeguard 
against inflammation and oxidative stress in the inner ears of mice, 
following chemotherapeutic treatment which can lead to hearing loss 
(Ghosh et  al., 2018). Among the targets of cannabinoid receptor 
signaling identified by Ghosh et al. (2018) were sodium/potassium 
pumps on the stria vascularis, which keep potassium levels high in the 
endolymph (Wangemann, 2006). A study in mice has shown that 
interfering with the function of these transporters, resulting in a 
disruption to endolymph homeostasis, can impact the development of 
the cochlea and affect hearing (Li et  al., 2013). Therefore, 
endocannabinoid signaling via cannabinoid receptors in the ear can 
maintain homeostasis in the ear and ultimately prevent damage to the 
inner ear. Additionally, through animal research, endocannabinoid or 
cannabinoid signaling via cannabinoid 2 receptors has been shown to 
influence the differentiation of microglia – immune cells localized to 
the central nervous system (CNS) (Delage et al., 2021; Paolicelli et al., 
2022); in this case they shift from a pro- to anti-inflammatory state, and 
pro-inflammatory cytokine release is reduced (Tanaka et al., 2020).

The expression of cannabinoid receptors in the neurons of the 
central auditory system differs from that of many other neurons, and 
this is important for controlling neurotransmitter signaling through 
these neurons (Zhao et al., 2009). In particular, Zhao et al. (2009) 
found that cannabinoid receptors are sparser on inhibitory synapses 
and are expressed in greater numbers on excitatory synapses of the 
auditory brainstem. Ultimately, endocannabinoids are less able to 
restrict inhibitory signaling in auditory neurons – as there are fewer 
receptors to act on in the inhibitory sources – but they can still inhibit 
sources of excitatory signaling (Zhao et  al., 2009). In the central 
auditory system of rats, cannabinoid receptors were also implicated in 
the phenomenon of “stimulus specific adaptation,” by which auditory 
stimuli of a frequency of sound commonly experienced by the 
auditory system, drive a less substantial response in the brain (Valdés-
Baizabal et al., 2017).

Finally, as previously discussed, motion sickness provides another 
mechanism by which the auditory system, the gut and brain may 
be connected. A link between endocannabinoid signaling and motion 
sickness was established in individuals who experience zero-gravity 
during flights (Choukèr et al., 2010). In this study by Choukèr et al. 
(2010), the expression of cannabinoid receptors on white blood cells 
and the blood concentration of endocannabinoids were shown to 
be  reduced in individuals with motion sickness. Moreover, a 
connection between endocannabinoid signaling and the HPA axis was 
also shown in this study, within the context of motion sickness 
(Choukèr et al., 2010).

4.2.4. Bacterial metabolites
Bacteria in the gut digest food and generate metabolites which are 

essential for the human body. Metabolites such as sodium butyrate 
and acetate are involved in gut-brain axis signaling and may play a role 
in various neurological disorders such as Alzheimer’s disease 

(Govindarajan et al., 2011), Parkinson’s disease (Liu et al., 2017) and 
MS (Olsson et al., 2021), as seen in animal studies.

Additionally, bacterial metabolites can impact the immune system 
by triggering the differentiation of regulatory T (Treg) cells (Arpaia 
et al., 2013; Smith et al., 2013). Mice lacking gut microbes have a 
severe reduction in Treg cells, while SCFA treatment can renew the 
ability of Treg cell differentiation (Smith et al., 2013). Thus, SCFAs can 
affect the regulation of inflammation via Treg cells.

In the brain, bacterial metabolites such as SCFAs have been 
shown to regulate microglial development and activity in mice 
(Erny et al., 2015). By knocking out SCFA receptors, Erny et al. 
(2015) showed that mice displayed abnormal microglial 
development. Repeated administration of broad-spectrum 
antibiotics (metronidazole, cefoxitin, and gentamicin) to male and 
female mice for a month, caused a reduction in gut bacteria leading 
to under-development of microglia (Erny et al., 2015). Furthermore, 
antibiotic treatment has been found to affect microglial gene 
expression in a different way for male versus female mice, and at 
different stages of development (Thion et al., 2018). Collectively, 
these studies highlight the importance of the microbiome in 
shaping the CNS immune system.

The effects of bacterial metabolites on the immune system can 
extend to the ear. Mouse models of conditions such as atopic 
dermatitis can assist in better understanding the role of the immune 
system in the ear and how to influence its activity. As will be discussed, 
probiotic treatment in mice can alter the immune response to atopic 
dermatitis of the ear (Fang et  al., 2020). Furthermore, Fang et  al. 
(2020) found that elevations in butyric acid shifted the immune 
response away from a type 2 response that is characteristic of atopic 
dermatitis, to a type 1 immune response − favoring better disease 
outcomes. Therefore, metabolic activity of gut microbes can impact 
the immune response in the ear. A recent study showed that the 
ingestion or direct application of polysaccharides derived from the 
Tremella fuciformis fungus on the affected ears of mice, could alter 
microbial and metabolic profiles of the gut and ultimately provide 
relief from atopic dermatitis symptoms (Xie et al., 2022).

The G protein-coupled receptor (GPCR) GPR43 is an SCFA 
receptor which has also been implicated in mouse models of atopic 
dermatitis (Kang and Im, 2020) and psoriasis (Nadeem et al., 2017), 
an inflammatory disease of the skin. While Kang and Im (2020) found 
that a GPR43 receptor agonist could dampen the type 2 response and 
minimize atopic dermatitis symptoms, Nadeem et al. (2017) found 
that agonists for the receptor escalated the levels of skin inflammation 
on the ears of mice with psoriasis. These studies together highlight the 
role of SCFA receptors in allergic and inflammatory responses of the 
immune system within the ear.

Sodium butyrate is an SCFA which can act via GPCRs to inhibit 
histone deacetylase (HDAC), leading to reduced neuronal death 
and oxidative stress (Zhou et al., 2021). In addition to the protective 
role sodium butyrate plays in the nervous system, the inhibition of 
HDAC by sodium butyrate was also shown to improve hearing in 
guinea pigs previously impacted by the antibiotic gentamycin 
(Wang et al., 2015b). This indicates that SCFAs can impact hearing 
at an epigenetic level.

Finally, research has found that SCFAs can act via the vagus nerve 
(Onyszkiewicz et al., 2019). Although this study makes no mention of 
the ear, the action of SCFAs on the vagus nerve – which provides an 
anatomical connection between the ear, gut and brain – may provide 
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FIGURE 4

Potential inflammatory and autoimmune mechanisms which could provide communication pathways within the auditory-gut-brain axis. Gut-to-
auditory and auditory-to-gut signaling pathways involving inflammation are shown as blue and orange arrows respectively; inflammatory pathways of 
the auditory-brain axis are shown as green arrows; yellow arrows represent the contribution of autoimmunity in the auditory-gut-brain axis. 
Components of this figure used the following online resources which all have Creative Commons CC0: https://openclipart.org/detail/35791/brain-01 
by rejon; https://openclipart.org/detail/269019/ear by CCX; https://www.needpix.com/photo/169098/intestines-bowel-guts-intestinal-
gastrointestinal-digestive-system-abdominal-biology-science.

another avenue by which the gut microbes can interact with the 
auditory system. However, this would need to be investigated further.

4.3. Immune system mechanisms

The immune system plays a vital defence role in the body and 
represents another mechanism which connects gut microbes to the 
brain. The gut is a major hub for the immune system and trains immune 
cells to distinguish between pathogens, beneficial bacteria (commensals) 
and cells belonging to the host (Zheng et al., 2020). Gut bacteria may also 
contribute to inflammatory responses in the brain by influencing 
cytokine signaling (Lin et al., 2019). The potential role of the immune 
system in connecting the ear, gut and brain (Figure 4) will be discussed 
under two sub-headings: inflammation and autoimmune disease.

4.3.1. Inflammation
Several studies have demonstrated the effects of the microbiome 

on the immune response in the ear by artificially inducing disease 
symptoms in animal ear models. A 2011 mouse study looked at the 
contribution of Candida albicans (C. albicans) – a microbial species 
present in the human gut but not naturally occurring in mice – in 
various inflammatory diseases (Sonoyama et al., 2011). By applying 
2,4-dinitrofluorobenzene on the ear, Sonoyama et  al. (2011) 
mimicked contact hypersensitivity. The authors were able to show 
that when introducing C. albicans into the guts of mice, a greater 
degree of ear swelling occurred accompanied by higher levels of 
proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the ear 
(Sonoyama et  al., 2011). These bacteria also resulted in worse 
outcomes for other inflammatory disease models in mice, such as 
rheumatoid arthritis and allergic diarrhea (Sonoyama et al., 2011).

Another study in mice investigated whether Urolithin A (UA), a 
microbial metabolite generated from plant-based ellagic acid, could 
regulate the neutrophil myeloperoxidase defence mechanism – an 
oxidative stress catalyst which leads to inflammation and tissue 
damage resulting from cell death (Saha et al., 2016). To investigate the 
potential of UA, Saha et al. (2016) used phorbol myristate acetate 
(PMA) to induce edema and model neutrophil-related oxidative stress 
in the ears of mice (Wu et al., 2020). An oral supply of UA was shown 
to counteract myeloperoxidase activity and inflammation within the 
ear (Saha et al., 2016). This finding indicates that microbial metabolites 
may impact the immune system and oxidative stress response 
following immune activation in the ear.

Various outer, middle and inner ear disorders in humans may 
be associated with inflammation of the gut (Fousekis et al., 2018). In 
children who have experienced otitis media infections in the middle 
ear, the risk of inflammatory bowel syndrome is greater (Shaw et al., 
2013). Shaw et al. (2013) postulated that this may be due to antibiotic 
treatment, rather than the infection itself. SNHL is more prevalent in 
individuals with ulcerative colitis and Crohn’s disease compared to 
control participants – although the degree of severity observed in this 
study was mild (Akbayir et al., 2005). Importantly, this suggests that 
hearing loss related to inflammation in the gut can be subtle and may 
often remain undiagnosed.

Hearing loss was also linked to inflammation in the brain, notably 
by recruitment of microglia (Wang et al., 2019), which play important 
roles in health and disease (Delage et al., 2021; Paolicelli et al., 2022). 
Following tinnitus and hearing loss driven by noise exposure, greater 
microglial reactivity in terms of morphological changes and 
inflammatory cytokine levels (such as TNF-α and IL-1β) were 
observed in the central auditory system of mice (Wang et al., 2019). In 
mice for which the gene for proinflammatory cytokine TNF-α was 
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genetically removed, Wang et al. (2019) found a reduction of tinnitus, 
accompanied by dampened inflammation in the auditory cortex and 
restored auditory brainstem responses, reaching similar levels to wild-
type control mice. Further, treatment with 3,6′-dithiothalidomide 
(TNF-α inhibitor), to prevent microglial reactivity, also led to reduced 
tinnitus (Wang et al., 2019).

4.3.2. Autoimmunity
Autoimmune diseases occur as a result of the host immune system 

being unable to discern host cells from pathogens, leading to host cells 
being attacked (Lleo et al., 2010). A number of autoimmune diseases 
can lead to hearing loss (Gawron et al., 2004; Hellmann et al., 2011; 
Berker et al., 2012; Solmaz et al., 2012; Mijovic et al., 2013). Of these, 
diseases such as MS and celiac disease were shown to impact the gut 
and brain, suggesting another aspect in which the immune system 
could modulate the auditory-gut-brain axis.

4.3.2.1. Multiple sclerosis
MS is an autoimmune disease in which damage occurs to the 

myelin sheath that coats neurons, leading to CNS alteration and 
neurological dysfunction (Kern et al., 2009; Stadelmann et al., 2011). 
Although it is not clear whether MS is a typical autoimmune disease 
whereby auto-antibodies drive damage, it is agreed that the host 
immune system is still responsible for this disease (Lemus et al., 2018; 
Prineas and Parratt, 2018; Höftberger et al., 2022). Previous research has 
shown that, in addition to the gut microbiome being disrupted in 
patients with MS, the ability of Treg cells to differentiate is impacted in 
germ free mice given a fecal microbiota transfer from MS patients 
(Cekanaviciute et  al., 2017). Treg cells play an important role in 
regulating the immune system, thus disrupting their function can lead 
to the immune system going unchecked and attacking the host. A study 
in mice also showed that the ENS can be targeted by the immune system 
in MS, suggesting that this may also contribute to driving gastrointestinal 
complications in MS patients (Spear et al., 2018). A review of animal 
and human research has shown the success of probiotic treatment for 
MS, in terms of improving clinical outcomes (Jiang et  al., 2021). 
Furthermore, a meta-analysis carried out by Jiang et al. (2021) using 
data from three studies found that probiotics can improve different 
psychological health measures in individuals with MS.

In addition to affecting the brain and gut, hearing loss was found 
to occur in MS patients, albeit in a relatively small proportion, and 
may in fact be an early symptom of MS (Marangos, 1996; Hellmann 
et al., 2011). SNHL often occurs suddenly, yet is temporary in nature 
(Hellmann et al., 2011). Research indicates that the cause of SNHL in 
MS may be damage to the cochlear nerve (Marangos, 1996). This 
might be  expected to lead to downstream effects on the central 
auditory system, however further research would be  required to 
investigate this involvement. Additionally, vertigo has been reported 
in individuals with MS and may indicate an effect of MS on the 
vestibular system (Rae-Grant et al., 1999; Alpini et al., 2001).

4.3.2.2. Celiac disease
Celiac disease (CD) is a disorder of the gut, characterized by an 

inflammatory response following ingestion of gluten (Koning et al., 
2005; Meresse et al., 2009). The composition of the gut microbiome is 
altered in patients with CD (De Palma et al., 2010), with a greater 
presence of species from the Staphylococcus genus observed (Sánchez 
et al., 2012). Immunoglobulin-A (IgA), the main antibody in the gut, 

plays several important roles including neutralizing pathogens 
(Corthésy, 2013; Gutzeit et al., 2014; de Sousa-Pereira and Woof, 2019). 
The proportion of IgA-neutralized bacteria in the gut is lower in CD 
patients (De Palma et al., 2010). Collectively, a greater presence of 
pathogenic bacteria – together with the reduced ability of the gut 
immune system to provide a protective IgA response to neutralize these 
species – may trigger inflammation and increase bacterial leakage.

A number of studies indicate that probiotics could be used to treat 
CD (De Angelis et al., 2006; Quagliariello et al., 2016; Francavilla et al., 
2019). However, research also found that probiotics are not effective 
in infants who are genetically predisposed to CD and may make them 
more prone to an autoimmune response (Uusitalo et  al., 2019). 
Previous studies have additionally found that CD may impact the 
brain, particularly in white matter regions (Kieslich et al., 2001; Croall 
et al., 2020).

In addition to affecting the gut and brain, SNHL has been 
observed in patients with CD (Solmaz et al., 2012). Although some 
studies show that hearing loss is more frequently observed in adults 
(Leggio et al., 2007) and children (Hizli et al., 2011) with CD, other 
research suggests that patients with CD are at no greater risk for 
hearing loss than healthy controls (Bükülmez et al., 2013; Urganci 
et al., 2015).

While the co-occurrence of gut, brain and hearing disorders in 
these autoimmune diseases indicates that autoimmunity may be a 
mechanism involved in the auditory-gut-brain axis, more research is 
warranted to determine whether these co-morbidities are functionally 
related or only represent an independent association.

4.4. Dietary mechanisms

Other mechanisms through which the auditory system may 
be connected to the gut and brain comprise diets and supplements. 
Deficiencies in several dietary factors, such as iodine, zinc and 
omega-3 polyunsaturated fatty acids (PUFA), can impact 
neurodevelopment (Lange and Lange, 2021). Further, iodine and 
omega-3 PUFA deficiencies are associated with hearing loss (Gopinath 
et  al., 2010; Melse-Boonstra and Mackenzie, 2013), while zinc 
supplementation shows promise for treating SNHL (Yang et al., 2011), 
suggesting that these nutrients also impact the auditory system. 
However, the causal roles that nutrient deficiencies play in hearing loss 
remain to be understood. Here we focus on four additional dietary 
factors that may represent potential key players in the auditory-gut-
brain axis (Figure 5).

4.4.1. Probiotics
Probiotics have been used to treat both gut (Marteau et al., 2002; 

Guarino et al., 2015; Jia et al., 2018) and neurological (Akbari et al., 
2016; Dutta et al., 2019) disorders in patients. Probiotics can play an 
important role in re-establishing the relative abundance of microbes 
and minimizing gastrointestinal symptoms resulting from dysbiosis 
associated with prevalent pathogenic species in the gut (Hickson et al., 
2007; Gao et al., 2010). More specifically, Hickson et al. (2007) showed 
that a mixture of Lactobacillus species (L. casei and L. bulgaricus) and 
Streptococcus thermophilus was an effective treatment strategy for 
individuals receiving courses of antibiotics, to minimize cases of 
Clostridium infections and resulting diarrhea. A mechanism by which 
probiotics can outcompete Clostridium difficile and reduce the toxic 
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FIGURE 5

Dietary factors which may play a key role in the auditory-gut-brain axis. Components of this figure used the following online resources which all have 
Creative Commons CC0: https://openclipart.org/detail/35791/brain-01 by rejon; https://openclipart.org/detail/269019/ear by CCX; https://www.
needpix.com/photo/169098/intestines-bowel-guts-intestinal-gastrointestinal-digestive-system-abdominal-biology-science.

effects of this pathogen involves altering the environmental pH (Wei 
et al., 2018).

Additionally, probiotics may reduce the permeability of the gut 
and minimize leakage of LPS into the blood following acute 
psychological stress in rats (Ait-Belgnaoui et  al., 2012). 
Ait-Belgnaoui et al. (2012) also found that probiotics can impact 
the stress response via the HPA axis (as was discussed in Section 
4.2.1). Overall, these findings indicate that probiotics influence the 
gut-brain axis.

Probiotics may also have an effect on the ear and ear infections 
can be treated by the ingestion of probiotics. In otitis media infections, 
for example, the oral intake of probiotics was identified as an effective 
treatment (Rautava et al., 2008; Di Pierro et al., 2016). Probiotics have 
further been shown to influence the immune response to allergic 
insults in the ears of mice, leading to a reduction of type 2 IgE response 
and fewer mast cells being recruited to the ear (Fang et al., 2020). 
Additionally, Fang et  al. (2020) found that the microbiome 
communities and function, specifically SCFA production, within the 
gut was altered with the introduction of Bifidobacterium adolescentis. 
In particular, an increase in propionic and butyric acids was noted in 
mice with atopic dermatitis following treatment with the FJSYC5M10 
strain, compared to untreated mice with atopic dermatitis (Fang et al., 
2020). Finally, as previously discussed in Section 3, probiotics can also 
have an impact on hearing at the central auditory system level (Oike 
et al., 2016; Figure 5).

When considering probiotics for therapeutic purposes, it is 
important to consider that it does not come without risk. In a review 
of relevant literature, Sotoudegan et  al. (2019) identified various 

possible negative outcomes of probiotic treatment, for which 
immunocompromised individuals, the very young and elderly were 
found to be the most vulnerable. These included the interchange of 
genetic material between probiotics and commensals, overexcitation 
of the immune system and bacterial invasion of the bloodstream 
(Sotoudegan et al., 2019).

4.4.2. Choline
As the human body is unable to generate sufficient choline for 

its metabolic needs, dietary intake is required (Zeisel and Da Costa, 
2009). Research in animals (Ye et al., 2018) and humans (Spencer 
et  al., 2011) suggests that choline deficiencies can shift the 
composition of the gut microbiome. It should be noted, however, 
that in the study by Ye et al. (2018) the diet provided to mice also 
lacked methionine.

Choline supplementation in pregnant mothers has beneficial 
effects on brain development, leading to improved neurocognitive 
outcomes in infants (Wu et al., 2012; Caudill et al., 2018; Jacobson 
et  al., 2018). For example, providing mothers with choline 
supplements during pregnancy was shown to reduce the 
neuroanatomical injury caused to infants by prenatal alcohol 
exposure (Warton et al., 2020). Choline is an essential precursor in 
the production of acetylcholine, a major neurotransmitter for 
neurocognitive function (Oda, 1999). Depleted choline or 
acetylcholine, or disruptions to choline-dependent signaling, have 
been implicated in various inflammatory conditions such as 
Alzheimer’s disease (Spencer et al., 2011; Hung and Fu, 2017; Hampel 
et al., 2018; Al-Humadi et al., 2019). Previous research suggests that 
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acetylcholine may act via the vagus nerve to reduce inflammation, 
thus providing a modulatory link with the immune system which is 
also referred to as the “cholinergic anti-inflammatory pathway” 
(Borovikova et al., 2000). Indeed, research in humans has also shown 
that greater levels of choline during pregnancy can counteract the 
harmful effects that maternal infections can have on infant 
neurodevelopment (Freedman et al., 2019). In particular, Freedman 
et al. (2019) assessed the ability of infants to filter out unnecessary 
auditory stimuli while sleeping, as measured by auditory evoked 
potentials, showing better outcomes in infants born to mothers with 
higher choline levels.

Animal studies have shown the value of choline supplementation 
in the hearing of offspring (Cheng et al., 2008; Stevens et al., 2008) and 
in some neuropsychological disorders (Cano et al., 2021). Choline is 
able to restore the ability to inhibit auditory stimuli, a common 
measure of sensorimotor gating in mouse models of schizophrenia 
following an initial auditory priming stimulus (Stevens et al., 2008). 
Further, disrupted cholinergic signaling in the amygdala was 
implicated in prepulse inhibition (PPI) – a measure of the 
subconscious attenuation of response to signals in the acoustic startle 
(Cano et  al., 2021). Previous studies also showed that brain 
inflammation, as seen in schizophrenia, can be treated with alpha-7 
nAChR (α-7nAChR) agonists or by stimulating the vagus nerve 
(Corsi-Zuelli et  al., 2017). This pathway further reinforces the 
relationship of the gut-brain axis, in auditory disorders, impaired 
sensorimotor gating and pathogenesis of neuropsychiatric diseases 
like schizophrenia. Moreover, stimulation of the vagus nerve was 
found to effectively treat the symptoms of schizophrenia by preventing 
excessive signaling from the hippocampus, which disrupts dopamine 
signaling (Perez et  al., 2014). Additionally, a study in guinea pigs 
found that the choline transporter CTL-2 may be  involved in 
autoimmunity-related hearing loss – although it is unclear whether 
this transporter does in fact transport choline (Nair et al., 2004).

Choline supplements particularly benefit the central auditory 
system in individuals requiring hearing aids due to hearing 
deterioration with age (Na et al., 2021). Na et al. (2021) provided a 
choline alfoscerate supplement, which can be  converted into 
acetylcholine, and this was shown to have a neuroprotective role using 
animal epilepsy models (Lee et  al., 2017). Therefore, choline 
supplements appear to assist with hearing mainly at the central 
auditory system level.

As with probiotics, choline supplementation has been linked to 
possible negative health outcomes. Bacterial enzymes in the gut digest 
choline into trimethylamine, which is then transported to the liver 
where it undergoes an oxidation step to form trimethylamine N-oxide 
(TMAO) (Vogt et  al., 2018). Increased TMAO levels have been 
implicated in blockage of blood vessels leading to vascular senescence, 
atherosclerotic heart disease (Wang et al., 2011) and inflammatory 
bowel disease (Santoru et al., 2017).

4.4.3. Iron
Iron plays an important role in the nervous system. Iron 

deficiencies can impact brain development in infants and children 
both in terms of cognitive and motor skill development (Walter et al., 
1989; Shafir et al., 2008; Fuglestad et al., 2016). Animal research has 
shown that a lack of iron, particularly during critical developmental 
stages, can interfere with axonal myelination, disrupt neurotransmitter 
activity and alter metabolite concentrations in the hippocampus 

– including increased GABA, N-acetyl aspartate and glutamate (Kwik-
Uribe et al., 2000; Beard et al., 2003; Rao et al., 2003; Wu et al., 2008). 
Furthermore, inflammatory bowel disease has been associated with 
iron deficiency anemia in humans (Semrin et al., 2006; Martinelli 
et al., 2016). Therefore, a lack of iron can affect both the brain and 
the gut.

Hepcidin – a hormone which acts on iron transporters to inhibit 
the uptake of iron in the gut – plays an important role in controlling 
iron levels in the brain and was shown to be  influenced by 
inflammation (Vela, 2018). Research has found that circulating levels 
of C-reactive protein (a marker of inflammation) are linked to higher 
levels of hepcidin, resulting in reduced iron resorption (Semrin et al., 
2006, Martinelli et al., 2016). Greater systemic levels of hepcidin and 
C-reactive protein have further been found to affect hearing, and these 
proteins are additionally associated with the IL-6 response (Al-Katib 
et al., 2018).

In addition to affecting the gut and brain, iron deficiency 
anemia has been found to cause SNHL in both animals (Jougleux 
et al., 2011) and humans (Schieffer et al., 2017b). This indicates that 
a lack of iron may specifically impact activity of the cochlea or inner 
ear. In adults a combination of SNHL and conductive hearing loss 
may occur with iron deficiency, which the authors postulated may 
be  linked to the supply of blood and oxygen to the inner ear 
(Schieffer et al., 2017a).

Fetal development is a crucial time in the establishment of the 
auditory system. Research in guinea pigs has shown that an iron-
deficient diet during pregnancy results in damage to the hair cells 
of the cochlea in offspring (Yu et al., 2014). More specifically, Yu 
et al. (2014) found that this damage occurs as a result of caspase-
driven apoptosis. Although other animal research has shown the 
role of caspase-driven apoptosis in causing hearing loss (Han et al., 
2015), caspase has also been identified as an important factor in 
development of the inner ear (particularly the vestibule) and 
transmission of auditory signals (Makishima et  al., 2011). Mice 
lacking caspase 3 were found by Makishima et al. (2011) to have 
much higher auditory brainstem response thresholds indicative of 
hearing loss.

Iron deficiency anemia has been shown to impact development of 
the central auditory system in infants, which could have long-term 
implications for their auditory function (Sundagumaran and 
Seethapathy, 2019). A recent study in infants ruled out the possibility 
that a lack of iron interferes upstream with the amplification role of 
outer hair cells in the cochlea (Sundagumaran and Seethapathy, 2020). 
Infants exposed to lower levels of iron in utero, as determined from 
umbilical cord blood tests, display delayed signal conduction in their 
auditory brainstem response measures (Amin et al., 2013). Amin et al. 
(2013) suggest that this is indicative of disruptions to nerve 
myelination in the central auditory system.

Finally, acute otitis media infections of the middle ear are 
more commonly observed in children with iron deficiency anemia 
(Golz et al., 2001), while treating iron deficiency anemia has been 
found to prevent the recurrence of otitis media infections 
(Venugopal et al., 2018). Moreover, iron deficiency has been found 
to cause inflammation in the middle ear of children, which the 
authors speculate may lead to oxidative stress (Purwanto 
et al., 2021).

Optimal iron intake is clearly essential in the auditory system, gut 
and brain, but tissue levels need to be tightly regulated. When taking 
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supplements, a surplus of iron must be avoided as unused iron may 
accelerate the production of free radicals. This can lead to tissue 
damage, particularly in the heart and liver, and can result in 
inflammation, cancerous growths or ultimately result in failure of 
these organs (Attar, 2020).

4.4.4. Vitamin B12
The influence of vitamin B12 on the gut microbiome has been 

reviewed in depth (Uebanso et al., 2020; Guetterman et al., 2022). 
While some microbes of the gut are capable of producing vitamin 
B12 (Martens et al., 2002; Santos et al., 2008; Magnúsdóttir et al., 
2015), and the potential for probiotics containing vitamin 
B12-producing microbes has been demonstrated in zebrafish (Qi 
et al., 2023), other bacteria are reliant on receiving vitamin B12 
that can be  metabolized and used particularly for enzymatic 
activity (Rodionov et al., 2003; Degnan et al., 2014a,b). In vitro 
studies found that vitamin B12 supplements could alter the 
balance of bacterial species in samples collected from patients 
with vitamin B12 deficiencies (Xu et al., 2018). Interestingly, a 
study found that vitamin B12 supplements had little effect on the 
microbiome of C57Bl/6 mice with a healthy gut, but higher 
vitamin B12 levels led to greater damage specifically in mice 
modeling colitis (Lurz et  al., 2020). The importance of 
distinguishing between the effects of various forms of vitamin B12 
on the gut microbiome has, however, been highlighted in both 
animal and human studies (Xu et al., 2018; Zhu et al., 2018). Zhu 
et al. (2018) found that when treating gut disorders such as IBD, 
some forms of vitamin B12 may exacerbate symptoms by favoring 
bacterial species such as E. coli.

Inadequate vitamin B12 levels have been implicated in various 
neurological disorders including Alzheimer’s, schizophrenia and 
dementia, and an inverse correlation can be seen between age and 
vitamin B12 concentrations in the brain (Wang et al., 2001; Zhang 
et al., 2016; Jatoi et al., 2020; Shrestha et al., 2022). Lower levels of 
methyl cobalamin, a specific form of vitamin B12, have been 
found to contribute to reduced antioxidant compounds and 
methylation of DNA in individuals with schizophrenia and 
autism, which could, respectively, lead to greater oxidative stress 
and interfere with DNA transcription (Zhang et al., 2016). Animal 
studies have found that vitamin B12 may participate in neuronal 
recovery following damage (Okada et al., 2010; Sun et al., 2012; 
Wu et al., 2019), which may be due to a role in BDNF production 
(Sun et al., 2012) or in methylation processes (Okada et al., 2010). 
Moreover, sufficient in-utero vitamin B12 levels are crucial for 
neurodevelopment and long-term cognitive performance in 
infants and children (Bhate et al., 2012; Lai et al., 2019; Golding 
et al., 2021). Vitamin B12 may also be implicated in the gut-brain 
axis, as functional analysis has found that the microbiome of 
children receiving treatment for ADHD has fewer genes required 
for vitamin B12 production, compared to untreated children 
(Stiernborg et al., 2023).

In addition to the role of vitamin B12 in the gut and brain, 
studies have found that insufficient levels may be implicated in 
hearing loss (Houston et al., 1999; Péneau et al., 2013) and tinnitus 
(Lasisi et al., 2012; Singh et al., 2016; Kisli and Saçmacı, 2019). In 
individuals with vitamin B12 deficiency-related tinnitus, the 
impacts can be detected at a central auditory level, as measured by 
auditory brainstem response (Kisli and Saçmacı, 2019). 

Mechanisms have been suggested for how vitamin B12 deficiencies 
might impact the auditory system, including disruption of blood 
supply to the inner ear or interference in cochlear nerve 
myelination (Houston et  al., 1999; Kisli and Saçmacı, 2019). 
Vitamin B12 supplements have also been shown to alleviate 
tinnitus-related symptoms (Singh et  al., 2016) and to improve 
hearing outcomes, specifically in older women with vitamin B12 
deficiencies (Houston et al., 1999, Péneau et al., 2013). As such, 
this dietary factor could provide a link between the gut-brain axis 
and auditory system.

5. Perspective and future work

In health and disease states the auditory system may be regulated, 
in part, by the gut-brain axis through various processes (Figure 6). 
However, we still have so much to understand about the cellular and 
molecular mechanisms underlying these relationships. Therefore, 
we recommend conducting future research involving single-hit or 
double-hit factor models to help clarify the role of gut disorders and 
certain neuropsychiatric or neurodegenerative diseases. Particularly, 
this might aid in understanding the combined roles of gut and 
neurological disorders in hearing loss or in sensorimotor gating 
mechanism-derived alterations in sound processing. For example, 
single-hit models could focus on direct vagal innervation received by 
the auditory system, while double-hit models might examine the 
impact of the interactions of the microbiome, vagus nerve and brain 
on the auditory system.

It is still unclear how vagal nerve modulation or gut-derived 
probiotic enrichment can lead to improved hearing in cases of 
auditory loss. A better understanding would provide new areas of 
investigation for the identification of future drug targets. The 
neuro-immune system, which plays a vital defence role in health 
and disease states, allows for hearing loss interventions through 
inflammatory mediators and their modulation of extracellular 
channels. The density of gut flora and the vulnerability of the 
auditory-brain system to infection or HPA stress may also 
be  contributory factors. Specific mechanisms of sound-derived 
microglial reactivity, which may act as an audio-immune-
surveillance cell via a gut-brain-nicotinic-cholinergic pathway, are 
not fully understood and would also open up new avenues for drug 
targets. The suggested research areas have the potential to reveal 
new concepts for modification, inhibition and stimulation of the 
auditory-gut-brain axis across a wide range of diseases linked to 
neurocognition and hearing impairments.

In vitro research and animal models could be  used in the 
future to investigate the key players identified in this review in 
greater depth, and to answer questions about the causal roles of 
these factors in the auditory-gut-brain axis (Figure  7). The 
knowledge gained from animal research could assist in guiding 
future research done in humans. In turn this could aid in 
developing targeted interventions within the context of the 
auditory-gut-brain axis, for addressing the various types of 
hearing loss, auditory-related disorders and neuropsychiatric 
disease, or treating ear infections.

Finally, there are many other dietary factors (e.g., omega 3 
PUFAs), other signaling molecules (e.g., amino acids, sex hormones), 
medications/drugs and other health-related factors (e.g., physical 
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exercise) that could be  considered in future for their potential 
involvements in the auditory-gut-brain axis.

6. Conclusion

Numerous mechanisms have been implicated in the gut-brain 
axis and are being investigated in depth. However, little 
consideration has been given to the relationships that these 
mechanisms provide to other parts of the body. Investigation of 
the broader networks of signaling pathways that connect the 
gut-brain axis with other body parts could widen the research 
questions relevant to the field – ultimately assisting in the study 
of diseases and possible interventions.

As hearing loss poses a significant problem across the globe, 
irrespective of age, the auditory system is an important focus of 

research. There are various complex underlying causes of hearing 
loss, making this a challenging issue to address. In this review 
we  have discussed research studies that provide considerable 
evidence of a link between the ear, gut and brain. These potential 
mechanisms are often interconnected, making it difficult to 
identify their independent roles in connecting these systems. The 
existing papers also span across animal and human research. 
However, despite these challenges, there appear to be numerous 
possible auditory-gut-brain axis connections.

Different levels of certainty may be  placed in the putative 
mechanisms outlined in this review. The vagus nerve provides a 
direct anatomical connection between the ear, gut and brain and, 
as such, we can be highly confident that this is a mechanism which 
connects the auditory-gut-brain axis. However, although indirect 
roles of the immune system or extracellular signaling mechanisms 
have been established, further investigation is required to 

FIGURE 6

Proposed auditory-gut-brain axis: Proposed schematic flow of the auditory-gut-brain axis and its implication in gut dysfunction and probiotic 
intervention: (1) Dysfunctional gut system (e.g., inflammatory bowel disease, IBD) decreases vagal tone (2), increased inflammatory responses and 
oxidative stress in the middle ear disrupt the central auditory system and could impact the ability to process intricate auditory signals (3), resulting in 
sensorimotor gating impairment (4). Consequently, dysbiosis-mediated reduction of vagal tone and degraded evoked responses to acoustic stimuli 
due to altered processing of mis-matches in the ear would cause decreased gut-brain synthesis of neurochemical (e.g., ACh, GABA) (5) and trophic 
support (6), leading to altered intracellular calcium homeostasis, electro-motility and neurochemical signals between the ear and the brain thereby 
causing acoustic injury and loss of hair follicles and neuron survival of the inner ear (7). In the process, loss of α-7nAChR subunit or decreased ligand 
binding (8) induces alterations to GABA and NMDA receptor subunits in the brain (9), accompanied by astrocytic and microglia reactivity (10), increased 
release of pro-inflammatory cytokines and permeability of blood brain barrier (11) as well as brain region-dependent dysfunction including 
degeneration of hippocampal pyramidal neurons and loss of glutamatergic and GABAergic receptors of spiral ganglion neurons in the cochlea (12). 
This can lead to anxiety, reduced prepulse inhibition of the acoustic startle reflex, and cognitive decline (13). However, the hypothetical intervention of 
hearing loss with probiotics (i) is proposed to normalize hearing (ii), gut-brain-mediated release of neurotransmitters (iii), microglial physiological 
functions (iv) as well as behavior (v). ACh, Acetylcholine; GABA, Gamma aminobutyric acid; BDNF, Brain derived neurotrophic factor; α-7nAChR, 
Alpha-7 nicotinic acetylcholine receptor; NMDA, N-methyl-D-aspartate receptor; TNF-α, Tumor necrosis factor-alpha; IL-1β, Interleukin-1beta; IL-4, 
Interleukin-4; IL-6, Interleukin-6; IL-11, Interleukin-11. Created with BioRender.com.
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determine whether they directly contribute to the auditory-gut-
brain axis.
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