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Alzheimer’s Disease (AD) and related dementias are a leading cause of death 
globally and are predicted to increase in prevalence. Despite this expected 
increase in the prevalence of AD, we have yet to elucidate the causality of the 
neurodegeneration observed in AD and we lack effective therapeutics to combat 
the progressive neuronal loss. Throughout the past 30 years, several non-
mutually exclusive hypotheses have arisen to explain the causative pathologies 
in AD: amyloid cascade, hyper-phosphorylated tau accumulation, cholinergic 
loss, chronic neuroinflammation, oxidative stress, and mitochondrial and 
cerebrovascular dysfunction. Published studies in this field have also focused 
on changes in neuronal extracellular matrix (ECM), which is critical to synaptic 
formation, function, and stability. Two of the greatest non-modifiable risk 
factors for development of AD (aside from autosomal dominant familial AD 
gene mutations) are aging and APOE status, and two of the greatest modifiable 
risk factors for AD and related dementias are untreated major depressive 
disorder (MDD) and obesity. Indeed, the risk of developing AD doubles for every 
5 years after ≥ 65, and the APOE4 allele increases AD risk with the greatest risk 
in homozygous APOE4 carriers. In this review, we will describe mechanisms by 
which excess ECM accumulation may contribute to AD pathology and discuss 
pathological ECM alterations that occur in AD as well as conditions that increase 
the AD risk. We will discuss the relationship of AD risk factors to chronic central 
nervous system and peripheral inflammation and detail ECM changes that may 
follow. In addition, we will discuss recent data our lab has obtained on ECM 
components and effectors in APOE4/4 and APOE3/3 expressing murine brain 
lysates, as well as human cerebrospinal fluid (CSF) samples from APOE3 and 
APOE4 expressing AD individuals. We will describe the principal molecules that 
function in ECM turnover as well as abnormalities in these molecular systems 
that have been observed in AD. Finally, we will communicate therapeutic 
interventions that have the potential to modulate ECM deposition and turnover 
in vivo.
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1. Introduction

In this review, we will describe mechanisms by which excess ECM 
accumulation may contribute to AD pathology and discuss 
pathological ECM alterations that occur in AD as well as conditions 
that increase the AD risk. We will discuss the relationship of AD risk 
factors to chronic central nervous system and peripheral inflammation 
and detail ECM changes that may follow. In addition, we will discuss 
recent data our lab has obtained on ECM components and effectors in 
APOE4/4 and APOE3/3 expressing murine brain lysates, as well as 
human cerebrospinal fluid (CSF) samples from APOE3 and APOE4 
expressing AD individuals. We will describe the principal molecules 
that function in ECM turnover as well as abnormalities in these 
molecular systems that have been observed in AD. Finally, we will 
communicate therapeutic interventions that have the potential to 
modulate ECM deposition and turnover in vivo.

2. Brain ECM

The neuronal ECM is structurally similar to ECM in other organ 
systems such as the cardiac myocardium. Both cardiac and neuronal 
ECMs have a framework composed of fibrous proteins such as 
collagen, fibronectin, laminin, and elastin. Furthermore within the 
framework, hyaluronic acid (HA) is abundant and serves as a substrate 
for proteoglycans with glycosaminoglycan (GAG) attachments such 
as chondroitin sulfate proteoglycans (CSPGs; Ex: versican). Finally, 
link proteins such as Tenascin-C and HAPLNs associate CSPGs with 
HA and with each other to impart stability. The major differences 
between the non-neural ECM and neural ECM are (1) the presence of 
CNS specific proteoglycans such as brevican and neurocan and (2) the 
cell types that are important to the formation and maturation of the 
ECM (3) the relative abundance of the individual ECM components 
and (4) the sulphation pattern of CSPGs.

The function of ECM in the CNS is also somewhat unique. CSPG 
components function to inhibit neuronal plasticity through varied 
mechanisms. These include inhibition of axonal growth and increased 
firing of select GABAergic neurons that dampen excitatory 
neurotransmission (Bozzelli et  al., 2018). ECM proteins can also 
promote inflammation through their ability to interact with microglial 
CD44 and Toll-like Receptors (Jang et al., 2020). In contrast, CSPGs 
have been shown to possess neuroprotective properties including anti-
inflammatory and anti-oxidant effects (Egea et  al., 2010). These 
divergent properties of CSPGs may occur due to varied sulphation 
states and bioactive fragments of CSPG proteolysis (Jang et al., 2020).

Perineural Nets (PNNs) are a specialized type of compact brain 
ECM which predominantly surrounds the soma and proximal 
dendrites of parvalbumin (PV)-expressing GABAergic interneurons 
(Bozzelli et al., 2018) (See Figure 1). PNNs generally increase the 
ability of PV neurons to fire, and thus PNNs can indirectly inhibit the 
activity of glutamatergic neurons. For example, PNNs have been 
shown to decrease PV neuron membrane capacitance and increase 
GluA receptor insertion (Favuzzi et al., 2017; Tewari et al., 2018). 
PNNs also prevent lateral diffusion of GluA receptors (Frischknecht 
et  al., 2009). Moreover, PNNs may help to localize presynaptic 
glutamate that is released onto PV expressing cells (Tewari et  al., 
2023). Consistent with these effects, disruption of PNNs has been 
linked to an increase in pyramidal cell activity at the single cell and 

population level (Slaker et al., 2015; Lensjø et al., 2017; Bozzelli et al., 
2018; Alaiyed et al., 2020). Removal of PNNs has also been found to 
increase inhibitory synapses on PV neurons and to inhibit protein 
tyrosine phosphatase sigma, both of which promote pyramidal 
disinhibition (Lesnikova et al., 2021; Yang et al., 2021).

3. ECM effectors

In the CNS, several systems modulate ECM including matrix 
metalloproteases and their inhibitors, molecules such as cytokines and 
chemokines that increase ECM component expression, and sulfatases 
that influence the susceptibility of PNNs to proteolysis.

The matrix metalloproteinases fall under two major families: 
matrix metalloproteinases (MMPs) and A Disintegrin and 
Metalloproteinases with or without ThromboSpondin Motifs 
ADAM(TS). A third family of cysteine proteases termed, Cathepsins 
(CTs), have also emerged as contributors to ECM homeostasis 
(Pantazopoulos et al., 2020). Furthermore, serine proteases (uPa, tPa, 
and plasmin) play a role in direct ECM degradation as well as 
modulation of the MMP (Tsuji et al., 2005; Zhao et al., 2008) and 
ADAMTS (Lemarchant et al., 2014) activation cascades.

Endogenous inhibitors of the MMPs and ADAMTSs are tissue 
inhibitor of metalloproteinases (TIMPs) and alpha-2-macroglobulin 
(α2M). SERPINs can instead inhibit serine proteases to indirectly 
reduce levels of active MMPs (Tsuji et al., 2005; Zhao et al., 2008) and 
ADAMTSs (Lemarchant et al., 2014).

While varied studies have performed in vitro digests to examine 
the susceptibility of ECM components to MMP mediated proteolysis, 
whether MMPs are expressed in proximity to these components is an 
unanswered question. However, data from in vivo studies with 
knockouts or specific inhibitors suggests that MMP-9 can attenuate 
PNN levels in association with a serotonin norepinephrine reuptake 
inhibitor (Alaiyed et  al., 2020) or light reintroduction after visual 
deprivation/dark exposure (Murase et al., 2017). Of interest, levels of 
MMP-9 and/or MMP-13 are increased after kainite induced seizures 
or status epilepticus in which PNN attenuation is also observed 
(Szklarczyk et al., 2002; Rankin-Gee et al., 2015; Dubey et al., 2017).

ADAMTS proteins have also been implicated in PNN processing. 
For example, ADAMTS-12 homozygous knock-out (KO) mice show 
increased neurocan in cortical lysates compared to wild-type (WT) 
control mice (western blot; Fontanil et al., 2019). In another study of 
ADAMTS proteins, Demircan et al., found no difference in aggrecan 
cleavage fragments (~50 and ~60 kDa) amongst the three groups 
(ADAMTS-4 KO, ADAMTS-5 KO, and WT) following spinal cord 
injury (SCI) but a decrease in an ~50 kDa brevican fragment was 
observed at 7 days post-SCI in ADAMTS-4 and ADAMTS-5 KO mice 
compared to WT. Furthermore, they found a lack of a ~70 kDa 
versican fragment in both ADAMTS-4 and ADAMTS-5 KO groups 
which was not observed in the WT group at 7 days post-SCI 
(Demircan et al., 2014).

Select signaling molecules can also regulate ECM levels and, in 
particular, promote ECM deposition. These include TGF-β, which is 
believed to be one of the most potent endogenous regulators of ECM 
deposition. Following activation and translocation of SMAD 
transcription factors, both ECM depositing (collagens, fibronectins, 
TIMPs, PAIs) and degradation proteins (MMPs) are produced with 
net increased ECM deposition. Consistent with this, in primary rat 
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astrocyte cultures treated with recombinant TGF-β full-length 
brevican production is increased, and this effect was not seen with 
treatment of recombinant IL-1β or VEGF (Hamel et al., 2005).

CCL5, which can upregulate TGF-β (Chang et al., 2012), is an 
additional important regulator of ECM deposition that is linked to 
fibrosis in varied endorgans (Berres et al., 2010). In a study with a 
human hepatic stellate cell line, the FDA approved CCR5 antagonist 
Maraviroc reduced deposition of ECM proteins including fibrillar 
collagens and it also reduced levels of TGF-β and TIMP-1 (Coppola 
et al., 2018). Of note, hepatic stellate cells share many characteristics 
and homeostatic functions with astrocytes including GFAP expression 
(Schachtrup et al., 2011; Liao et al., 2013).

PNN sulfation also regulates ECM levels. For example, sulfation 
can significantly impact PNN susceptibility to proteolysis (Foscarin 
et  al., 2017). In the CNS, there are five chondroitin sulfate (CS) 
sulphation isomers: non-sulfated-CS, two mono-sulphated isomers 
(4-CS and 6-CS), and two di-sulphated isomers (4,6-CS or 2,6-CS). 
The mono sulphated chondroitin sulfate proteoglycans (CSPGs) are 
the major forms in the CNS with a lesser 4/6-CS ratio during 
development that gradually increases throughout adulthood 
(Kitagawa et  al., 1997). It has been shown that the 4-CS imparts 
rigidity on the adult CNS and that 6-CS is permissive to axonal growth 
and plasticity (Lin et al., 2011; Yang et al., 2021) In a recent study, 
deletion of chondroitin-6 sulfotransferase led to a reduction in 6-CS 
levels and relatively early-onset age-related memory impairment 
(Yang et al., 2021).

4. Increased ECM deposition has the 
potential to contribute to 
AD-associated neurophysiological 
changes, cognitive impairment, and 
impaired amyloid clearance

Developmentally regulated deposition of PNNs closes critical 
periods of neuronal plasticity and tends to stabilize neuronal synapses 
and networks (Christensen et al., 2021). This stabilizing function may 
be  impaired in CNS disorders where PNNs are disrupted or 
diminished including schizophrenia (SCZ; Mauney et  al., 2013; 
Enwright et al., 2016), bipolar depression (BPD; Pantazopoulos et al., 
2007; Alcaide et  al., 2019), and autism spectrum disorder (ASD; 
Brandenburg and Blatt, 2022). Alternatively, excessive PNN deposition 
can impair the ability for new learning and may also detrimentally 
affect neuronal population activity important to learning and memory. 
With respect to the latter, excess PNN, as determined based on 
increased fluorescence following WFA immunostaining and an 
increased percentage of neurons with detectable PNN, has been linked 
to reductions in the power of gamma oscillations and the abundance 
of sharp wave ripples, high frequency oscillations that play a role in 
working memory and memory consolidation (Bozzelli et al., 2018; 
Alaiyed et  al., 2020). In addition, attenuation of PNNs increases 
gamma power and SWR abundance (Lensjø et al., 2017; Alaiyed et al., 
2020), possibly by diminishing PV neuron-mediated GABAergic 
inhibition of pyramidal cells (Slaker et al., 2015).

Importantly, gamma power is reduced in AD and in animal 
models of the same (Klein et al., 2016; Murty et al., 2021; Traikapi and 
Konstantinou, 2021). Gamma power and sharp wave ripple abundance 
are also reduced in human APOE4-knock-in (KI) mice and the 

magnitude of gamma power reduction is correlated with the level of 
subsequent cognitive decline. In a more recent study using wild type 
or TgF344-AD rats, low and high frequency gamma power were 
reduced at an early stage in the latter (6 months; low levels of amyloid 
accumulation; Stoiljkovic et al., 2019; Moradi et al., 2022). PNN and 
ECM components may also bind amyloid so that its clearance is 
impaired. For example, an association between CSPGs and plaques 
have been described in AD brain (DeWitt et al., 1993; Lepelletier et al., 
2017; Hebisch et al., 2023). And while ECMs can also sequester and 
localize beneficial growth factors, recent studies suggest that a variety 
of profibrotic chemokines including CCL2 and CCL5 are sequestered 
as well (Hirose et al., 2001; Masuda et al., 2013).

5. ECM changes with AD risk factors

5.1. ECM changes in aging

ECM changes with age may arise from diverse causes including cell 
senescence, which occurs in association with chronic fibrotic diseases 
(Blokland et al., 2020). A senescence-associated-secretory phenotype 
(SASP) has been described (Sikora et al., 2021), in which secretory 
products may contribute to direct and indirect ECM pathology 
(dysregulation of proteases, ECM components, cytokines and 
chemokines). Indeed, a variety of profibrotic molecules are elevated in 
association with aging including TGF-β (Tominaga and Suzuki, 2019).

Consistent with this, there are several findings that show 
alterations in ECM properties with aging. For example, Mafi et al. 
found an increase in PNN density in aged Norway rats in the inferior 
colliculus (IC; Mafi et al., 2020), while Brewton et al. found a decrease 
in PNN density in the auditory cortex of aged mice (Brewton et al., 
2016). In aged Octodon degus rodents, which can develop AD like 
pathology, a slight increase in the intensity and the number of both 
PNN-and PV-positive cells is detected in the entorhinal cortex of 
those with AD-like pathology compared to aged degus without AD 
like pathology (Tan et al., 2022). In addition, the degus with AD-like 
pathology also express increased levels of glial fibrillary acidic protein 
(GFAP), which is of interest in that activated astrocytes may express 
increased levels of PNN components.

As discussed in the section on ECM effectors, there is also an 
age-related reduction in C6S which renders PNNs more inhibitory 
(Baidoe-Ansah et al., 2022). This is supported by mechanistic studies 
in which deletion of chondroitin 6-sulfotransferase simulates aspects 
of brain aging (Yang et al., 2021). It has been shown that cortical 4-CS 
increases with ageing in rats and chickens (Kitagawa et  al., 1997; 
Foscarin et al., 2017). Interestingly, in a study of healthy human adults 
(14–89 years of age), authors noted a significant positive correlation of 
4-CS/6-CS ratio with age in synovial joint fluid (Uesaka et al., 2004) 
and it would be important to determine if this relationship also exists 
in CSF an overview of ECM effector changes that may occur with 
aging and inflammation is shown in Figure 2.

5.2. ECM changes in APOE4

ECM changes may also occur with APOE expression. The 
targeted replacement (TR) and KI human APOE mouse models 
permit us to investigate ECM dynamics independent of Aβ 
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deposition since these mice do not show accumulation of Aβ 
plaque with age. Astrocytes from these and other mice have been a 
focus of APOE-directed research as they are the major producers 
and secretors of brain APOE (Liao et al., 2017). Microglia produce 
APOE to a significantly lesser extent than astrocytes, though they 
likely contribute to APOE4-dependent pathology (Shi et al., 2019; 
Henningfield et al., 2022). Importantly, APOE4 glia produce and 
secrete less APOE protein than APOE3 and APOE2 glia (Riddell 
et al., 2008; Lanfranco et al., 2021), which is relevant since APOE 
is thought to reduce inflammation, a significant driver of overall 
ECM accumulation (Ulbrich et al., 2021). Our lab has observed 
increased PNN deposition in retro-splenial cortex and 
hippocampus of APOE4-TR compared to APOE3-TR (Blanco 
et  al., unpublished observations). Furthermore, we  also 
demonstrated that APOE4-TR mice have decreased ~50 kDa 
brevican cleavage fragment in CSF samples from human APOE4/4 s 
compared to APOE3/3 s (Greco et al., 2023). A reduction in this 
cleavage fragment has also been observed in a murine model of AD 
(Ajmo et al., 2010).

In other work examining ECM changes with APOE4, Keable et al. 
found that astrocytes cultured from KI APOE4 mice pups secreted 
significantly greater amount of fibronectin than KI APOE3 astrocytes 
and that increased fibronectin could enhance Aβ aggregation in the 
cerebral microvasculature (Keable et  al., 2020). Of interest is that 
APOE4 murine microglia exhibit significantly increased SERPINA3 
mRNA than APOE3 murine microglia that was found in two separate 
studies (Machlovi et al., 2022; Sepulveda et al., 2022). Serpins can 
inhibit the activity of ECM degrading proteases. Furthermore, in the 
same transcriptomic study (Machlovi et  al., 2022), they found 
significantly decreased matrix metalloproteinase-2 (MMP-2) mRNA 
in APOE4-TR compared to APOE3-TR. Given MMP-2’s role in ECM 
homeostasis, this evidence supports increased ECM deposition in 
APOE4 carriers.

Work from our lab has shown increased TIMP-1 and CCL5 in 
CSF samples from humans expressing APOE4 and brain lysates from 
mice with a targeted replacement of this allele (Greco et al., 2023). In 
addition, recently published work from the Goate lab shows 
chemokine and matrisome (ECM protein and associated factors) 
increases in human IPSC-derived APOE4 astrocytes. This work also 
shows that APOE4 microglia are enriched for ECM, chemokine and 
cytokine signaling pathways in multiple brain regions (Tcw 
et al., 2022).

Of additional interest, ECM changes at the level of the blood brain 
barrier basement membrane may occur with APOE4 (Jackson et al., 
2022). The risk of anti-amyloid antibody associated microhemorrhages 
is increased in APOE4 expressing individuals (Withington and 
Turner, 2022) and this could be due in part to increased amyloid 
sequestration by excess basement membrane matrix deposition.

5.3. ECM changes in obesity

Obesity is a major risk factor for the development of disorders 
characterized by excess ECM deposition in endorgans. These include 
Type II diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). 
Furthermore, obesity increases the risk for cognitive impairment, with 
several studies noting deficits in cognitive domains (working memory, 
verbal learning, episodic memory) in obese compared to non-obese 

individuals (Cournot et al., 2006; Gunstad et al., 2006; Fergenbaum 
et al., 2009; Coppin et al., 2014).

Adverse ECM effects due to obesity may be attributed to metabolic 
dysfunction, chronic inflammation, and mechanical stress. In T2D 
ECM pathology may occur in varied endorgans and lead to disorders 
including diabetic retinopathy, characterized by pathological ECM 
deposition and basement membrane thickening with progressive 
blindness (Giblin et  al., 2022). In NAFLD, a disorder in which 
approximately 25% of patients will progress to liver cirrhosis. NAFLD-
associated cirrhosis is characterized by intense collagen deposition by 
activated stellate cells (Fernando et al., 2019), a cell type which shares 
many common features with CNS astrocytes (Schachtrup et al., 2011). 
Moreover, in rodent models of NAFLD, activated stellate cells deposit 
CSPGs such as versican which can inhibit hepatocyte regeneration 
and recovery from injury (Bukong et al., 2016). Of interest, NAFLD is 
associated with an increased risk of developing dementia (Filipović 
et al., 2018; Shang et al., 2022). In addition, advanced liver fibrosis has 
been associated with increased rhinal Tau(Weinstein et al., 2022). 
Though the reasons for increased dementia risk in NAFLD are likely 
multifactorial, with a potential role for impaired cerebral perfusion 
and hepatic clearance of toxic molecules (Hadjihambi, 2022), it is 
tempting to speculate that chronic intracerebral inflammation 
may contribute.

Whether obesity itself is associated excess ECM deposition in the 
brain warrants further study. The idea is, however, supported by the 
link between obesity and neuroinflammation, with increased 
expression of pro-fibrotic molecules such as TGF-β (Yan et al., 2014; 
Salas-Venegas et al., 2022). It is also supported by studies that have 
examined effects of obesity in animal models of AD. For example, in 
a study using a murine model of AD, a high fat diet (HFD) was 
associated with increases in hippocampal levels of TIMP-1, CCL2, and 
CCL5 and increased hippocampal astrocyte and microgliosis. 
Furthermore, these markers correlated with hippocampal TSPO PET 
signal, a marker of inflammation (Barron et al., 2016). In two separate 
studies with AD-obesity mouse models, significantly increased 
cerebrovascular amyloid deposition was also observed (Takeda et al., 
2010; Vargas-Soria et al., 2022). Dual AD-obesity mouse models also 
perform significantly worse on hippocampal-dependent memory 
tasks (Takeda et al., 2010; Barron et al., 2016). Interestingly, it has also 
been demonstrated that obese AD mice have increased hippocampal 
tau hyperphosphorylation compared to obese, AD, and control groups 
(Platt et al., 2016). Together these studies emphasize potent synergistic 
effects between obesity and AD pathology that results in amplified 
amyloid deposition, tau phosphorylation, and neuroinflammation.

5.4. ECM changes with stress and 
depression

While depression is often an initial symptom of AD, long standing 
recurrent untreated major-depressive disorder (MDD) is thought to 
be an independent risk factor for AD (Holmquist et al., 2020; Nedelec 
et  al., 2022). While several mechanisms may be  at play including 
corticosterone mediated reductions in hippocampal dendritic arbor 
(Watanabe et al., 1992; Magarinos and McEwen, 1995; Conrad et al., 
1999; Kleen et al., 2006; McLaughlin et al., 2007), it should be noted 
that recent studies suggest that ECM deposition in increased in the 
hippocampus with rodent models of the same (Riga et  al., 2017; 
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Alaiyed et al., 2020). For example, in a rat model of chronic social 
defeat–induced persistent stress ECM increases were observed in the 
hippocampus. In addition, associated cognitive deficits were 
normalized by chondroitinase ABC (ChABC) injections that 
attenuated PNN levels (Riga et  al., 2017). Moreover, in a murine 
model of chronic corticosterone induced depression. PNN increases 
were also observed in the hippocampus and venlafaxine, a serotonin-
norepinephrine reuptake inhibitor could normalize PNN levels and 
excitatory/inhibitory balance (Alaiyed et al., 2020).

In contrast to MDD, BPD is has been associated with reduced 
PNN levels (Pantazopoulos et  al., 2007). Indeed, SSRIs are often 
contraindicated in BPD as they can precipitate manic episodes (Patel 
et al., 2015). First line therapy for bipolar disorder (mood stabilizers) 
differs from that for major depressive disorder, possibly due to 
differences in the underlying pathology.

Consistent with MDD findings, it is increasingly appreciated that 
acute stress can upregulate ECM remodeling while chronic stress, a 
significant risk factor for depression, is instead associated with excess 
ECM deposition (Ulbrich et  al., 2021). ECM deposition and 
remodeling involves a complex variety of players, as discussed in an 
earlier section of this review, with players that favor degradation 
upregulated at early time points following stress or injury and players 
that shift the balance towards increased ECM deposition expressed as 
the insult moves to the chronic stage. In support of this, with acute 
CNS injury, microglia produce a wide array of proteases that function 
to breakdown ECM components. These include MMP-9, ADAMs and 
ADAMTSs (Kaushik et al., 2021). Astrocytes instead produce and 
secrete a variety of ECM components such as collagens, laminins, 
GAG-linked lecticans such as CSPGs, as well as link proteins and 
hyaluronan synthase (Ulbrich et al., 2021). Astrocytes also express 
MMP inhibitors including TIMP-1 (Crocker et al., 2006; Hasel et al., 
2021), and this cell type forms the glial scar following traumatic brain 
injury (TBI; Mira et al., 2021) or stroke (Huang et al., 2014). Thus, a 
simplified perspective on glia and ECM is that with chronic injury or 
stress astrocytes serve a “building” role while with acute injury 
microglia serve a “deconstructing” role in the CNS ECM (Ulbrich 
et al., 2021).

6. ECM and ECM effector changes in 
AD

There are several findings that show alterations in ECM properties 
and/or ECM effector levels with AD. ECM changes have been 
hypothesized to alter Aβ clearance, glial responses to amyloid, and 
neuronal sensitivity to amyloid (DeWitt et al., 1993; Lepelletier et al., 
2017; Hebisch et al., 2023). In autopsy-based studies, CSPGs have been 
associated with amyloid plaques (DeWitt et al., 1993) and tau tangles. 
Furthermore, increases in collagen IV, perlecan and fibronectin were 
found to correlate with amyloid levels (Lepelletier et al., 2017). Palu 
and Liesi showed increased α1 and γ1 laminins in AD frontal cortices 
that co-localized with reactive astrocytes (Palu and Liesi, 2002). 
Shimizu et al., observed a 1.6-fold increase in total proteoglycans in 
the hippocampus and 4.3 fold increase in total proteoglycans in the 
superior frontal gyrus of AD brains compared to age-matched, healthy 
controls (Shimizu et al., 2009). In addition, they showed co-localization 
of proteoglycans with amyloid plaques. Interestingly, in a separate 
study, a positive correlation between amyloid plaque deposition and 

ECM components in AD individuals was observed (Damodarasamy 
et al., 2020).

PNN changes in AD, including altered sulfation patterns are well 
reviewed, in (Sun et al., 2021; Ali et al., 2022; Fawcett et al., 2022; 
Logsdon et al., 2022; Scarlett et al., 2022). Logsdon et al., found a 
significant increase in CS-GAGs in PFC in AD compared to healthy 
controls (Logsdon et al., 2022). Liddelow’s lab showed increased levels 
of 4-sulfotransferase, in AD brain-derived astrocytes (Sadick et al., 
2022). This likely increases 4S-CSPG levels which are less susceptible 
than 6S-CSPGs to proteolysis.

While a recent review detailing PNN changes in AD found that a 
majority of PNN components are upregulated in AD (HA, HSPGs, 
CSPGs, DSPGs, TNC, and TNR) with two components decreased 
(reelin and keratin sulfate proteoglycans; Sun et al., 2021), Bruckner 
and colleagues showed no change in fluorescent intensity using 
pan-Anti-CSPG antibody in AD frontal and temporal sections 
compared to controls (ntotal = 12; Brückner et al., 1999). Morawski and 
colleagues also demonstrated no change in WFA, parvalbumin, 
brevican, and aggrecan IHC labeling in AD brains (n = 12) vs. controls 
(n = 12; Morawski et al., 2012).Differing observations may be explained 
by the tools used to detect the PNNs. Baig et al. utilized WFA, a lectin 
stain that binds N-acteylgalactosamine residues of the lecticans (Baig 
et al., 2005), and Lendvai used an antibody to the protein component 
of brevican (Lendvai et al., 2013). Furthermore, it is important to 
recognize that PNN lectican antibodies have epitopes to different parts 
of the PNN glycoproteins and thus immunohistochemical data may 
vary across studies due to PNN structural variability coupled with the 
heterogeneity of antibody epitope recognition sites. Taken together, 
the observed differences in these human studies may represent an 
aspect of changing PNN quality and not quantity. Furthermore, this 
notion of changing quality in AD brains but not quantity of PNNs or 
PV+ neurons was supported in a recent study of human AD brains 
where the sulphation code is implicated (Logsdon et al., 2022). Indeed, 
a recent review proposed an updated model of PNN pathology in AD 
where it is believed that reduced WFA+ intensity seen in postmortem 
AD brains is due to structural and sulphation alterations that reduce 
WFA’s affinity to PNNs; thus, giving the illusion of reduced PNN 
density (Scarlett et  al., 2022). These studies suggest that future 
investigations examining PNNs in AD humans and rodent models 
need to address PNN quality changes that cannot be assessed with 
traditional methods of IHC labeling or Western blot detection.

With respect to ECM changes with amyloid or tau Tg mouse 
models of AD, two separate studies have found increased hippocampal 
brevican levels in these models (Ajmo et al., 2010; Végh et al., 2014a). 
In addition, one group showed a concomitant decrease in the 
proteolytic-generated ~50 kDa brevican cleavage fragment in 
hippocampal lysates from Tg mice (APP/Swe) compared to WT 
controls (Ajmo et  al., 2010). It has also been shown that ChABC 
intrahippocampal injection in AD mouse models alleviates both 
neuropathology and cognitive deficits (Howell et al., 2015; Yang et al., 
2015). In particular, contextual-fear learning and hippocampal slice 
long term potentiation (LTP) are increased in ChABC treated APP/
PS1 versus penicillinase treated controls (Végh et al., 2014b). ChABC 
also reduced amyloid load and increased synaptic density in the APP/
PS1 mice (Howell et al., 2015). In two separate AD-tau mouse models, 
ChABC treatment also improved cognitive deficits as assessed by 
object recognition test and increased field excitatory synaptic potential 
amplitudes in perirhinal cortex (Yang et al., 2015).
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In terms of ECM effectors, analysis of CSF samples from sporadic 
cerebral amyloid angiopathy (CAA), which shares parallels with AD and 
can be  coincident with the same (Vervuurt et  al., 2023), shows a 
significant reduction in the MMP-2/TIMP-2 ratio, a change that would 
favor ECM deposition. Indeed, individuals who are afflicted with CAA 
have increased deposition of matrix at the blood brain barrier basement 
membrane. Previous studies also suggest that MMP-9 levels may 
be unchanged or reduced in AD and/or APOE4 patients as compared to 
controls (Adair et al., 2004; Mroczko et al., 2014). And though other 
reports show that MMP-9 may be elevated at the blood brain barrier with 
APOE4 or aggressive mouse models of AD (Halliday et  al., 2016; 
Weekman and Wilcock, 2016; Montagne et al., 2020), potential confounds 
include elevated amyloid levels in aggressive murine models and/or select 
APOE4 patient populations (Deb and Gottschall, 1996). In a recent study, 
we did not see changes in MMP-9 with APOE4 genotype (Greco et al., 
2023). Importantly, the ability of MMP-9 to ameliorate or exacerbate 
disease pathology is likely a function of quantity as well as localization. 
For example, increased expression of MMP-9 by activated microglia or 
pericytes at the blood brain barrier could have detrimental effects, while 
neuronal-derived and localized MMP activity may target preferentially 
target PNNs and synaptic adhesion molecules to enhance plasticity (Tian 
et al., 2007; Conant et al., 2015; Martin-de-Saavedra et al., 2022). This is 

supported by animal studies in which neuronal expression of MMP-9 was 
associated with an increase in non-amyloidogenic alpha-secretase cleaved 
amyloid precursor protein and well as plaque reduction and improved 
cognition in 6 month old female 5xFAD mice (Fragkouli et al., 2014). In 
contrast, another study showed that a pharmacological inhibitor of 
MMP-9, which would also target microglial and pericyte-derived enzyme 
activity, improved cognition but had no effect on plaque load in the 
5XFAD model (Ringland et al., 2021).

7. Therapeutic manipulation of PNNs

Following the experiments that provided mounting evidence of 
PNN’s inhibitory role in neuroplasticity, there is clinical interest in 
targeting PNNs for disruption to promote recovery in neurological 
pathology. Intracerebral injection of ChABC in aged rodent models 
improves memory-dependent behaviors in a variety of AD models. 
Furthermore, in a spinal-cord injury (SCI) model, local ChABC injection 
improved functional outcome and recovery (Bradbury et  al., 2002). 
However, ChABC is a bacterial enzyme, thermally instable, and requires 
continuous injections for maintenance of PNN levels. In this review it is 
beyond our scope to address all avenues of therapeutic PNN manipulation.

FIGURE 1

Schematic representation of general PNN structure. Hyaluronic acid (HA) serves as the backbone of PNNs. The lecticans (aggrecan, versican, neurocan, 
and brevican) associate with HA, link proteins (HAPLNs) stabilize this association, and tenascins cross-links lecticans. TGF-β signaling promotes 
astrocytic production and secretion of CSPGs. Deposited CSPGs can sequester amyloid plaques and hinder degradation. This image was created using 
Biorender graphic software (https://Biorender.com).
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Selective serotonin reuptake inhibitor (SSRIs) and selective serotonin-
norepinephrine reuptake inhibitors (SNRIs) are typically used for 
management of anxiety and depressive symptoms; however, a full 
understanding of therapeutic mechanisms is lacking. Of interest, these 
medications have been shown to modulation PNN integrity. In accordance 
with this hypothesis, our lab has previously shown that MMP-9 dependent 
attenuation of PNNs can impact physiological markers associated with 
learning and memory deficits. Using a corticosterone-based mouse model 
of stress, Alaiyed et al. (2020) demonstrated an increase in expression of 
PSD-95, an increase in expression of MMP-9, increased pyramidal cell 
arborization, and increased gamma power in male C57BL/6 J mice treated 
with the antidepressant Venlafaxine (VFX). In VFX treated MMP-9 null 
mice, these effects were not seen (Alaiyed et al., 2020). These findings 
support a requirement for MMP-9  in effecting physiological PNN 
remodeling in vivo.

The successful use of antidepressant medications for modulation 
of PNNs has also been shown with SSRIs including fluoxetine (FLX). 
In two separate studies (Ohira et al., 2013; Guirado et al., 2014), FLX 
treated mice showed decreased PNN density and PV+ neurons in 
both mPFC and in hippocampus compared to vehicle. In concurrence 
with these findings, Mukhopadhyay et al., 2021 found a decrease in 
CA1 and CA3 hippocampal PNNs following FLX treatment in 
Sprague Dawley rats (Mukhopadhyay et al., 2021). Moreover, Ohira 
et  al., 2019 found reduction of DG and CA3 hippocampal PNN 
density and PV+ interneurons in FLX treated marmosets (Ohira et al., 
2019). Through both attenuation of PNNs and consequent effects on 
PV interneuron excitability, antidepressant medications may be of use 
in a combination treatment for the maintenance of plasticity as well as 
the prevention/alleviation of depressive symptoms commonly 
associated with AD (Dityatev et al., 2010; Donato et al., 2013).

Targeting PNN sulphation has also shown promise in two separate 
studies. Pearson et al., found that administration of Aryl-Sulfatase B 
(ARSB), selectively cleaves 4-CS groups on CSPGs, improved neurite 
outgrowth in vitro and regeneration of optic nerve lesion in vivo 
(Pearson et al., 2018). Furthermore, they found that post-fixed mouse 

brain sections incubated with ChABC drastically decreased PNN 
density whereas incubation with ASRB did not change PNN density. 
In a more recent study Yang et  al., stereotaxically delivered an 
AAV-chst3 (encodes 6-sulfonotransferase) to perirhinal cortex (PRh) 
of aged C57BL/6 mice, and found recovery in memory impairment 
(Yang et al., 2021). In addition, they demonstrated reduction in PV+ 
neurons and PNN density in AAV-chst3 compared to AAV-GFP 
control group.

4-methylumbelliferone (4-MU) is an HA synthesis inhibitor 
approved in Europe for treatment of biliary spasms and demonstrates 
well-tolerance at high doses in humans. 4-MU functions to inhibit 
hyaluronic acid (HA) synthesis. Dubisova et al., examined its effects 
on PNNs in healthy adult C57BL/6JOlaHsd mice given 6-months of 
oral 4-MU in chow (Dubisova et  al., 2022). They found a 72% 
reduction in GAG content in the brain and 50% reduction in spinal 
cord compared to controls. Furthermore, 4-MU treated mice showed 
improved hippocampal-dependent memory performance 
(spontaneous object recognition task and spontaneous alteration test).

In several studies, ketamine has shown ability to modulate PNNs in 
vivo. Matuszko et  al., showed a reduction in PNN density and PV 
expression in mPFC of low-dose ketamine injected male SD rats 
(Matuszko et  al., 2017). In a follow-up study, the same group 
demonstrated that PNNs were more numerous but immature in 
structure (less circular and smaller; Kaushik et al., 2021). Venturino et al., 
demonstrated that a single, high-dose ketamine injection was sufficient 
to decrease PNN density in C57BL/6 mice and this effect was increased 
with frequency of ketamine injections (Venturino et  al., 2021). The 
authors attributed this mechanism of PNN reduction to increased 
microglia phagocytosis and proteolysis of PNNs; moreover, this was 
supported by lack of PNN reduction with ketamine when microglia were 
pharmacologically depleted (PLX5622) or inhibited (clopidogrel). In 
addition, they showed that 60 Hz gamma entrainment (2 h/day of light 
flickering) for 5 days drastically reduced PNN density and increased 
neuronal and microglia MMP-9 immunoreactivity proximal to PNNs.

An alternative approach to gamma entrainment, for non-invasive 
manipulation of PNNs in vivo, is repetitive transcranial magnetic 
stimulation (rTMS). Zheng et  al., demonstrated efficacy of this 
approach in rats in which rTMS decreased cortical PNN density 
compared to the sham stimulated group (Zheng et al., 2023).

Given the role of inflammatory soluble mediators in driving 
ECM deposition and remodeling: inhibition of the CCL5/CCR5 
signaling axis may show potential in modulating PNNs. This is 
supported by recent studies showing maraviroc’s (CCR5 antagonist) 
ability to attenuate liver fibrosis in a murine model of chronic liver 
failure. In vitro treatment of hepatic stellate cells with maraviroc 
drastically decreased PNN effectors including TIMP-1, TIMP-2, and 
TGF-β (Coppola et al., 2018). We found decreased hippocampal 
TIMP-1  in APOE4/CCR5KO heterozygous mice as compared to 
age-matched APOE4/WT mice, which supports a physiologic role 
of the CCR5 axis in modulating TIMP-1 levels (Greco et al., 2023). 
Interestingly it was shown that humans treated with maraviroc or 
with the CCR5 mutation specific null-allele (delta32) have improved 
cognitive and functional recovery following stroke compared to 
non-carriers (Joy et  al., 2019). Future studies should address 
maraviroc’s clinical application in neurodegenerative disorders such 
as AD where ECM homeostasis is affected.

Potential therapies to target PNN levels are summarized in 
Table 1.

FIGURE 2

Schematic representation illustrating increase in specific PNN 
components and effectors with age and inflammation: TGF-β (Fessel, 
2019; Yan et al., 2014; Tominaga and Suzuki, 2019), TIMP-1 (Baird 
et al., 2012; Hasel et al., 2021), 4/6-CS ratio (Foscarin et al., 2017; 
Baidoe-Ansah et al., 2022), and PNNs (Karetko-Sysa et al., 2014; 
Végh, Rausell, et al., 2014b; Mafi et al., 2020). This image was created 
using Biorender graphic software (https://Biorender.com).
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8. Summary/conclusions/future 
directions

Numerous epidemiological and genetic studies have implicated a 
variety of common risk factors for late onset AD. These include age 
and APOE genotype as well as untreated MDD and obesity.

In this review, we  have highlighted chronic inflammation with 
increased ECM deposition as a shared feature of these predisposing 
conditions. Since changes in ECM quality and quantity can have adverse 
physiological effects, we further suggest that excess ECM deposition can 
restrict neuroplasticity to in turn diminish cognitive reserve. Moreover, 

increased PNN deposition may alter excitatory/inhibitory balance to 
impair gamma oscillations and working memory. We have also touched 
on studies that suggest some ECM proteins may sequester amyloid and 
thus impair its clearance. Future studies are warranted to test ECM 
specific interventions in AD and AD risk factor models. Studies could also 
characterize specific ECM and PNN changes following traumatic brain 
injury (TBI), which also increases AD risk (Griffiths et  al., 2020; 
Livingston et al., 2020). Of interest, TBI has been associated with chronic 
inflammation, increased TGF-β, and increased C-4S levels (Bhattacharyya 
et al., 2015). Future studies are also warranted to determine whether 
additional conditions associated with chronic brain inflammation, such 

TABLE 1 Summary of PNN attenuating strategies for potential clinical use.
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as long COVID or HIV infection, impair cognition in part through effects 
on brain ECM.
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