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Introduction: Deep-learn methods based on convolutional neural networks

(CNNs) have demonstrated impressive performance in depression analysis.

Nevertheless, some critical challenges need to be resolved in these methods: (1)

It is still di�cult for CNNs to learn long-range inductive biases in the low-level

feature extraction of di�erent facial regions because of the spatial locality. (2) It is

di�cult for a model with only a single attention head to concentrate on various

parts of the face simultaneously, leading to less sensitivity to other important facial

regions associated with depression. In the case of facial depression recognition,

many of the clues come from a few areas of the face simultaneously, e.g., the

mouth and eyes.

Methods: To address these issues, we present an end-to-end integrated

framework called Hybrid Multi-head Cross Attention Network (HMHN), which

includes two stages. The first stage consists of the Grid-Wise Attention block

(GWA) and Deep Feature Fusion block (DFF) for the low-level visual depression

feature learning. In the second stage, we obtain the global representation by

encoding high-order interactions among local features with Multi-head Cross

Attention block (MAB) and Attention Fusion block (AFB).

Results: We experimented on AVEC2013 and AVEC2014 depression datasets. The

results of AVEC 2013 (RMSE = 7.38, MAE = 6.05) and AVEC 2014 (RMSE = 7.60,

MAE = 6.01) demonstrated the e�cacy of our method and outperformed most of

the state-of-the-art video-based depression recognition approaches.

Discussion: Weproposed a deep learning hybridmodel for depression recognition

by capturing the higher-order interactions between the depression features of

multiple facial regions, which can e�ectively reduce the error in depression

recognition and gives great potential for clinical experiments.

KEYWORDS

facial depression recognition, convolutional neural networks, attention mechanism,

automatic depression estimation, end-to-end network

1. Introduction

Major depressive disorder (MDD), also called depression, is one of the most common

mental and mood disorders. It presents itself through depressed mood, pessimism, loss

of attention and memory, self-denial, poor appetite, and decreased activity, among other

symptoms. In addition, it can severely impact a person’s thoughts, behaviors, work-life,

and eating habits (Belmaker and Agam, 2008). With the increasing pressure of life, many

people are suffering from depression. TheWorld Health Organization (WHO) released data

in 2007 stating that 350 million people worldwide suffered from depression. Moreover, in

2030, depression may overtake cardiovascular disease as the number one cause of disability,
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TABLE 1 The relation between the BDI-II cut-o� scores and the

depression severity level.

BDI-II score Severity level

0–13 None or minimal

14–19 Mild

20–28 Moderate

29–63 Severe

which means that depression has become a severe social health

problem (World Health Organization, 2017). Unfortunately, there

are no impactful clinical patterns for the diagnosis of depression

due to personal and social development and other factors, which

makes the diagnosis of depression complicated and subjective (Maj

et al., 2020). Meanwhile, there are few professional psychiatrists

in some developing countries, and the insufficient ratio of doctors

to patients has become a major problem faced by mental health

workers as well. Therefore, it is necessary to find objective

parameter indicators to assist doctors in improving the current

medical situation.

Studies have shown that depression alters various non-

verbal behaviors (Ellgring, 2007), including psychomotor delays,

insensitivity to emotional stimuli, and diminished positive and

negative emotional responses, all of which can transfer information

about depression levels (Cohn et al., 2009; Michalak et al.,

2009; Canales et al., 2017). Especially, the face presents most

of the people’s non-verbal information, which leads to that

as a characteristic indicator with high information content in

the diagnosis of depression. Clinically, patients with depression

often have reduced facial expression richness, drooping eyes,

frowning, drooping mouth corners, reduced smile, and easy crying

(Pampouchidou et al., 2020). Therefore, various researchers from

the affective computing field have attempted to use facial changes

as a biomarker to analyze the individual depression level and

measured by the Beck Depression Inventory-II (BDI-II) score

(McPherson and Martin, 2010), as presented in Table 1.

Estimating the level of depression from facial images usually

includes the following steps: (1) feature extraction and (2)

regression (or classification). Among them, the task of feature

extraction involves designing an effective depression representation

that plays a significant role in facial depression recognition. At

present, there are two main methods of feature extraction as

follows: hand-crafted (Valstar et al., 2013, 2014; Wen et al., 2015)

and deep-learned (Jan et al., 2017; Zhu et al., 2017; Al Jazaery

and Guo, 2018; Zhou et al., 2020; Guo et al., 2021). For hand-

crafted features, Local Phase Quantization (LPQ) and Local

Gabor Binary Patterns from Three Orthogonal Planes (LGBP-

TOP) are adopted as visual features for predicting the scale of

depression (Valstar et al., 2013, 2014). However, these features

are difficult to obtain accurate and subtle facial information

(Song et al., 2018). Meanwhile, hand-crafted methods often

involve a complex set of image processing steps, leading to

relying heavily on expert knowledge (Ojala et al., 2002; Laptev

et al., 2008; Meng and Pears, 2009). On the contrary, deep

learning features do not rely on expert knowledge and complex

manual design, which can capture and reveal high-level semantic

features of faces. Zhou et al. (2020) propose a deep regression

network to learn a depressive feature representation visually

interpretably, and the result shows that the area near the

eyes plays a crucial role in recognizing depression. Al Jazaery

and Guo (2018) have automatically learned spatiotemporal

features of facial regions at two different scales by using

three-dimensional convolutional neural network (3D-CNN) and

recurrent neural network (RNN), which can model the local

and global spatiotemporal information from continuous facial

expressions to predict depression levels.

However, most of the above methods do not further explore

the local details. One unique aspect of facial depression recognition

lies in the delicate contention between capturing the subtle local

variations and obtaining a unified, holistic representation. Some

recent studies focus on attention mechanisms to balance the

local details and unified, holistic representation. For instance,

He et al. (2021a) propose an integrated architecture called Deep

Local-Global Attention Convolutional Neural Network (DLGA-

CNN), which utilizes Convolutional Neural Network (CNN)

with attention mechanism and weighted spatial pyramid pooling

(WSPP) to model a local-global facial feature. Liu et al. (2023)

design a global region-based network with part-and-relation

attention, which learns the relation between part and global

features. Niu et al. (2022) introduce an architecture using CNN

and attention mechanism for automatic depression recognition

by facial changes, and the performance surpasses most facial

depression recognition methods. These methods focusing on

attention mechanisms have achieved promising results by paying

attention to facial details. Nevertheless, as shown in Figure 1,

it is difficult for a model with only a single attention head to

concentrate on various parts of the face simultaneously and just

concentrate on one coarser image region, missing other important

facial locations. Existing research results show that the differences

in facial changes between depressed patients and healthy people

are simultaneously manifested in multiple parts of the face

(Schwartz et al., 1976; Scherer et al., 2013), such as eyebrows, eyes,

cheeks, and mouth. Therefore, to mitigate the problems mentioned

above, we propose a Hybrid Multi-Head Cross-Attention Network

(HMHN), which implements multiple attention mechanisms to

capture the high-order interactions between the local features

of multiple facial regions by instantiating multiple attention

heads.

More specifically, as shown in Figure 2, the HMHN consists

of four components as follows: (1) Grid-Wise Attention Module

(GWA), (2) Deep Feature Fusion Block (DFF), (3) Multi-head

cross Attention Block (MAB), and (4) Attention Fusion Block

(AFB). Concretely, GWA and DFF are designed to model the

long-range dependencies among different regions of the low-

level facial image. Next, MAB further measures the high-level

detail features from multiple facial regions by combining multiple

attention heads, consisting of spatial and channel attention. At

the same time, the AFB module makes the attention maps

extracted by the MAB focus on different regions, which enables

the HMHN to capture several depression-related face regions

simultaneously. Finally, AFB outputs the depression severity (BDI-

II Score).

The main contributions of this study can be summarized as

follows:
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FIGURE 1

Example cases of visualization facial images with di�erent cross-attention head. The first column is original facial images (BDI-II scores of 3, 16, and

44 from top to bottom), and the rest of the columns are generated by four cross-attention heads from HMHN.

• We propose an integrated end-to-end framework HMHN,

which effectively captures the facial dynamics information

from multi-region as a non-verbal behavior measure for

estimating the severity of depression scale.

• To regularize the convolutional parameter learning in the low-

level feature extraction for facial depression recognition, we

design grid-wise attention and DFF block, which can model

long-range dependencies between different facial regions.

• To address the problem that a single attention module cannot

adequately capture the subtle depression features of faces,

we propose MAB and AFB. On the one hand, MAB further

extracts high-level detail features. On the other hand, AFB

is designed to capture multiple non-overlapping attention

regions and fuse them to encode high-order interactions

among local features.

• We conduct the compared experiments on two publicly

benchmark depression datasets [i.e., AVEC 2013 (Valstar

et al., 2013) and AVEC 2014 (Valstar et al., 2014) depression

datasets]. The results demonstrate that our method is

promising against several state-of-the-art alternative methods.

Moreover, we also do an ablation study that specifically

demonstrates the effectiveness of each component in our

model.

The structure of the remaining chapters is provided as follows.

We, first, briefly discussed the related work in Section 2, and the

proposed depression recognition method is described in Section 3.

Section 4 demonstrates the dataset and experimental settings. The

results and discussions are presented in Section 5, and Section 6

concludes the study.

2. Related work

2.1. Hand-engineered methods

In the third and fourth Audio-Visual Emotion recognition

Challenge depression sub-challenges (AVEC 2013/14), the datasets

for depression level prediction are publicly released, which

contributed notably to research on automatic depression detection.

In the AVEC 2013 depression sub-challenges, they use the Local

Phase Quantization (LPQ; Ojansivu and Heikkilä, 2008) feature

descriptor as visual features to predict the BDI-II score. Cummins

et al. (2013) investigate Space-Time Interest Points (STIP; Laptev

et al., 2008) and Pyramid of Histogram of Gradient (PHOG;

Bosch et al., 2007) descriptors for extraction of behavioral cues

for depression analysis. Meng et al. (2013) propose to use Motion

History Histogram (MHH) feature (Meng and Pears, 2009) to

model motion in videos by improving the Motion History Image

(MHI) in the field of action recognition, and the Partial Least

Squares (PLS; De Jong, 1993) is employed for regression learning.

Wen et al. (2015) propose to encode temporal information based

on Local Phase Quantization from Three Orthogonal Plane (LPQ-

TOP) features from sub-volumes of the facial region through

discriminative mapping and decision fusion, and the recognition

performance is further improved. The following research on the

AVEC 2013 dataset relies on Median Robust Local Binary Patterns

from Three Orthogonal Planes (MRLBP-TOP; He et al., 2018)

and Local Second-Order Gradient Cross Pattern (LSOGCP; Niu

et al., 2019). In the AVEC 2014 depression sub-challenges, the

author extracted the Local Gabor Binary Pattern (LGBP; Zhang

et al., 2005) feature from the XY-T place of video to predict the
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BDI-II score. In the study by Dhall and Goecke (2015), Local

Binary Patterns (LBP) from three orthogonal plane (TOP) feature

descriptors have been considered effective for predicting the scale

of depression. In the study by Pérez Espinosa et al. (2014), they use

dynamic facial features extracted by LGBP from Three Orthogonal

Planes (LGBP-TOP) to predict depression level, another variant of

LBP-TOP.

The above methods based on hand-crafted feature descriptors

have some positive results in the field of depression recognition.

However, they still have some limitations. For instance, hand-

crafted features are highly dependent on expert knowledge and

cannot extract complex semantic information.

2.2. Deep learning methods

As deep networks can extract deeper andmore spatial inductive

biases information, deep learning methods have gained their

prevalence in facial depression recognition tasks. According to

combined facial appearance with dynamic features (optical flow)

in fully connected layers, Zhu et al. (2017) fine-tune to adopt

deep models (GoogleNet), pre-trained on the CASIA (Yi et al.,

2014) large facial dataset for predicting BDI scores from video

data, and achieve positive performance on AVEC 2013 and AVEC

2014 depression datasets. Zhou et al. (2020) propose a multi-region

DepressNet neural network by blending different facial regions

on the basis of ResNet-50 (He et al., 2016), proving that the

combination of multiple sub-models can improve the performance

of depression recognition. In the study by De Melo et al. (2019),

Melo et al. adopt a 2D-CNN and distribution learning to predict the

BDI-II score from facial images. Similarly, many of the following

works using pre-trained CNNs fine-tune their deep architectures

on the AVEC 2013 and AVEC 2014 datasets to estimate and

prediction (e.g., Kang et al., 2017; De Melo et al., 2020; He

et al., 2022a). He et al. (2021a) combine the attention mechanism

with CNN to construct an end-to-end depression recognition

model named LGA-CNN. He et al. (2022b) also designed an

end-to-end framework called the SAN to re-label the uncertain

labels for automatic depression estimation. Niu et al. (2022)

utilize a pre-trained ResNet-50 model to process video clips. They

employed a graph convolution embedding block and a multi-scale

vectorization block to capture and represent facial dynamics for

predicting BDI-II scores, which reflect the severity of depression.

Liu et al. (2023) propose an end-to-end depression recognition

model called PRA-Net. They divide the input facial images into

parts and calculate the feature weight of each part. Then, they

combine the parts using a relation attention module. PRA-Net

utilizes part-based and relation-based attention mechanisms to

improve the model’s performance.

To extract depression cues from the perspective of spatial

structure and temporal changes, various studies have been

proposed to model spatio-temporal information for depression

recognition. Al Jazaery and Guo (2018) have automatically learned

spatio-temporal features of face regions at two different scales by

using 3D Convolutional Neural Network (C3D) and Recurrent

Reural Network (RNN), which can model the local and global

spatio-temporal information from continuous facial expressions to

predict depression levels. De Melo et al. (2020) designed a novel

3D framework to learn spatio-temporal patterns by combining

the full-face and local regions. Uddin et al. (2020) introduce a

new two-stream network to model the sequence information from

video data. In addition, the 3D-CNN is also used in the study by

De Melo et al. (2021) and He et al. (2021b) to capture informative

representations for analyzing the severity of depression. In contrast

to the above methods, our HMHN achieves comparable results

using only facial visual information.

As mentioned above, the existing approaches extract high-level

representations of depression cues through CNN, but there are still

some problems. First, most of these depression estimation methods

are not end-to-end schemes, which increases the difficulty of

clinical application. Second, most of these models do not consider

convolutional filters’ properties in different feature learning stages.

This would generally lead the model to pay attention to a single

rough area of the face while ignoring other important areas

contributing to depression identification. Therefore, to address

these problems, we propose amulti-stage hybrid attention structure

that considers the long-range inductive biases in low-level feature

learning and high semantic feature representation. Multiple non-

overlapping attention regions could be activated simultaneously

to capture fined-grain depression features from different facial

regions. Experimental results on AVEC 2013 and AVEC 2014

depression datasets illustrate the effectiveness of our method.

3. Methodology

3.1. Framework overview

The proposed end-to-end depression recognition framework

HMHN is presented in Figure 2. To learn high-discriminative

attentional features with facial depression details, we first extract

the long-range biases between different facial regions by GWA

and DFF. Second, the MAB takes the features from the DFF

module as input and captures several facial regions with depression

information. Then, the AFB module attempts to train these

attention maps (i.e., outputs from the MAB module), to focus on

non-coincident facial areas and merge these attention maps, which

predicts the BDI-II score. In the following, we will describe each

component in HMHN detail.

3.2. Grid-wise attention

To learn long-range bias in low-level feature extraction of facial

images and mine discriminative features with facial depressive

patterns without relying on large-scale datasets, motivated by

Huang et al. (2021), we introduce the grid-attention mechanism,

which mainly includes two parts, local grid feature extraction and

grid-wise attention calculation. The details are presented in the

following sections.

3.2.1. Local grid feature extraction network
The facial images are cropped and aligned according to their

eye positions and resized to 224 × 224 × 3 by the machine
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TABLE 2 The configuration of local grid feature extraction network.

Input Operator Kernel Output

C × H
h
× W

w
Convolution 1× 1, Stride 1 (Ck)× H

h
× W

w

Ck× H
h
× W

w
BatchNorm / (Ck)× H

h
× W

w

Ck× H
h
× W

w
LeakyRelu / (Ck)× H

h
× W

w

Ck× H
h
× W

w
Convolution 1× 1, Stride 1 C × H

h
× W

w

C × H
h
× W

w
BatchNorm / C × H

h
× W

w

C × H
h
× W

w
LeakyRelu / C × H

h
× W

w

learning toolkit Dlib (King, 2009). Then, it divided into h×w grids

before being forwarded to the local grid feature extraction network

(LGFE), to extract the depression discrimination information in

each grid. The details are as follows:

Grid(g, h,w) =

{
g
C×H

h
×W

w
1,1 , . . . , g

C×H
h
×W

w
i,j , . . .

}
(1)

Ĝ
hw×C×H

h
×W

w = LGFE

(
ghw×C×H

h
×W

w

)
, (2)

Ĝi,j = LGFE
(
gi,j
)

(3)

where H, W, and C are the height, width, and channels of the

original image, respectively. g
C×H

h
×W

w
i,j represents that the input

image g is divided into h × w grids, every grid is with a shape of

C × H
h
× W

w and locates in the i th row and the j th column in

g. Next, as shown in the Equations (2) and (3), each grid will be

forwarded to the LGFE, and the local depression feature of the facial

region learned is defined as Ĝi,j.We believe that every grid features a

respective contribution to depression recognition. Therefore, these

feature maps are forwarded to the grid-wise attention calculation

to weight their importance. The structure of the LGFE is shown in

Table 2.

3.2.2. Grid attention calculation
To better extract the depressive features of facial regions, after

the LGFE block, the relationship between different facial regions is

constructed through grid attention calculation, which is defined as

follows:

Attq,k = δ

(
q · k

dk

)
(4)

where dk = W
w , q = Ĝ

hw×C×H
h
×W

w , and k = Ĝ
hw×C×W

w ×H
h , and δ

stand for the softmax operation.

Then, the adaptive average pooling is used to squeeze each

channel into a scalar after an attention mechanism and expand the

channel back to the original shape. The process is formulated as

follows:

G̃
hw×C×H

h
×W

w = Aavp
(
Attq,k

)
∗ Ones

(
H

h
,
W

w

)
(5)

where “∗” represents the scalar matrix product between matrices

with a broadcasting property. Aavp (·) denoted an adaptive average

pooling technique that converts an operandmatrix into a scalar and

Ones
(
H
h
, Ww

)
is to generate a matrix with all elements being equal

to 1 in the shape of
(
H
h
, Ww

)
.

G̃
C×H×W = Ungrid

(
G̃
hw×C×H

h
×W

w

)
∗ gC×H×W (6)

where Ungrid (·) is the reverse operation of Equation (1), which is

used to convert these grid attention maps back to the shape of the

original facial image and concat these weights back to the shape of

the original matrix.

Thus, the resulting G̃C×H×W is a feature map that takes into

account the long-range bias between different facial regions in the

low-level visual depression feature learning stage.

3.3. Deep feature fusion

To further extract the depressive features of the face, we fuse

the features between the original image g and the weighted feature

map G̃ of the backbone network by applying residual network

technology. In particular, based on the experimental results in

Section 5, we choose to remove the average pooling, flattening,

and fully connected layer from ResNet-18 (He et al., 2016) as the

backbone. The overall structure of the deep feature fusion block is

shown in Figure 3. It mainly includes two feature transformation

networks and one feature fusion network. These two feature

transformation networks share the structure but not the learning

parameters. The mathematical definition is as follows:

Ḡ
C×H×W = DFF(FT1

(
g
)
+ FT2

(
G̃
)
) (7)

where FTi (·) (i=1,2) is the feature transformation network of the

original facial image g and the weight feature G̃ extracted from the

GWA module, respectively. DFF denotes the deep feature fusion

network. Finally, the obtained feature map ḠC×H×W is forwarded

to the candidate backbone network.

3.4. Multi-head cross attention block

Facial depression behavior is usually manifested by multiple

facial regions simultaneously. The GWA module first extracts the

low-level local features of the face in HMHN. Then, we need

to encode the high-level interactions between local features by

multi-head cross-attention block to achieve a holistic approach.

The detailed structure of the MAB block is shown in Figure 4.

It is composed of parallel cross-head attention units, which are

combinations of spatial and channel attention units that remain

independent.

More concretely, The spatial attention unit is shown in the

left part of Figure 4. We first feed the input features into the

1 × 1 convolution layer to reduce the channel number. Next,

we construct the 3 × 3, 1 × 3, and 3 × 1 convolution kernels

to efficiently capture spatial relationships. In general, the spatial

attention unit consists of four convolution layers and one activation

function to capture local features at multiple scales. The channel

attention unit shown in the right part of Figure 4 consists of two

linear layers and one activation function. We take advantage of
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FIGURE 2

The framework of HMHN. Notations: ① Local Grid Feature Extraction, ② Grid-Wise Attention Calculation, ③ Deep Feature Fusion Block, ④ Multi-head

cross Attention Block, and ⑤ Attention Fusion Block. DFF, deep feature fusion block; FTi, feature transformation network in DFF; MAB, multi-head

cross attention block; AFB, attention fusion block.

FIGURE 3

The detailed illustration of the deep feature fusion block.

two linear layers to achieve a mini autoencoder to encode channel

information.

Mathematically, the above process can be formulated as follows:

Si = Ḡ ×Hi

(
θs, Ḡ

)
, i ∈ {1, k} (8)

Ci = Si ×H′
i (θc, Si) , i ∈ {1, k} (9)

where k is the number of cross attention heads. Hi and H′
i are

defined as the spatial attention head and the channel attention head,

respectively, θs and θc are their parameters. Si and Ci represent the

output of the i-h spatial attention and channel attention, separately.

3.5. Attention fusion block

After going through several modules above, our HMHN has

been able to capture subtle facial depression features, but the

multi-head construction could not learn attention maps in an

orchestrated fashion. In other words, we hope that different

branches can focus on different facial regions as much as possible

and fuse the depression feature information of each head. To

achieve this aim, we propose that the AFB enhance further the

features learned by MAB. In the meantime, the cross-attention

heads are supervised to center on different critical regions and avoid

overlapping attention using the partition loss, which is defined as

follows:

Lsum = Latt + Lmse (10)

Latt =
1

NC

N∑

i=1

C∑

j=1

log

(
1+

k

σ 2
ij

)
(11)

This loss contains two components, where Lmse is the square

loss for regression and Latt is partition loss to maximize the

variance among the attention maps, k is the number of cross

attention, N is the number of samples, C is the channel size of the

attention maps, and σ 2
ij is denoted the variance of the j-th channel

on the i-th sample. The merged attention map is then used for

computing the BDI-II score with a regression output layer. Finally,

we learn the deep discriminative features by jointly minimizing the

unified loss functions Lsum.
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FIGURE 4

The detailed illustration of the cross attention head.

TABLE 3 Ablation study of the individual components on the test set of

AVEC 2013.

Combination Evaluation metrics

MAE RMSE

A1: Resnet18 (backbone) 8.47 9.32

B1: Resnet18+GWA 7.68 8.31

C1: Resnet18+GWA+DFF 7.49 8.29

D1: Resnet18+MAB+AFB 6.88 7.91

E1:

Resnet18+DFF+GWA+MAB+AFB

(Ours)

6.05 7.38

4. Experiments

In order to demonstrate the effectiveness of our depression

recognition approach, we conducted experiments on two publicly

available datasets, namely AVEC 2013 and AVEC 2014. Compare

our performance with start-of-the-art methods, and demonstrate

the effectiveness of each component in our model by an ablation

TABLE 4 Ablation study of the individual components on the test set of

AVEC 2014.

Combination Evaluation metrics

MAE RMSE

A2: Resnet18 (backbone) 8.38 9.13

B2: Resnet18+GWA 7.57 8.47

C2: Resnet18+GWA+DFF 7.41 8.46

D2: Resnet18+MAB+AFB 6.90 8.13

E2:

Resnet18+DFF+GWA+MAB+AFB

(Ours)

6.01 7.60

The bold values indicate the best results.

study. This section presents a description of the dataset, data

pre-processing, experimental setting and evaluation metrics.

4.1. AVEC 2013 and AVEC 2014 datasets

In the present paper, all experiments are evaluated on AVEC

2013 and AVEC 2014 depression datasets. The distribution of the
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FIGURE 5

The distribution of BDI-II scores in the AVEC 2013 and AVEC 2014

datasets.

BDI-II scores in both the AVEC 2013 and AVEC 2014 datasets is

shown in Figure 5.

For the AVEC 2013 depression dataset, there are 150 video

clips recorded by 82 subjects participating in human-computer

interaction (HCI) task with a microphone and a webcam to record

the information. The age range for all subjects in the dataset is

18–63 years old, with an average age is 31.5 years old and a

standard deviation of 12.3 years. These video recordings are set to

30 frames per second (fps) with a resolution of 640 × 480 pixels.

This depression dataset has been divided into three partitions by

the publisher, i.e., training, development, and test set. For every

partition, it has 50 videos, and each video has a label corresponding

to its depression severity level, which is assessed based on the

BDI-II questionnaire.

The AVEC 2014 depression dataset is a subset of the AVEC 2013

dataset. There are two tasks included: FreeForm and Northwind,

both of which have 150 video clips. Specifically, in the “FreeForm”

task, the subjects responded to several questions, such as describing

a sad childhood memory or saying their favorite dish. In the

“Northwind” task, the subjects are required to read an excerpt

audibly from a fable. The same as AVEC 2013, it also has three

partitions, i.e., training, development, and test sets. We perform

experiments employing training and development sets from both

tasks as training data, and the test sets are used to measure the

performance of the model.

4.2. Experimental settings and evaluation
metrics

4.2.1. Experimental settings
The overall framework of HMHN is shown in Figure 2. A

machine learning toolkit DliB (King, 2009) is adopted to resize the

generated facial images to 224 × 224 with RGB color channels.

Instead of using a pre-trained architecture to predict depression

severity, we directly train the whole framework in an end-to-end

fashion. To be specific, our experimental code is implemented with

Pytorch (Paszke et al., 2019), and the models are trained on a local

GPU server with a TESLA-A100 GPU (40 G global memory). In

FIGURE 6

The performance of the HMHN architecture in terms of RMSE and

MAE for various sizes of cross-attention head on AVEC 2013 (A) and

AVEC 2014 (B) datasets.

order to obtain fast convergence, we use the AdamW (Loshchilov

and Hutter, 2017) optimizer with an adaptive learning rate strategy,

and its initial learning rate is 0.001, The batch size is 64, the dropout

rate is 0.2, and the learning factor is set to 0.1.

4.2.2. Evaluation metrics
The performance of the baseline models is assessed on AVEC

2013 and AVEC 2014 datasets in terms of two evaluation metrics—

Mean Absolute Error (MAE) and RootMean Square Error (RMSE).

Afterward, many researchers have been adopting these two metrics

to evaluate the prediction accuracy of their works. This study also

regards RMSE and MAE as the metrics during testing to make an

equitable comparison, which details are defined as:

MAE =
1

M

M∑

j=1

∣∣∣ℓ̂j − ℓj

∣∣∣ (12)

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1188434
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1188434

FIGURE 7

Recognition results of di�erent grid parameters of the HMHN model

on the AVEC 2013 (A) and AVEC 2014 (B) datasets.

RMSE =

√√√√ 1

M

M∑

j=1

(
ℓ̂j − ℓj

)2
(13)

where M is the total number of video samples, ℓj and ℓ̂j are the

ground truth and the predicted BDI-II score of the j-th subject,

respectively.

5. Experimental results and discussion

In this section, we first perform an ablation study to

examine the effectiveness of individual components in the propose

framework. Then, we compare the architecture with several state-

of-the-art vision-based depression analysis methods to show its

promising performance.

5.1. Ablation study

In order to verify the effectiveness of the proposed HMHN,

we carry out the ablation studies on AVEC 2013 and AVEC 2014

datasets to assess the efficacy of critical components in our method.

The results are shown in Tables 3, 4. Specifically, Resnet18+GWA

(B1,B2) outperforms the backbone network (A1,A2) on both

datasets owing to GWA can learn long-range bias in low-

level features of facial images. D1 and D2 are improved by

MAB and AFB, which capture multiple non-overlapping attention

simultaneously. E1 and E2 integrate all modules, yielding better

results than using them separately. This observation demonstrates

that the multi-stage attention mechanism performs better than

the one-stage attention mechanism. The prediction accuracy of

depression level can be effectively improved by encoding the low-

level to high-level interactions between depression discriminative

features of multiple facial regions.

5.2. Number of the cross attention heads

We opt different numbers of cross-attention heads to observe

their effect on the depression recognition performance of the

model, allowing us to select an optimal cross-attention head size.

The results are shown in Figure 6, where the lines with different

colors represent the two evaluation metrics, RMSE and MAE,

respectively. The top and bottom figures indicate experimental

results on two different datasets, AVEC 2013 and AVEC 2014. It

is apparent that the increasing number of layers does not imply

an improvement in the performance, and equipping four cross-

attention heads maximizes the model’s performance. It is probably

related that facial depression recognition is affected by multiple

facial regions. The single attention head cannot sufficiently capture

all the subtle and complex appearance variations, while too many

attention heads make the attention regions overly distributed.

As shown in Figure 6, our method explicitly learns to attend to

multiple local image regions for facial depression recognition.

5.3. Impact of the grid size

We examine the impact of grid parameters on the model’s

performance, as evidenced in Figure 7. Our findings indicate that

utilizing a grid strategy generally leads to improved performance

over not using a grid strategy. The Grid(3 × 3) achieves the best

results among the tested grid parameters, with an MAE of 6.05 and

an RMSE of 7.38 on the AVEC 2013 dataset, and MAE = 6.01 and

RMSE = 7.60 on the AVEC 2014 dataset. This phenomenon may be

related to the spatial position and size of the grid, as an overly large

or small grid size may limit the expression ability of the receptive

field and interfere with the acquisition of depression information

across facial regions.
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TABLE 5 Kernel size of separable convolution on AVEC 2013 and AVEC 2014 datasets.

Kernel settings Params(M) AVEC 2013 AVEC 2014

MAE RMSE MAE RMSE

Standard Conv 29.33 6.07 7.43 6.09 7.66

(1× 7, 7× 7, 7× 1) 26.57 6.16 7.49 6.19 7.78

(1× 5, 5× 5, 5× 1) 22.63 6.14 7.51 6.12 7.71

(3× 1, 1× 3) 17.78 6.21 7.56 6.27 7.83

(3× 3, 1× 3, 3× 1) 19.72 6.05 7.38 6.01 7.60

The bold values indicate the best results.

5.4. Kernel size of separable convolutions

We conduct experiments to evaluate the effect of separable

convolutions in MAB modules. We test standard convolutions and

separable convolutions with different kernel sizes. According to

our experimental results, as shown in Table 5, using a separable

convolution model with a smaller kernel size (1 × 3, 3 × 3, 3 × 1)

performs better than using a larger kernel size such as (1× 7, 7× 7,

7 × 1) and (1 × 5, 5 × 5, 5 × 1). In addition, we also find that

separable convolutions can achieve similar performance with fewer

parameters than standard convolutions. For example, on the AVEC

2013 dataset, the MAE of the separable convolution model with

convolution kernel sizes (1× 3, 3× 3, 3× 1) is 6.05, and the RMSE

is 7.38. Compared with using standard convolution, the number of

separable convolution parameters is reduced by 32.8%.

5.5. Comparison with state-of-the-art
methods

In order to further demonstrate the depressive recognition

performance of the proposed model, We present the quantitative

performance comparison results in Tables 6, 7 for AVEC 2013 and

AVEC 2014, respectively. Specifically, models in Valstar et al. (2013,

2014), Wen et al. (2015), He et al. (2018), and Niu et al. (2019) are

based on hand-crafted representations. Our method outperforms

all other methods, mainly because hand-crafted features rely on

researchers’ experiences, and it is difficult to characterize depression

cues fully. At the same time, our HMHN uses deep neural networks

and the multi-attention stage mechanism, which can capture

complete semantic information, thereby improving the prediction

performance.

For the methods using deep neural networks, Zhu et al. (2017),

Al Jazaery and Guo (2018), Zhou et al. (2020), and He et al. (2022a)

train the deep models on a large dataset and then fine-tune on

the AVEC 2013 and AVEC 2014 datasets. HMHN is an end-to-

end scheme for depression recognition and achieves an impressive

performance even without a pre-trained model on other large-scale

datasets. As shown in Tables 6, 7, we achieve the best performance

among end-to-end methods on the AVEC 2013 (MAE = 6.05,

RMSE = 7.38) andAVEC 2014 (MAE= 6.01, RMSE = 7.60) datasets.

We also achieve the second-best performance compared to other

methods pre-trained on large-scale datasets. Specifically, Zhou et al.

(2020) propose a CNN-based visual depression recognition model

by roughly dividing the facial region into three parts and then

combined with the overall facial image to improve the recognition

performance of the model. Our better performance is due to the

multi-stage attention mechanism for the extraction of depressive

features, and Zhou et al.’s visualization results show that their

model focuses attention on only one region and ignores other

facial details that contribute to depression recognition. In contrast,

He et al. (2021a) achieves a passable performance without a pre-

trained model. The authors divide the facial region by facial

landmark points, then block the feature map to extract local feature

information. Finally, the feature aggregation method is used to

automatically learn the facial region’s local and global feature

information. He et al. (2021b, 2022b) and Liu et al. (2023) are also

end-to-end methods. Our HMHN outperforms those methods by

a significant margin. One important reason is that we consider

the long-range inductive biases in both low-level feature learning

and high-semantic feature representation. At the same time, Niu

et al. (2022) improve the prediction accuracy of depression levels

by investigating the correlation between channels and vectorizing

the tensors along the time and channel dimensions. De Melo

et al. (2020) to encode the smooth and sudden facial expression

variations to assess individual BDI-II scores. These two methods

model the spatio-temporal information of facial regions; our

propose is trained from scratch using only facial visual information

and achieves comparable results.

5.6. Visual analysis

In order to intuitively observe how the model predicts

depression scores from facial images, we present the visualized

facial images with different cross-attention heads in Figure 1.

The first column of Figure 1 shows the original images, and the

second to fifth columns represent the attention regions of different

cross-attention heads. The heatmap in the faces is the focus area

learned by the model. Our model can attend to multiple locations

simultaneously before fusing the attention maps. Our HMHN

model specifically focuses on the facial muscle movement regions

related to depression, such as the mouth, eyebrows, and eyes, while

suppressing irrelevant regions.

6. Conclusion

In this paper, an end-to-end two-stage attention mechanism

architecture named HMHN for predicting an individual’s

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1188434
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1188434

TABLE 6 Depression level prediction performance compared with

di�erent methods on the AVEC 2013 test set.

Category Methods MAE RMSE

Pre-trained Valstar et al. (2013)/LPQ 10.88 13.61

Cummins et al.

(2013)/PHOG

/ 10.45

Wen et al.

(2015)/LPQ-TOP

8.22 10.27

He et al.

(2018)/MRLBP-TOP,

DPFV

7.55 9.20

Niu et al.

(2019)/LSOGCP

6.97 9.17

Zhu et al. (2017)/Optical

Flow, 2D-CNN

7.58 9.82

Al Jazaery and Guo

(2018)/C3D, RNN

7.37 9.28

De Melo et al.

(2019)/ResNet-50

6.30 8.25

Zhou et al.

(2020)/2D-CNN

6.20 8.28

De Melo et al.

(2020)/Two-Stream

5.96 7.97

Uddin et al.

(2020)/LSTM

7.04 8.93

De Melo et al.

(2021)/MDN

6.59 8.39

Niu et al.

(2022)/2D-CNN

6.12 7.49

He et al.

(2022a)/2D-CNN

7.36 9.17

End-to-end He et al.

(2021a)/2D-CNN,

Attention

6.59 8.39

He et al.

(2021b)/3D-CNN

6.83 8.46

He et al.

(2022b)/2D-CNN

7.02 9.37

Liu et al.

(2023)/2D-CNN,

Attention

6.08 7.59

Ours 6.05 7.38

The bold values indicate the best results.

depression level by facial images is proposed. HMHN can focus

on multiple depression feature-rich areas of the face yet is

remarkably capable of recent works in recognition. Specifically,

this model mainly includes four blocks: the grid-wise attention

block (GWA), deep feature fusion block (DFF), multi-head cross

attention block (MAB), and attention fusion block (AFB). GWA

and DFF are the first stages to capture the dependencies among

different regions from a facial image in a way that the parameter

learning of convolutional filters is regularized. In the second

stage, the MAB and AFB block is composed of parallel cross-head

attention units, which combine spatial and channel attention

TABLE 7 Depression level prediction performance compared with

di�erent methods on the AVEC 2014 test set.

Category Methods MAE RMSE

Pre-trained Valstar et al.

(2014)/LGBP-TOP

8.86 10.86

Dhall and Goecke

(2015)/LBP-TOP

7.08 8.91

He et al.

(2018)/MRLBP-TOP,

DPFV

7.21 9.01

Niu et al.

(2019)/LSOGCP

7.19 9.10

Zhu et al. (2017)/Optical

Flow, 2D-CNN

7.47 9.55

Al Jazaery and Guo

(2018)/C3D, RNN

7.22 9.20

De Melo et al.

(2019)/ResNet-50

6.13 8.23

Zhou et al.

(2020)/2D-CNN

6.21 8.39

De Melo et al.

(2020)/Two-Stream

6.20 7.94

Uddin et al.

(2020)/LSTM

6.86 8.78

De Melo et al.

(2021)/MDN

6.06 7.65

Niu et al.

(2022)/2D-CNN

6.01 7.56

He et al.

(2022a)/2D-CNN

7.26 9.03

End-to-end He et al.

(2021a)/2D-CNN,

Attention

6.51 8.30

He et al.

(2021b)/3D-CNN

6.78 8.42

He et al.

(2022b)/2D-CNN

6.95 9.24

Liu et al.

(2023)/2D-CNN,

Attention

6.04 7.98

Ours 6.01 7.60

The bold values indicate the best results.

units to obtain final facial depression features bbsy encoding

higher-order interactions between local features. Experimental

results on AVEC 2013 and AVEC 2014 depression datasets

show the effectiveness of video-based depression recognition of the

proposed framework when compared withmost of the state-of-the-

art approaches.

In the future, we will collect and build a dataset with

more depression patients to learn more robust feature

representations from the images of diverse appearances. In

addition, investigation of the multi-modal (audio, video, text, etc.)

depression representation learning appears to be an attractive

topic.
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