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Background: Neurosteroids have recently gained in interest as a treatment 
strategy for affective disorders. Etifoxine is known for its dual mode of action, one 
of which is to stimulate endogenous neurosteroid synthesis. The gut microbiome 
has been studied in affective disorders, but it has not been investigated in the 
context of human etifoxine or neurosteroid interventions.

Methods: We performed a crossover study with 36 healthy male volunteers who 
received etifoxine versus alprazolam and placebo in a balanced Williams design. 
Participants were randomized into six sequences and went through three 5-day 
treatments followed by wash-out phases of 9 days. Bacterial compositions in stool 
samples were determined by high-throughput 16S rRNA amplicon sequencing.

Results: Gut microbiome analyses revealed no relevant effects between treatments 
with respect to alpha and beta diversity. Differential abundance analyses yielded 
etifoxine treatment as the only effect related to changes in microbial features with 
reductions of Faecalibacterium duncaniae, Roseburia hominis and Lactobacillus 
rogosae (i.e., Bacteroides galacturonicus).

Conclusion: Here we report on the first human investigation of the gut microbiome 
with short-term etifoxine intervention. Differences in diversity and compositional 
structure of the microbiome were more likely due to between- subject effects 
rather than medication. However, five-day treatment with etifoxine reduced 
the abundance of a few bacterial species. These species are currently seen as 
beneficial components of a healthy intestinal microbiome. This reduction in 
abundances may be related to elevated endogenous neurosteroids.
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Introduction

Neurosteroids (Corpéchot et al., 1981; Robel and Baulieu, 1985) have gained in attention 
for their therapeutic potential in treating affective disorders such as clinical depression or 
postpartum depression (Gunay and Pinna, 2022). They are physiological members of the 
steroidome, which are predominantly produced by the nervous system. They are potent positive 
allosteric modulators at GABA-A receptors (Hosie et  al., 2006). One such neurosteroid, 
allopregnanolone (Paul et al., 2020) and its intravenous and oral formulations, brexanolone and 
zuranolone, respectively, have recently drawn particular interest for their potential in treating 
depression (Gunduz-Bruce et al., 2019; Clayton et al., 2023).
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Etifoxine is a benzoxazine derivative that has been used to treat 
anxiety disorders since the 1970s (Boissier et al., 1972; Cottin et al., 
2016; European Medical Agency, 2022). Its primary 
pharmacodynamics are currently regarded as two independent effects 
on the GABA-A receptor that lead to GABA transmission. It acts 
directly as a positive allosteric modulator (Schlichter et al., 2000), but 
affects different subunits than benzodiazepines (Mattei et al., 2019). 
Additionally, it stimulates endogenous neurosteroid synthesis yielding 
increased levels of pregnenolone, progesterone and allopregnanolone 
in the brain (Verleye et al., 2005; do Rego et al., 2015).

Etifoxine is the only clinically approved ligand for the translocator 
protein 18 kDa (TSPO) thus far (Rupprecht et al., 2022). Its affinity to 
TSPO is in the micromolar range (Verleye et al., 2005; Costa et al., 
2017; Owen et al., 2022), which is around a factor of 1,000 lower than 
selective TSPO ligands such as PK11195 (Benavides et al., 1983) or 
XBD173 (Kita et  al., 2004; Owen et  al., 2011). TSPO has been 
hypothesized to be  a significant mediator in endogenous 
neurosteroidogenesis (Schlichter et al., 2000). However, independent 
TSPO-knockout models (Banati et al., 2014; Morohaku et al., 2014) 
were viable and showed no obvious phenotypic abnormalities. Most 
importantly, their steroid biosynthesis was nearly unchanged. 
Moreover, etifoxine can exert its neurosteroidogenic effects 
independently of TSPO as demonstrated in blocking studies (Verleye 
et al., 2005; do Rego et al., 2015; Tu et al., 2015) with TSPO ligand 
PK11195. The corresponding pathways, however, still remain to 
be elucidated. For future studies, this also involves the study of TSPO 
expression and function in human tissue samples like brain tissue 
derived from brain tumors, or during other necessary neurosurgical 
interventions, or from post mortem material.

Alterations in the gut microbiome along the microbiota-gut-brain 
axis (Dinan and Cryan, 2012) in affective disorders such as depression 
are common (Diaz Heijtz et al., 2011; Bastiaanssen et al., 2020; Han 
et al., 2022). They may be caused by a multitude of possible influences 
including direct interactions via the vagus nerve and the enteric 
nervous system, overregulation of the hypothalamic–pituitary–
adrenal (HPA) axis, proinflammatory immunomodulation and 
changed behavior including nutrition, diurnal rhythms, sleep and 
stressful interactions. The search for disease-related enterotypes has 
persisted over the years (Arumugam et al., 2011; Valles-Colomer et al., 
2019). Recent work with two large Belgian and Dutch cohorts (Valles-
Colomer et al., 2019) has shown, for example, that a diagnosis of 
depression corresponded more likely to a certain enterotype including 
lower bacterial loads and reduced abundance of butyrate-producing 
genera like Faecalibacterium. Moreover, depression-like symptoms 
could be  induced in rodent models by transferring stool from 
depressed patients (Kelly et al., 2016; Zheng et al., 2016).

Only a few studies have addressed the impact of neurosteroids on 
the gut microbiome, despite well-known gut-brain connections via the 
vagus nerve and enteric nervous system (So and Savidge, 2022). One 
research group has described how neurosteroid levels were affected in 
the brains of germ-free animals versus conventionally colonized 
controls (Diviccaro et al., 2021), and conversely how increased levels 
of pregnenolone and allopregnanolone in a streptozotocin-induced 
rat model had an impact on the gut microbiome (Diviccaro 
et al., 2023).

Interactions between benzodiazepines and the gut were being 
initially investigated long before high-throughput sequencing 
enabled high-resolution insights into the complex molecular 

structure of intestinal microbiota. Fujii et  al. (1987) incubated 
diluted fresh feces from healthy subjects with bromazepam and 
found that about 80% of the bromazepam was degraded in the fresh 
fecal suspension, while it was not degraded in sterilized feces. 
Hepatic encephalopathy was a model disease for the discovery of 
endogenous benzodiazepines. The human body can only produce 
these endocepines with the help of the gut microbiome that delivers 
their precursors (Yurdaydin et al., 1995). These observations have 
made the gut microbiome a dominant regulator of endocepine 
homoeostasis (Skolnick and Greig, 2019), fostering speculations 
that gut endocepines may play an important role in the regulatory 
processes of sleep and wakefulness, as well as their corresponding 
metabolomics (Thaiss et al., 2014, 2016).

Allowing participants of a clinical study to “cross over” from one 
treatment to another - in contrast to parallel group designs - has been 
sound tradition in medical research for more than 80 years (Jones and 
Kenward, 2014). It enables researchers to look at various interventions 
within the same subjects, i.e., repeated within-subject measures, 
provided that each subject returns to their original state in between 
treatment periods, for example via flush-out interlacing. One 
drawback to such a design is the potential of “carry-over effects,” 
which describe that any consequence of prior treatments may still 
be influential later on during the trial (similar to “confounding” in 
other designs). Williams (1949) enhanced previously existing 
crossover designs by balancing first-order carryover effects for any 
number of treatments. First order, in this case, relates to a previous 
treatment in a sequence, while second order, for example, would relate 
to an intervention prior to the previous one.

Interactions of neurosteroids with the human gut microbiome, 
including the impact of etifoxine, remain to be  elucidated. 
Consequently, we  performed a crossover study using a balanced 
Williams design (Williams, 1949) with 36 healthy male participants 
receiving the neurosteroidogenic non-benzodiazepine etifoxine with 
the benzodiazepine alprazolam and placebo (Figure 1) to investigate 
the effects of etifoxine on the human gut microbiome.

Materials and methods

Study design

The study protocol was designed as a balanced Williams crossover 
design (Williams, 1949). We decided in favor of using a placebo as one 
of three possible treatments. Hence, we  set up a 3-treatment and 
3-period design in which 36 healthy male volunteers were randomized 
into two latin squares of 6-sequences, such that groups of six 
participants were treated along the same sequence (Figure 1). In the 
following, we  use the term time-points (T1, T2, and T3) 
interchangeably with the usual design term periods.

Each treatment was administered to each participant for 5 days 
with 9 days of wash-out in between. Consequently, each participant 
“crossed over” from one treatment to another, but in different 
sequences that were balanced for first-order carry-over effects. The 
three treatments were etifoxine (E) compared to an established 
benzodiazepine (alprazolam, A) and a placebo (P). Applied daily doses 
of drugs were three times 50 mg of etifoxine (150 mg/day) and three 
times 0.5 mg of alprazolam (1.5 mg/day). Drugs and placebo were 
given double-blind as capsules for oral intake with identical 
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appearance. The base composition of the placebo capsule content was 
identical to capsules that additionally contained drugs.

The definition of an appropriate wash-out period is important 
since investigating various interventions within the same subjects, i.e., 
repeated measures, requires that each subject returns to their original 
state in between treatment periods. Time to reach maximum in blood 
for etifoxine is 2–3 h, after which it is metabolized rapidly into several 
metabolites. The longest known half-life of the active metabolites is 
about 20 h (Choi and Kim, 2015). Consequently, more than 98% of the 
drug should be eliminated after 6 days and more than 99.8% after nine. 
Little is known about the kinetics of etifoxine further downstream, 
and longer wash-out times would take into account the unknown 
kinetics of biological effects (Owen et al., 2022). However, the study 
protocol for 36 participants also needed to be feasible, and 2-week 
blocks (5 plus 9 days) were a sound, reasonable and ethical choice in 
this regard. The elimination half-life of alprazolam is about 15–16 h 
and thus shorter than that for etifoxine (Verster and Volkerts, 2004) 
so that the considerations above also applied to alprazolam.

Initial baseline measurements shortly before the beginning of the 
trial enabled quality control and building of appropriate 
analysis measures.

Human subjects

Healthy male volunteers were recruited at the Department of 
Psychiatry and Psychotherapy, Universität Regensburg. Only male 
participants were selected for this study to minimize the influence of 
hormonal fluctuations. This was of particular relevance for this study 
since hormones such as progesterone are precursors for neurosteroids 
like allopregnanolone, and the gut microbiome is known to vary 
throughout the menstrual cycle.

Exclusion criteria specific to gut microbiome investigations 
included various nutritional intolerances, celiac disease and non-celiac 
gluten sensitivity as well as irritable bowel syndrome. Furthermore, 
the use of antibiotics was not allowed within the last 6 months and 
changes in diet were not permitted within the last 3 months. Also, 
more than 3 kg of weight change during the last 3 months was 
considered an exclusion criterion.

Willingness to abstain from alcohol, driving, operating heavy 
machinery or engaging in other physically dangerous activities during 
the pharmaceutical intervention periods were key requirements for 
study participation. Tolerability of study medication was assessed by 
the Visual Analogue Scale (Aitken, 1969) and a non-standardized 
18-item questionnaire including an open answer section. The Mini 
International Neuropsychiatric Interview (Sheehan et al., 1998) was 
used as a screening tool for mental health. Physical health was verified 
by a physician who, besides controlling for inclusion and exclusion 
criteria, assessed medical history, conducted a physical examination, 
and assessed vital signs including ECG and blood work with a 
particular focus on heart, liver and kidney function. Possible drug 
usage was ruled out by urine testing.

The trial was conducted at the Department of Psychiatry and 
Psychotherapy (Universität Regensburg, Regensburg, Germany) from 
August 2020 to December 2021. It complied with the Declaration of 
Helsinki and with the Guidelines for Good Clinical Practice of the 
International Conference on Harmonization as well as with the 
Arzneimittelgesetz (AMG) in Germany (i.e., Medicinal Products Act). 
The ethics committee at the Universität Regensburg and the 
Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM, i.e., 
Federal Institute for Drugs and Medical Devices) approved the study 
plan. The clinical trial was registered in the European Clinical Trials 
Register (EudraCT number: 2018-002181-40) and the German 
Clinical Trials Register (DRKS-ID: DRKS00020267) as well as with 

FIGURE 1

Schematic workflow of balanced Williams crossover design comparing etifoxine (150  mg/d) with alprazolam (1.5  mg/d) and placebo (three 
“treatments”). Fifty-four men were screened as study prospects for eligibility. Thirty-six of them met inclusion criteria and were randomized into two 
latin squares of six sequences with six participants each. Three sequential periods are described as timepoints T1, T2, und T3 with an initial baseline 
measurement (T0) as reference. This Williams design is therefore a 3-treatments, 3-periods and 6-sequences balanced crossover design. Treatments 
lasted for 5  days followed by 9  days of wash-out. Microbiome was sampled on the last day of treatment. Participants were between 20 and 50  years old 
(mean  =  27.7, SD  =  6.9).
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regional authorities. All participants gave written informed consent 
and were compensated with EUR 1300 if they completed the study.

Stool sampling and storage

Participants were personally trained by a study nurse with 
experience in stool sampling to properly deploy and apply a dedicated 
sterile paper slip for stool collection (Süsse Labortechnik, Gudensberg, 
Germany) in their toilet bowl at home. The training included the 
transfer procedure of an appropriate amount of stool from the sterile 
paper slip into a stool sampling and storage-kit containing a solution 
to stabilize microbial DNA (MaGix PBI, microBIOMix, Regensburg, 
Germany), followed by shaking to achieve proper buffer immersion. 
Participants received the material for use at home including a 
supplementary photographic manual. Filled storage kits were returned 
to the study nurse and stored at −80°C. There were no freeze–thaw 
cycles until the day of extraction. All samples were thawed and 
preprocessed as a single batch and subsequently analyzed in a single 
sequencing run.

16S rDNA amplicon sequencing and read 
preprocessing

Microbial DNA was isolated from a volume of stabilization buffer 
corresponding to 50 mg of original fecal material. Stool suspensions 
were pre-treated by bead beating on a TissueLyzer II instrument 
(Qiagen, Hilden, Germany) using Lysing Matrix Y beads (MP 
Biomedicals, Solon, OH, United States) followed by purification of 
stool lysates by the MagNA Pure 96 system (Roche Diagnostics, 
Rotkreuz, Switzerland).

Bacterial 16S rDNA copy numbers were quantified from extracted 
DNA as previously described (Stammler et al., 2016). In detail, total 
bacterial 16S rRNA gene copy numbers were determined within the 
isolated DNA by qPCR on a LightCycler 480 II Instrument (Roche 
Diagnostics, Rotkreuz, Switzerland). PCR reactions included 1 μM 
each of universal eubacterial 16S rRNA gene primers 764F and 907R 
and the LightCycler 480 SYBR Green I Master kit (Roche Diagnostics, 
Rotkreuz, Switzerland). Quantitative PCRs were performed over 
40 cycles (95°C for 10 s, 60°C for 15 s and 72°C for 15 s) with an initial 
10 min hot start at 95°C. Complex PCR amplicon mixtures of full 
length 16S rRNA genes amplified from human fecal DNA were cloned 
into pGEM TEasy (Invitrogen, Thermo Fisher Scientific, Waltham, 
MA, United States) and served as a quantification standard.

Microbiome sequencing was conducted according to a DIN EN 
ISO 15189 accredited workflow. Briefly, the V1-V3 and the V3–V4 
variable regions of the 16S rRNA gene were amplified in two separate 
PCR reactions for each sample using universal primer pairs S-D-Bact-
0008-c- S-20/S-D-Bact-0517-a-A-18 and S-D-Bact-0341-b-S-17/S-D-
Bact-0785-a-A-21, respectively. Barcoded PCR products of both 
V-regions and all samples were pooled and purified with AmpureXP 
Beads (Beckman Coulter, Indianapolis, IN, United  States). The 
sequencing library was quantified with the Ion Library TaqMan™ 
Quantitation Kit and resulting amplicons were sequenced on an Ion 
GeneStudio S5 Plus instrument (Thermo Fisher Scientific, Waltham, 
MA, United States). Raw sequencing data was retrieved from Torrent 

Suite 5.18 and further subjected to cutadapt 4.1 for adapter and primer 
removal and demultiplexing, followed by sequence filtering with a 
quality cutoff of 15 within a sliding window of 10 bases using 
Trimmomatic 0.39. DNA sequences shorter than 250 bases were 
removed, and generation of zero-radius operational taxonomic units 
(zOTUs) and taxonomic classification was performed.

Quality-filtered sequencing data was further processed using a 
vsearch 2.22.1-based pipeline. Reads with more than five expected 
errors were removed. Zero-radius OTUs (zOTUs) were built from 
quality-filtered reads applying an alpha value of 2 and a minimum size 
of 5 reads. Chimeric sequences were removed using the uchime3_
denovo algorithm. Filtered reads with 98 percent pairwise identities 
were mapped back to non-chimeric zOTUs by applying the usearch_
global algorithm. Taxonomy was assigned in R 4.2.2 using the 
IDTAXA classifier from DECIPHER 2.26.0 together with the 
All-Species Living Tree database version 06.2022. Here, a 98 percent 
bootstrap cutoff was used to descend the tree, and taxonomy was 
reported at each taxonomic level with a confidence value 
threshold of 40.

Statistical analyses

Model design
The study design described above (Food and Drug Administration 

(FDA), 2001; Jones and Kenward, 2014) was captured in a full linear 
mixed model (Baayen et  al., 2008; Singmann and Kellen, 2019). 
Treatments, periods (i.e., time-points), and sequences were used as 
fixed effects, while participants were considered as random effects as 
well as an interaction between participants and their randomized 
sequences. Assumptions for linear regression were tested in advance, 
including outlier evaluation, normality testing (Shapiro–Wilk) and 
testing for homogeneity of variances (Levene’s test).

R and R packages
All statistical calculations and graph plottings were performed in 

R (version 4.2.2) within RStudio (2022.12.0, build 353) using 
RMarkdown. Deployed functions in R and the R packages they 
originate from were written in the notation <package>::<function> in 
the corresponding sections.

An overview of the complete study cohort and its sequence groups 
including age and body mass index (BMI) was calculated and 
preformatted with table1::table1 (table1, version 1.4.3). Linear mixed 
effects models were fitted by restricted maximum likelihood (REML) 
with lmerTest::lmer (lmerTest, version 3.1–3; lme4, version 1.1–31), 
random slopes and intercepts were set according to the model design 
described above. Statistical inference was performed using likelihood-
ratio tests after nested model reductions (with lmerTest::anova). 
Post-hoc pairwise testing for individual effects of LME was conducted 
with emmeans::emmeans (emmeans, version 1.8.4–1).

Microbial diversity indices
Bacterial alpha diversity was described in terms of bacterial 

richness, which was represented by the sum of observed zOTUs 
(Observed Species) as well as the effective number of species (Hill 
number) for each sample. Furthermore, it was calculated with Inverse 
Simpson and Shannon indices using the mia package (version 1.1.7) 
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in R. Alpha diversity describes bacterial diversity in a single sample, 
taking into account the overall number of species present in the 
sample (richness, Observed Species), while indices like Inverse Simpson 
additionally consider their proportional distribution.

Bacterial beta diversity was calculated by Principal Coordinates 
Analyses (PCoA) using ecodist::pcoa (ecodist, version 2.0.9) after 
computation of Bray-Curtis distances with vegan::vegdist (vegan, 
version 2.6.4) or Generalized UniFrac distances (GUniFrac, version 
1.7) with an alpha value of 0.5. Beta diversity is a measure that 
describes the overall dissimilarity of bacterial communities between 
at least two samples. Two perspectives on beta diversity were 
calculated. First, time-series were computed for which beta diversity 
was restricted to the four samples provided by individual study 
participants, and second, an overall calculation of beta diversity for all 
142 samples of the investigation.

Significance between groups was tested with Permutational 
Multivariate Analysis of Variance (PERMANOVA) of Bray-Curtis and 
generalized UniFrac distances with vegan::adonis2 followed by 
multilevel pairwise comparisons with pairwiseadonis2 (version 0.4). 
Homogeneity of group dispersions was tested with vegan::betadisper. 
For this, post-hoc pairwise testing was conducted with 
stats::TukeyHSD. Additionally, group differences were analyzed by 
distance-based redundancy analysis (dbRDA) in vegan (vegan::dbrda) 
followed by pairwise comparisons for group levels with 
biodiversityR::multiconstrained (biodiversityR, version 2.15-1).

Differential abundance analyses
Differential abundances between medication groups were 

analyzed with two different methods that allowed for deployment of 
our full LME. For MicrobiomeStat::LinDA (Linear Model for 
Differential Abundance Analysis of High-dimensional Compositional 
Data; MicrobiomeStat, version 1.1) (Zhou et al., 2022), features below 
a mean abundance cutoff of 0.1 percent over all samples were filtered. 
zOTUs below an alpha value of 0.1 were regarded as significantly 
different. For Maaslin2 (Multivariable Association Discovery in 
Population-scale Meta-omics Studies; Maaslin2, version 1.12.0) 
(Mallick et al., 2021), the read counts matrix was normalized by total 
sum scaling followed by log transformation. Features below a mean 
abundance of 0.1 percent were filtered prior to analysis. Features 
below the default cutoff of 0.1 for p-values adjusted by the Benjamini 
& Hochberg procedure were regarded as significantly different 
between compared groups.

Results

Study participants

Fifty-four male volunteers were initially screened for eligibility as 
study prospects, of which 36 met inclusion criteria and were then 
randomized into one of six sequence groups. Participants were 
between 20 and 50 years old (mean = 27.7, SD = 6.9). Age and body 
mass index (BMI) did not differ between the six sequence groups 
(Table 1), and did not show any significant effects in the subsequent 
microbiome analyses. Pharmaceutical side effects during treatment 
periods, as indicated by Visual Analogue Scale measures, previously 
showed alprazolam to affect both concentration and wakefulness, 
while etifoxine only affected concentration (Riebel et al., 2023).

Stool preprocessing

One hundred and forty-two stool samples from 36 participants at 
four time-points (baseline and three study periods) were collected in 
storage-kits containing a solution to stabilize microbial DNA. Two 
samples (sequence EAP, periods two and three) from only one single 
participant could not be collected.

Stool samples were collected in three different batches of prepared 
storage-kits, ensuring that all samples from one participant were 
collected with kits from the same batch. Batches covered 13, 12 and 11 
participants and did not show any significant differences in bacterial 
compositions. 16S rDNA copy numbers did not vary significantly 
between batches, also indicating homogeneity in collected stool 
suspensions. Frozen storage at −80 degrees Celsius varied between 30 
and 93 weeks for baseline samples and had no significant impact on 
bacterial compositions.

Test–retest variability

Initial baseline measurements before the beginning of the trial 
provided the opportunity to evaluate test–retest reliability of 
microbiome sampling for participants who were randomized into 
sequence groups that started with placebo (sequences PAE and PEA). 
Thus, for these twelve participants, there was no pharmacological 
intervention during the first two microbiome samplings. These were 
therefore used as test and retest measurements to evaluate the overall 
variability of both alpha and beta diversity in the context of inter-
individual differences.

Test–retests for alpha diversity as described in Figure 2 showed 
only minor disparities when comparing baseline measurements to 
samples treated with placebo. Test–retest analysis of beta diversity 
indicated that bacterial compositions without pharmacological 
intervention exhibited only minor differences, although individual 
variations were noticeable as illustrated in Figure 3.

Alpha diversity

Microbiome alpha diversity indices (Observed Species, Inverse 
Simpson, Shannon, Hill) across the trial (Figure  4) did not vary 
between treatments, sequences and periods (i.e., time-points). 
Observed species (= Richness) across the full study design did not yield 
any significant differences between medications with F(2, 66.1) = 0.16 
(p = 0.853), sequences with F(5, 30.0) = 1.12 (p = 0.371) and time-points 
with F(2, 66.1) = 0.51 (p = 0.606). Similarly, the Inverse Simpson index 
did not show any relevant effects for medications with F(2, 66.7) = 0.31 
(p = 0.731), sequences with F(5, 30.2) = 1.49 (p = 0.222) and time-points 
with F(2, 66.7) = 0.60 (p = 0.553).

Alpha diversity grouped into sequence groups over time-points 
(periods) across the complete trial is shown in Supplementary Figure S1.

Beta diversity

Intra-individual beta diversity over time
Firstly, beta diversity indices were calculated restricted to 

individual participants over treatment periods as a time series 
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beginning with an initial baseline measurement. This individualized 
perspective on beta diversity (Wagner et al., 2018; Lahti and Shetty, 
2020) provided three beta indices per participant corresponding to 
each of their treatment periods. This approach enabled the continued 
deployment of our standard model design for analysis.

Microbiome beta diversity as measured within participants 
between time periods within their sequence group (Figure 5) did not 
vary between treatments, sequence groups and time-points. 
Specifically, Bray-Curtis[intra-individual] did not show any significant effects 
for medication with F(2, 66) = 0.64 (p = 0.531), sequence groups with 
F(5, 29) = 0.33 (p = 0.890) and time-points with F(2, 66) = 0.79 
(p = 0.458). Similarly, generalized UniFrac[intra-individual] with alpha = 0.5 
did not show any relevant effects for medication with F(2, 66) = 0.25 
(p = 0.776), sequence groups with F(5, 29) = 0.30 (p = 0.908) and time-
points with F(2, 66) = 1.21 (p = 0.304).

Intra-individual beta diversity grouped into sequence groups over 
time-points (periods) is shown in Supplementary Figure S2.

Beta diversity between all study samples
Secondly, analysis of beta diversity among all samples across the 

complete trial is shown in Figure 6. In this scenario, multivariate 
analyses are typically used as the standard in the analysis of microbial 

beta diversity. For this approach, two different algorithms were 
deployed for increased reliability. Both permutational multivariate 
analysis of variance (PERMANOVA) using distance matrices and 
distance-based redundancy analyses showed significant differences 
in beta diversity between randomized sequence groups (see 
individual results below), plus PERMANOVA multilevel pairwise 
comparisons confirmed the effect, while inferences with pairwise 
comparisons for all levels of a categorical variable by redundancy 
analysis revealed only borderline effects. Moreover, testing for 
homogeneity of group dispersions between randomized sequence 
groups showed borderline effects (F(5) = 2.13 (p = 0.068)), which did 
not reveal any significant group differences in post-hoc testing, and 
which seemed to be  caused by borderline differences between 
sequences AEP and EAP (p = 0.06).

For adonis2, only fixed effects of the full linear mixed model were 
used. Bray-Curtis indices yielded no effects between treatments with 
F(2) = 0.45 (p = 1.000), but for sequences with F(5) = 2.65 (p = 0.001) 
and, again, none for time-points with F(2) = 0.29 (p = 1.000). Pairwise 
comparisons between sequences for Bray-Curtis distances confirmed 
significant differences for all group comparisons (p < 0.02). 
Generalized UniFrac indices yielded no effects between treatments 
with F(2) = 0.54 (p = 0.999), but, again, for sequences with F(5) = 2.36 

TABLE 1 Study cohort characteristics regarding age and body mass index (BMI) of 36 healthy male participants who were randomized into six 
sequences within a balanced Williams crossover design for the study of etifoxine (E) versus alprazolam (A) and placebo (P).

AEP (N  =  6) APE (N  =  6) EAP (N  =  6) EPA (N  =  6) PAE (N  =  6) PEA (N  =  6) Overall 
(N  =  36)

Age

Mean (SD) 28.1 (4.89) 26.6 (5.18) 30.2 (7.63) 27.7 (8.73) 25.5 (3.92) 28.2 (11.0) 27.7 (6.94)

median [Min, 

Max]
28.3 [20.0, 34.6] 25.0 [22.8, 36.8] 27.4 [25.3, 45.6] 24.5 [20.4, 44.3] 25.8 [20.2, 30.5] 24.8 [21.6, 50.4] 26.1 [20.0, 50.4]

BMI

Mean (SD) 23.8 (2.81) 25.6 (3.69) 25.1 (2.32) 23.7 (2.72) 24.6 (4.59) 22.6 (1.77) 24.2 (3.05)

Median [min, 

max]
23.5 [20.7, 28.1] 24.6 [21.6, 31.9] 24.8 [22.1, 28.7] 23.5 [20.6, 27.5] 23.2 [20.0, 32.1] 22.5 [20.7, 25.7] 23.8 [20.0, 32.1]

FIGURE 2

Test–retest analysis for alpha diversity of gut microbiome samples from twelve participants randomized into sequences PAE and PEA. Test corresponds 
to an initial baseline measurement before beginning of the trial and retest to sampling after 5  days of the first treatment in case of placebo. The time 
difference between test and retest was 5  days in median. Two different indices for alpha diversity are shown to account for microbial richness alone 
(panel A) and proportional abundance (Inverse Simpson, panel B).
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(p = 0.001) and none for time-points with F(2) = 0.55 (p = 0.995). 
Pairwise comparisons between sequences for Generalized UniFrac 
distances showed 7 of 15 significant comparisons, mostly in group 
comparisons with sequences AEP, EAP and APE.

Db-RDA was used with our full linear mixed model. Bray-Curtis 
indices yielded no effects between treatments with F(2) = 0.67 
(p = 1.000), but for sequences with F(5) = 2.08 (p = 0.001) and none 
for time-points with F(2) = 0.59 (p = 1.000). Generalized UniFrac 
indices yielded no effects between treatments with F(2) = 0.75 
(p = 0.994), but for sequences with F(5) = 2.13 (p = 0.001) and none for 
time-points with F(2) = 0.76 (p = 0.995). Pairwise comparisons 
between sequences for Bray-Curtis distances did not reveal any 

significant differences between sequences, with APE-PAE (p = 0.066) 
and EAP-PAE (p = 0.073) at borderline.

Beta Diversity between all study samples grouped into sequence 
groups over time-points (periods) is shown in Supplementary Figure S3, 
and a grouping into participants over time in Supplementary Figure S4. 
Figure 7 shows an overview of mean relative abundances by presenting 
the most abundant genera averaged by treatment. Furthermore, 
Supplementary Table S1 provides an overview of the most abundant 
genera and their relative abundance at baseline for all participants 
before the trial started. Correspondingly, Supplementary Figure S5 
shows relative abundance plots for each participant over time grouped 
along their treatment sequences.

FIGURE 3

Test–retest analysis for beta diversity of gut microbiome samples from twelve participants randomized into sequences PAE and PEA. Samples were 
taken at an initial baseline measurement shortly before the trial began (T0) and after 5  days of the first treatment (T1) in case of placebo. Time 
difference between test and retest was 5  days in median. Beta diversity was assessed by Principal Coordinates analysis based on two different 
measures, Bray-Curtis (panel A) and Generalized UniFrac (panel B) distances; the latter additionally implements phylogenetic information. The course 
of individual participants is indicated with connecting arrows. The complete dataset is shown in light gray for better orientation on overall variability of 
the data.

FIGURE 4

Alpha diversity of gut microbiome in treatment groups across complete trial. Two different indices for alpha diversity are shown to account for 
microbial richness alone (panel A) and proportional abundance (Inverse Simpson, panel B).
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Differential abundance

Differential abundance analysis of V3V4 microbiome sequencing 
data (Figure 8, panels A,B) was performed with two methods [LinDA: 
Linear Model for Differential Abundance Analysis of High-dimensional 
Compositional Data (Zhou et al., 2022) and MaAsLin2: Multivariable 
Association Discovery in Population-scale Meta-omics Studies (Mallick 
et al., 2021)] and confirmed in independent sequencing results of the 
V1V3 hypervariable region (Figure 8, panels C,D).

Both methods consistently returned two zOTUs (18 and 90) in 
V3V4 with reduced abundances after administration of etifoxine 
(zOTU 18: log2FC = −1.45, zOTU 90: log2FC = −1.12), while LinDa 

returned an additional zOTU (77) as significant (log2FC = −1.22). 
Taxonomy assignment via LTP_06_2022 database with a mean 
abundance cutoff of 0.1% yielded Faecalibacterium duncaniae (zOTU 
18, p[LinDA] = 0.000202, p[MaAsLin2] = 0.000198) and Roseburia hominis 
(zOTU 90, p[LinDA] = 0.058673, p[MaAsLin2] = 0.018641). LinDA 
additionally yielded Bacteroides galacturonicus (zOTU 77, 
p[LinDA] = 0.058673, p[MaAsLin2] = 0.218908). The latter (Bacteroides 
galacturonicus) may most likely be Lactobacillus rogosae according to 
confirmatory matching with SmartGene IDNS 16S rDNA Eubacteria 
database in combination with “Problematic Species”: Bacteroides 
galacturonicus accompanying LTP_12_2020 database description 
(Ludwig et al., 2021).

FIGURE 5

Beta diversity of gut microbiome as measured within each participant over treatment periods. Two different indices for beta diversity are shown. Bray-
Curtis (panel A) accounts for dissimilarities on zOTU-levels and weighs these according to their relative abundances. Generalized UniFrac (panel B) 
additionally incorporates phylogenetic distances originating from genetic sequence dissimilarities. Generalized UniFrac with alpha  =  1.0 corresponds to 
a conventional weighted UniFrac representation. Here, keeping the default of alpha  =  0.5 reduces the weights of highly abundant species.

FIGURE 6

Beta diversity of gut microbiome among all samples across complete trial. Two different indices for beta diversity are shown. Bray-Curtis (panel A) 
accounts for dissimilarities on zOTU-levels and weighs these according to their relative abundances. Generalized UniFrac (panel B) additionally 
incorporates phylogenetic distances originating from genetic sequence dissimilarities. Generalized UniFrac with alpha  =  1.0 corresponds to a 
conventional weighted UniFrac representation. Here, keeping the default of alpha  =  0.5 reduces the weights of highly abundant species. Treatment 
groups and periods (time-points) within the balanced Williams design are differentiated by color and symbol shapes.
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FIGURE 7

Mean relative abundances on genus level of the full study cohort (N  =  36) grouped according to treatment. The 30 most abundant genera are shown 
explicitly, while remaining taxa are comprised in “Other.” Individual bacterial compositions for each participant are shown in Supplementary Figure S5.

FIGURE 8

Differential abundance analysis with LinDA after applying a mean abundance filter of 0.1%. Alpha cutoff was relaxed to 10% to also show borderline 
zOTUs. Results are shown for two independent 16S rRNA gene regions V3V4 (top, panel A,B) and V1V3 (bottom, panel C,D). In both, the same three 
bacterial species show significant reductions of relative abundances after etifoxine treatment: Faecalibacterium duncaniae, Bacteroides galacturonicus 
(most likely Lactobacillus rogosae) and Roseburia hominis. Dashed lines were added in Volcano plots (panels A,C) to indicate an alpha cutoff of 10% 
(horizontal dashed line) and log2-fold-changes of 1.5 in both directions (vertical dashed lines). zOTUs below alpha of 10% are shown in gray color. 
Data for volcano plots originate from LinDA analysis which is optimized for handling zero-inflated absolute abundances.
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Discussion

This study presents the first human gut microbiome data with 
etifoxine intervention. In a balanced Williams crossover design, 36 
healthy males received etifoxine, alprazolam and placebo for 5 days 
each. While microbial alpha and beta diversity did not show any 
apparent changes between treatments, differential abundance analyses 
revealed three bacterial species that were significantly reduced after 
short-term etifoxine administration, Faecalibacterium duncaniae, 
Roseburia hominis and Lactobacillus rogosae (i.e., Bacteroides 
galacturonicus). Among these three, effects were largest and most 
stable for Faecalibacterium duncaniae.

It is not uncommon for gut microbiome alpha diversities to show 
no relevant differences in clinical neuroscience research (Plassais et al., 
2021; Kovtun et  al., 2022). Moreover, even differences previously 
reported in beta diversity may not be  as significant as originally 
claimed (Weiss et  al., 2017; Schloss, 2018). Furthermore, there is 
growing evidence that a persistent lack of standardization in 
pre-analytical procedures (Sinha et al., 2017) and analysis pipelines 
over the last 15 years have substantially contributed to an increasing 
number of irreproducible results (Nearing et al., 2022). There may 
be several reasons for the lack of differences in alpha and beta diversity 
in our study.

A sample size of 36 participants for a microbiome investigation 
may appear rather small. However, several other microbiome studies 
have gathered microbiome samples, for example from depressed 
patients, with a similar range of sample sizes (Barandouzi et al., 2020). 
This putative deficiency in statistical power may be  related to the 
enormous challenge of power estimation for microbiome studies 
(Debelius et al., 2016). The reasons for this are numerous and reach 
from the workbench to the bioinformatical pipeline. Hence, more 
recent statistical approaches additionally try to increase the power of 
microbiome analyses with already existing data after trials have ended 
(Jouffret et al., 2021; Martino et al., 2022).

Furthermore, our test–retest measurements for alpha diversity 
(Figure 2) and beta diversity (Figure 3) show a certain variance in 
within-subjects data without experimental intervention. For reasons 
of feasibility and etiquette, participants were unable to deliver samples 
from a specific time of day (Nobs et al., 2019), and their complete stool 
output was not homogenized before sampling (Zmora et al., 2018; 
Jones et al., 2021). Furthermore, there were about 5 days between 
baseline and first treatment (with placebo) measurements during 
which participants had experienced various daily life influences 
(Falony et al., 2016; Uhr et al., 2019) which could not be controlled for 
in a common research setting like ours. Therefore, we consider this 
magnitude of variance in test–retest data as rather typical.

Our study design, a uniform and balanced Williams crossover 
design (Williams, 1949) with three treatments over 5 days each, was 
carefully selected for this investigation. However, it may have 
limitations in terms of producing contrasts between treatments. On 
the one hand, we  opted to include placebo and therefore did not 
choose stricter crossover designs such as a strongly balanced or even 
a strongly balanced and uniform crossover design with just two 
treatments in two or four sequences, respectively. On the other hand, 
there is only limited public data available regarding the 
pharmacokinetics of the two compounds used in this study, 
particularly etifoxine. Therefore, we selected a conservative definition 

for wash-out periods based on the limited pharmacokinetic data 
available. However, as Owen et al. mentioned recently (Owen et al., 
2022), this approach does not account for the potential of more 
complex and long-term effects of drugs like etifoxine.

Moreover, the treatment period of only 5 days was short. There 
were several reasons for this choice of treatment duration. First, this 
duration is representative of a naturalistic treatment setting. Second, 
other researchers have reported significant clinical effects of etifoxine 
within 7 days (Stein, 2015). And third, in contrast to etifoxine, 
alprazolam – like all other benzodiapezepines –unfortunately foster 
development of tolerance and physical dependence, quickly. Therefore, 
5 days of administration in healthy subjects was an ethical choice. The 
exposure time only allowed us to investigate short-term effects of 
etifoxine. Effects with a greater time lag further downstream would 
need to be captured during longer interventional periods in future 
human studies. Ibrahim et al. (2020) administered etifoxine to mice 
for 15 days at an intraperitoneal dose of 50 mg/kg. Dose translations 
between animals and humans remain a disputed topic. 
Recommendations based on body surface area normalization as 
published by Food and Drug Administration (FDA) (2005) and 
Reagan-Shaw et al. (2008) suggest conversion factors for humans to 
mice and rats of 12.3 and 6.2, respectively. Using a conversion factor 
of 12.3 with 50 mg/kg in mice would correspond to a human etifoxine 
dose of 285 to 325 mg/day depending on the reference weight (70 or 
80 kg, respectively). This is similar to the initial human experimental 
doses of 300 mg/day (Córsico et al., 1976). However, the recommended 
daily etifoxine dose today is 150–200 mg (Servant et al., 1998; Choi 
and Kim, 2015).

The traditional method of gut microbiome sampling relies on 
collecting rectal stool output. However, this fails to capture the 
complex dynamics throughout the entire gastrointestinal microbiome 
(Zmora et  al., 2018). In a biodistribution study with alprazolam 
(Banks et al., 1992), the intestines of small animals were examined as 
a whole including their contents. The authors noted an increased 
intestinal uptake, especially an increase over time, and they 
postulated that biliary excretion and entero-hepatic recirculation 
may play a role in this context. Beyond that, other important 
considerations are where in the gut these drugs are primarily taken 
up, and how their metabolites are distributed along the gut, including 
their residence times and in which sections of the gut their effects on 
the microbiome may be greatest. Therefore, traditional rectal stool 
sampling can only reveal a small part of an interesting story along 
the gut.

In all of our analyses, we  observed only a few significant 
differences or borderline effects between randomized sequences, such 
as in microbial beta diversity. Since our sequences consisted of only 
six participants, we believe that these effects are likely due to between-
subjects effects (Supplementary Figure S4) indicating post-
randomization confounding between sequences (Miettinen and Cook, 
1981; Rochon, 1996). However, our model design took randomization 
into account. Furthermore, a balanced Williams design was used to 
minimize confounding and to improve the evaluation of differences 
between treatments. In general, the primary objective of this design is 
to compare the effects of individual treatments, not the sequences 
themselves (Kenward and Jones, 2007). Correspondingly, we ensured 
that microbiome parameters were restricted to a within-subject level, 
for example, by defining an appropriate intra-individual beta diversity 
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measure. Therefore, we assume that this type of confounding did not 
affect the results of our study.

Etifoxine is a TSPO ligand with relevant uptake in the intestinal 
tract, providing motivation for looking at the bacterial perspective on 
TSPO. Interest in TSPO initially arose from its discovery as a high-
affinity binding receptor in diazepam binding assays with 
homogenized rat brain (Braestrup and Squires, 1977). It was 
subsequently referred to as a peripheral-type benzodiazepine receptor 
(PBR). It is now evident that the large family of tryptophan-rich 
sensory proteins (TSPOs) is well-conserved in evolution, and 
members of this family have been identified in various species across 
all kingdoms, including animals, plants, fungi, bacteria and archaea 
(Hiser et  al., 2021). Thus, TSPO is regarded as a multifunctional 
housekeeping gene (Gavish and Veenman, 2018). Bacterial TspO may 
be  involved in various metabolic processes such as response to 
oxidative stress, regulation of cell cycle and growth, porphyrin 
transport, heme metabolism or cell adhesion (Veenman et al., 2016). 
Moreover, it has also been described as a nonessential gene (Batoko 
et  al., 2015), which is involved in regulating photosynthetic gene 
expression in response to oxygen and light conditions, primarily 
upregulated during oxidative stress which caused bacteria to switch 
from aerobic to anaerobic metabolism (Yeliseev et al., 1997). In this 
context, it supports the endosymbiontic hypothesis for mitochondria. 
The binding of endogenous ligands such as tetrapyrroles including 
protoporphyrins, as well as the binding of well-known synthetic 
ligands such as PK11195 to bacterial TSPO has been demonstrated 
(Leneveu-Jenvrin et al., 2014; Hiser et al., 2021). However, to date, no 
data are available on the quality of binding or effects of etifoxine on 
bacterial TSPO, nor on the prevalence and distribution of TSPO 
expression among individual intestinal bacteria. Nevertheless, a direct 
interaction seems likely and, thus, effects on regulatory pathways or 
growth rates of certain gut bacteria cannot be excluded.

The role of etifoxine as a GABA-A receptor ligand in the gut is 
unclear. Yet, the enteric nervous system is rich in a variety of GABA-A 
receptors (Seifi et al., 2014) making a direct interaction of etifoxine 
with the enteric nervous system likely. Some of these receptors are 
directly involved in gastrointestinal motility (Hosie et  al., 2019). 
However, the diversity and different spread of GABA-A receptors 
provides for high complexity in which GABA-induced effects depend 
on animal species, region of the gastrointestinal tract and the GABA 
receptors involved (Auteri et al., 2015). In contrast to the function of 
GABA-A receptors in the central nervous system, activation of enteric 
GABA-A receptors causes excitatory effects and in humans probably 
increases contractile motor activity (Auteri et al., 2015). This might 
cause opposing effects of etifoxine depending on its binding to central 
or peripheral GABA-A receptors. Furthermore, GABA-signaling is 
present in bacterial communities (Guthrie and Nicholson-Guthrie, 
1989) and hence, etifoxine may possibly exert direct effects via 
bacterial GABA receptors as well (Quillin et  al., 2021). For the 
moment, this complexity and lacking data hinder reasonable 
hypotheses on etifoxine-mediated GABA-A transmission in the gut.

Differential abundance analyses between treatments identified 
several zOTUs that were significantly reduced following etifoxine 
administration. These features were assigned to the bacterial species 
Faecalibacterium duncaniae, Lactobacillus rogosae/Bacteroides 
galacturonicus and Roseburia hominis. These species are known as 
common commensals of the human gut. Interestingly, 
Faecalibacterium and Roseburia species are among the most abundant 

butyrate producing bacteria in the human gut (Barcenilla et al., 2000; 
Hold et al., 2003).

Butyrate is solely produced by microbes in the human body. It is 
a four-carbon short-chain fatty acid (SCFA), which is mainly produced 
by bacterial fermentation of undigested carbohydrates or lysine in the 
human colon. It is a major source of energy for colonocytes in the gut 
(Tan et al., 2014) and exerts multiple systemic effects via different 
mechanisms, such as inhibiting histone deacetylase activity, thereby 
altering host gene expression or signaling through G-protein-coupled 
receptors (Davie, 2003). Its anti-inflammatory properties, for example, 
inhibiting proinflammatory cytokines (Aguilar et  al., 2014) or 
promoting differentiation of regulatory T-cells (Singh et al., 2014), are 
among the many important characteristics of butyrate. Thus, it is 
considered a beneficial molecule in maintaining intestinal health.

Direct effects of butyrate on the brain are still unclear. On the one 
hand, it may stabilize blood–brain barrier function, as demonstrated 
in germ-free mice displaying increased permeability of the blood–
brain barrier (Braniste et  al., 2014), which was then mended by 
butyrate. On the other hand, physiological butyrate levels in the brain 
are likely to be very low (Kim et al., 2013), and experimental dosages 
of butyrate, which are far beyond physiological levels, may constitute 
a pharmacological stressor (Gagliano et al., 2014).

In our study, Faecalibacterium duncaniae showed a stable effect 
across different methods (LinDA, Maaslin2) and different gene 
regions of the 16S rRNA gene (V3V4 and V1V3). Very recently, it was 
proposed as a novel species and was split off from Faecalibacterium 
prausnitzii by taxonomic reclassification based on whole genome and 
phenotypic comparisons (Sakamoto et al., 2022). No published studies 
to date have examined the role of Faecalibacterium duncaniae in the 
context of health and disease. Past studies describing Faecalibacterium 
prausnitzii and its potential role in the intestinal microbiome are likely 
based on several, now distinguishable, species, including 
Faecalibacterium duncaniae. Both species are genetically very similar 
and they do not differ in the spectrum and concentrations of major 
fermentation products in growing cultures. Butyrate is their major 
fermentation product, while formate and lactate are excreted only in 
low amounts (Sakamoto et al., 2022). For example, administration of 
Faecalibacterium prausnitzii to rats had preventive and therapeutic 
effects on chronic unpredictable mild stress-induced depression-like 
and anxiety-like behavior (Hao et al., 2019).

Roseburia hominis is a strictly anaerobic bacterium that frequently 
inhabits the human gut and utilizes acetate and dietary mono- or 
disaccharides to produce mainly butyrate and formate (Duncan et al., 
2006). When germ-free mice were mono-colonized with Roseburia 
hominis, immunomodulatory capacities were apparent, for example 
by expansion of regulatory T-cells and by enhancing tight junction 
integrity, thus strengthening gut barrier function (Patterson et al., 
2017). In neurobiological investigations, germ-free rats were mono-
colonized with Roseburia hominis, which reduced microglial activation 
and proinflammatory cytokines (Song et al., 2022). Furthermore, in 
patients with Alzheimer’s disease, lower abundances of Roseburia 
hominis were associated with both higher amyloid and lower 
phosphorylated-tau levels (Verhaar et al., 2021), which supports a 
potential role along the gut–brain axis.

Besides the two species described above, Bacteroides galacturonicus 
(assignment in V3V4 region) and Lactobacillus rogosae (assignment 
in V1V3 region) were among the significantly reduced features in 
participants after etifoxine treatment. Both species are nearly identical 
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based on their 16S rRNA gene sequences and cannot be discriminated 
from each other in the V3V4 region. Moreover, it is currently being 
debated whether both species are valid in the List of Prokaryotic names 
with Standing in Nomenclature (LPSN) (Parte et al., 2020) or whether 
these species may be  reclassified altogether into a new genus of 
Lachnospiraceae (Tindall, 2014; Ludwig et al., 2021). Since the actual 
status of these species is unclear and reclassification of both type 
strains of Lactobacillus rogosae as well as Bacteroides galacturonicus is 
being considered, it is not feasible to assess the impact of these species 
until further clarification. Initial reports on these species described 
them both as being capable of degrading pectin and related 
compounds, mainly towards acetate and formate (Jensen and Canale-
Parola, 1986; Felis et al., 2004).

All three species described above are considered beneficial 
members of a healthy gut microbiome. One of their strong 
metabolic links could be acetate (Duncan et al., 2002), which is 
excreted by pectinophilic species like Lactobacillus rogosae and fed 
to butyrate producers like Faecalibacterium duncaniae and 
Roseburia hominis. It is important to note that the gut consists of 
very complex microbial networks, located in equally complex 
metabolic interdependencies between a multitude of 
subcommunities (Chen et  al., 2020). The effect of an external 
substance like etifoxine on a single bacterium may therefore result 
in changes of many interdependent species.

The observed differences in abundance in this study are subtle 
and the physiological context of these small reductions after 
etifoxine treatment remains unclear. Furthermore, given the 
complex and intricate interactions between the microbiota and the 
host, it is uncertain whether the observed reductions are linked to 
direct or indirect mechanisms of etifoxine, and therefore, definitve 
conclusions about etifoxine effects on these species cannot be made. 
Nevertheless, recent evidence on the impact of sex-specific gut 
steroids on the gut microbiome in rats supports our findings in 
humans. Diviccaro et  al. demonstrated that Roseburia were 
inversely associated with allopregnanolone, pregnenolone, 
isoallopregnanolone, progesterone, dihydroprogesterone and 
testosterone (Diviccaro et al., 2022). Additionally, it appears likely 
that etifoxine elevated these gut steroids, presumably through the 
enteric nervous system (Giatti et al., 2020).

In conclusion, our study shows that short-team treatment with 
etifoxine may induce subtle alterations in human gut microbiome 
composition of healthy male participants. These might be related to 
the unique pharmacological profile of etifoxine and underline the 
importance of the gut-brain axis for health and disease.
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