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Introduction: Recently, the Transformer model and its variants have been a great 
success in terms of computer vision, and have surpassed the performance of 
convolutional neural networks (CNN). The key to the success of Transformer vision 
is the acquisition of short-term and long-term visual dependencies through self-
attention mechanisms; this technology can efficiently learn global and remote 
semantic information interactions. However, there are certain challenges associated 
with the use of Transformers. The computational cost of the global self-attention 
mechanism increases quadratically, thus hindering the application of Transformers for 
high-resolution images.

Methods: In view of this, this paper proposes a multi-view brain tumor 
segmentation model based on cross windows and focal self-attention which 
represents a novel mechanism to enlarge the receptive field by parallel cross 
windows and improve global dependence by using local fine-grained and global 
coarse-grained interactions. First, the receiving field is increased by parallelizing 
the self-attention of horizontal and vertical fringes in the cross window, thus 
achieving strong modeling capability while limiting the computational cost. 
Second, the focus on self-attention with regards to local fine-grained and global 
coarse-grained interactions enables the model to capture short-term and long-
term visual dependencies in an efficient manner.

Results: Finally, the performance of the model on Brats2021 verification set is 
as follows: dice Similarity Score of 87.28, 87.35 and 93.28%; Hausdorff Distance 
(95%) of 4.58 mm, 5.26 mm, 3.78 mm for the enhancing tumor, tumor core and 
whole tumor, respectively.

Discussion: In summary, the model proposed in this paper has achieved excellent 
performance while limiting the computational cost.
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1. Introduction

Brain tumors represent new growths in the cranial cavity that are also known as intracranial 
tumors and brain cancer and originate from the brain, meninges, nerves, blood vessels and brain 
appendages, or from other tissues or organs via metastasis. Most of these growths can produce 
headache, intracranial hypertension, and focal symptoms. The incidence of brain tumors is 7–10 per 
100,000 subjects, and more than half of such tumors are malignant. According to a study by the 
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World Health Organization (WHO), brain tumors have become one of 
the three major tumors endangering human health. The early 
identification and effective segmentation of brain tumors is very 
important if clinicians are to formulate treatment plans and improve the 
survival rates. However, at present, clinicians mainly segment brain 
tumors from nuclear magnetic resonance imaging (MRI) by hand; this 
practice is time consuming and also renders the accuracy of segmentation 
entirely dependent on the experience of the technician or physician. 
Therefore, convolutional neural networks (CNNs) (Long et al., 2015) and 
Transformer (Vaswani et al., 2017; Chen et al., 2021; Yuan et al., 2021) and 
other computer-aided diagnostic technologies are increasingly becoming 
a new trend with which to segment brain tumor images. Figure 1 shows 
that MRI data of different morphologies captured different pathological 
features of tumors.

The segmentation method is based on convolutional neural networks 
(CNNs) and has generated remarkable achievements in the field of 
medical image segmentation and other visual fields with its powerful 
characterization ability. However, CNNs are associated with limitations in 
global modeling or remote contextual interactions and spatial 
dependencies prevent further expansion of brain tumor segmentation, 
thus inspiring the use of Transformer and attention mechanism in 
medical imaging. Following the pioneering work of Transformer in the 
field of vision, Vision Transformer (Dosovitskiy et al., 2020) has created a 
general model in the field of natural language processing (NLP) and 
vision (Zheng et al., 2021). Several variants were subsequently developed, 
assisting the introduction of Transformer into medical image 
classification, target detection, medical image segmentation, and other 
fields. However, with the prosperity of Transformer in the visual field, 
many researchers found that although the full attention mechanism of 
Transformer played a significant role in global modeling or remote 
context interaction, it also generated problems associated with 
computational complexity secondary growth (Zhang et  al., 2021). 
Moreover, due to high computational complexity and memory 
consumption, the full self-attention mechanism of Transformer cannot 
be applied to medical image segmentation.

To improve efficiency and reduce computational complexity, 
researchers have suggested replacing the full self-attention mechanism 
with a limited range of local window self-attention mechanisms. 
Furthermore, considering the information interaction between 
windows, shift operation is utilized (Liu et al., 2021, 2022; Cao et al., 
2023) and information can be exchanged between nearby Windows, 
thus alleviating the problem of computational efficiency, at least to 
some extent. However, expansion of the receptive field in this way is 

rather slow, and many windows need to be stacked to achieve global 
self-attention (Liang et al., 2021). For high-resolution image models, 
such as medical image segmentation, a large receptive field is 
particularly important as this can affect the local or remote acquisition 
of contextual information. In view of this, this paper proposes a multi-
view brain tumor segmentation model based on cross window and 
focal self-attention which can retain computational complexity while 
achieving a large receptive field. Several innovations and major 
contributions were involved in the development of this new model.

 a. An innovative mechanism were used to extract characteristic input 
information from brain tumors, and rich local semantic 
information was extracted with fine-grained interactions. Then, 
global semantic information was captured with coarse-grained 
interactions. This effectively alleviated the problem of high 
computational complexity associated with the global self-
attention mechanism.

 b. The characteristic information of brain tumor was extracted by 
cross window, and the self-attention weights within the window 
were learned from both horizontal and vertical directions by 
concurrent multiple self-attention mechanisms; then, their 
weights were concatenated. This expands the receptive field of 
self-attentional learning and balances the relationship between 
computational complexity and self-attentional learning ability 
in Transformer.

 c. Locally enhanced location coding was adopted to apply the location 
information to the linear projection value; then, the location 
information was directly merged into each Transformer block, 
effectively improving the accuracy of pixel level segmentation for 
brain tumors.

 d. The novelty model proposed was applied to the field of brain tumor 
segmentation and verified on Brats2019 and Brats2021 data sets. 
The experimental results showed that the model proposed in this 
paper has achieved excellent performance and outstanding clinical 
application value.

The sections of this paper are arranged as follows. In the second 
section, we introduce the existing literature related to this paper. In 
the third section, we  elaborate the architecture of the focal cross 
window model. The fourth section provides verification of model by 
using two brain tumor data sets, while the final section summarizes 
the main contents of this paper and discusses future research 
and perspectives.

FIGURE 1

Magnetic resonance imaging (MRI) of multimodal brain tumors. The green, yellow, and blue regions in the ground truth indicate edema (ED), an 
enhancing tumor (ET), and non-enhancing tumor and necrosis (NCR/NET), respectively.
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2. Related work

2.1. Vision Transformer

The Vision Transformer (Dosovitskiy et al., 2020) model, as the 
first application of Transformer in the field of computer vision, 
exhibits strong universality, not only in the field of NLP, but also in 
the field of vision. As far as possible, the model follows the design of 
the original Transformer model. Firstly, the two-dimensional input 
feature map was partitioned through the patch partition module, 
and the partitioned patch was flattened into a token sequence along 
the channel direction (Chu et al., 2021a,b). A learnable embedded 
token classification header was added to the original token sequence 
prior to self-attentional learning; this was implemented by a hidden 
layer perceptron (MLP) during pre-training (Chu et al., 2021a,b; 
Touvron et al., 2021; Zhu et al., 2021), implemented by a linear layer 
when fine-tuned. Because Transformer’s self-attention learning 
sequence remains constant, it loses important location information. 
To solve this problem, researchers embedded the location coding 
information before multi-head self-attention learning. The model 
uses standard learnable 1D location embedding to preserve the 
location information in the token sequence. The encoder layer of 
Transformer is composed of multi-head attention and MLP modules, 
and the Layernorm (LN) layer is used before each module is applied 
(Gao et  al., 2022; Huang et  al., 2022; Lin et  al., 2022). The 
groundbreaking results of the Vision Transformer model 
demonstrated that a pure Transformer-based architecture can 
achieve applications comparable to CNNs, thus demonstrating the 
potential of Vision Transformer for the unified processing of natural 
language processing and visual tasks. Influenced by the success of 
the Vision Transformer model, many researchers improved the 
model from a range of aspects, including computational complexity, 
segmentation accuracy, and parallelization, so as to improve the 
efficacy of downstream tasks such as target detection and image 
segmentation (Howard et  al., 2017; He et  al., 2021; Wang et  al., 
2021a,b; Yuan et al., 2021). This led to the development of the Swin 
Transformer model (Liu et al., 2021) which limits the self-attention 
learning scope of Vision Transformer to a local window and acquires 
global information by shifting information between local windows. 
Thus, the computational complexity of the model is reduced, and the 
accuracy of image classification is improved. Some researchers 
combined Vision Transformer with a CNN to connect input features 
with the Transformer layer after convolution processing, learn local 
information through CNN, learn global semantic information by 
Transformer, and then combine the two strategies. This allowed the 
acquisition of rich semantic feature information. However, when 
Swin Transformer switches information between local windows 
during shift operation, the receptive field expands slowly, and many 
Transformer blocks need to be stacked to obtain global semantic 
information. However, combining CNN with Transformer (Wang 
et al., 2021a,b) makes Transformer lose its original ability to capture 
short-term and remote semantic information at the same time. 
Therefore, to solve these above problems, we  applied the Cross 
Window to balance the relationship between the computational 
complexity of the model and the self-attentional learning ability. 
Under the premise of reducing computational complexity, 
we expanded the receptive field of self-attentional learning, thus 
improving the accuracy of brain tumor segmentation.

2.2. The global and local self-attention

In the field of medical image analysis, Transformer models usually 
need to process many long sequence tokens due to the high resolution 
of images. Over recent years, many researchers have proposed various 
effective self-attention mechanisms to solve the problem of secondary 
computing and high memory overhead in Transformer. On the one 
hand, for many applications featuring medical image segmentation, 
CNN is combined with Transformer. The token quantity is reduced 
through CNN down-sampling, and then the global self-attention 
weight is acquired by coarse-grained interactions. Although this 
method can improve the efficiency of Transformer, it loses rich 
semantic information around the tokens, and loses the ability to 
capture both short-term and remote semantic information. On the 
other hand, fine-grained self-attention weights are learned in local 
windows, and then coarse-grained global self-attention weights are 
captured by window shift or other operations. In this model, 
we  hypothesize that both fine-grained and coarse-grained self-
attentional learning are important. Some recently developed advanced 
models also support his concept (Hu et al., 2018; Bello et al., 2019; 
Chen et al., 2019; Srinivas et al., 2021). Experimental results of this 
paper show that the combination of global and local self-attention can 
effectively improve performance.

This paper proposed focal self-attention model is shown in 
Figure 2. The left image shows that feature semantic information is 
learned by a full self-attention mechanism which will increase the 
computational complexity by a factor of two. The middle image 
indicates that global semantic features are captured by a coarse-
grained method. The image on the right shows the proposed model 
combined fine-grained and coarse-grained focal self-attention 
mechanism. This mechanism divides patch tokens into three levels 
of granularity. Self-attentional learning operations of different sizes 
are performed in each window respectively, thus combining local 
fine-grained and global coarse-grained strategies to capture short-
term and remote semantic information more efficiently 
and effectively.

3. Materials and methods

Focal cross transformer model is a new mechanism to enlarge the 
receptor field by parallel cross window and improve global 
dependencies by using local fine-grained and global coarse-grained 
interactions. The model realizes local and global semantic information 
interaction by focal self-attention, and uses parallel cross window to 
enlarge the perceptive field and limit the rapid growth of 
computational complexity.

3.1. Overall architecture

The overall model utilizes UNet encoder decoder architecture, 
and the encoder architecture of the Focal cross transformer model is 
shown in Figure 2. Specifically, the input MRI section of multimodal 
brain tumor data was formulated by

 X
H W D C∈ × × ×



 (1)
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Where the image size is H × W × D, and the number of input 
channels of the image is represented by C. Firstly, the image was sliced 
along the depth direction. For each slice, the input size of the image 
was formulated by

 X
H W∈ × ×



4

 (2)

And then step convolution was used to convert the input image 
into the patch token of H/4  ×  W/4. In the encoder path, step 
convolution was used for down-sampling to acquire the layered 
architecture. The encoder was divided into four layers; each layer 
contained Ni focal cross transformers. In the focal cross transformer 
layer, horizontal and vertical stripes were used for parallel self-
attention learning, and fine-grained learning was applied around each 
token. This paper used coarse-grained strategies at long distances to 
gain global attention. Next, the feature was transformed by feature 
mapping; in addition, the image size was halved and the number of 
channels was doubled by step convolution between layers. Then, 
we stacked the up-sampling and convolution repeatedly to obtain 
high-resolution segmentation results.

3.2. Focal cross transformer

Although the original full self-attention mechanism can capture 
short-term and remote semantic information, its computational 
complexity is a quadratic form of feature graph size. To alleviate this 
problem, many researchers tend to use local windows to limit the 
scope of self-attentional learning, to reduce the computational 
complexity and memory consumption. Then, the information 
between local windows is exchanged by shift operation to acquire 
global information. However, this operation destroys the ability of the 
original self-attention mechanism to learn both short-term and 
remote semantic information at the same time. Furthermore, each 
token can still only obtain semantic information within a limited area; 
therefore, more blocks need to be  stacked to acquire the global 
receptive field. The focal self-attention based on cross window would 
enlarge the receptive field and acquire local and global semantic 
information interactions in a more efficient manner while limiting the 
rapid growth of computational complexity.

3.3. Focal self-attention

To better realize local and global semantic information interactions, 
the model used a focal self-attention mechanism that used fine-grained 
tokens locally and coarse-grained tokens globally, rather than 
implementing full self-attention mechanism with a fine-grained 
strategy. Therefore, the global self-attention mechanism can 
be implemented on the premise of limiting the quadratic increase of 
computing complexity. Using this system, it was possible to achieve 
long-term self-attention in less time and with less memory because it 
only used fine-grained tokens locally and coarse-grained tokens in the 
long run. However, in practice, we need to query and copy all other 
tokens for each token, which is still associated with a high computational 
cost for high-resolution brain tumor images. In view of this, feature 
mapping was divided into Windows to solve this problem. As shown in 
Figure  2, the left image represents the use of full self-attention 
mechanism to learn feature semantic information, which will increase 
the computational complexity by a factor of two; the middle image 
represents the use of a coarse-grained strategy to capture global 
semantic features. However, a large amount of local feature information 
was lost. The image on the right represents combined fine-grained and 
coarse-grained focal self-attention mechanism. For the input feature 
graph By the formula 2( ), this paper first divided data into a window 
grid of SP×SP, using fine-grained tokens inside the window and coarse-
grained tokens outside the window.

To express the proposed method more clearly, this paper defined 
three terms: feature levels, marked with SL, which represented the 
granularity level of extraction for input feature graphs. In Figure 2, this 
papershow the extraction of three granularity levels. Feature windows 
size, marked with SW, represent the size of the window size in the SL level 
and the number of summary tokens, thus providing sub-windows. 
Feature windows number, marked with SN, represents the total number 
of SW in the SL tier. By applying these three terms {SL, SW, SN}, An module 
that clearly displays the model, as shown in Figure 2 at the fine-grained 
level; the three tags are identified {3,11,11} Figure 3.

3.3.1. Cross window self-attention
As shown in Figure 4, this paper separated the features from fine-

grained local self-attention and coarse-grained global self-attention. 
Taking fine-grained local self-attention as an example, a multi-head 
self-attention mechanism was used to map the input features to T 

FIGURE 2

A patch token display of a brain tumor input feature map under different granularity levels. The image on the left shows that feature semantic 
information is learned by a full self- attention mechanism. The intermediate image representation captures the global semantic feature information 
completely with coarse granularity. The image on the right shows the proposed model combined fine-grained and coarse-grained focal self-attention 
mechanisms to capture semantic features.
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heads; then, each head performed self-attention computations in a 
horizontal or vertical window Figure 5.

After mapping the input features to T headers, the headers were 
segmented to realize parallel computation, where {1,2,…,T/2} 
performs horizontal self-attentional segmentation, {T/2,T/2 + 1,...,T} 
performs vertical segmentation, and T is usually even. The features 
were partitioned equally in the horizontal direction and X was 
partitioned into non-overlapping [X1,X2,…,XM] windows of equal 
width and SU size. Each window contained SU × W tokens. SU can 
be used to balance the relationship between self-attention learning and 
computational complexity, and then fine-grained self-attention weight 
calculation was carried out for each Token in each SU × W size window. 
Finally, the self-attention results of two parallel groups in horizontal 
direction and vertical direction were cascaded.

Let us suppose that the dimensions of queries, keys and values of 
the input feature X projected to the T-th head are all dt; then, the 
formula for calculating self-attention of the T-th head is as follows:

 
X X ,X , ,XM= …[ ]1 2

 (3)

 
Y Attention X W ,X W ,X Wt

i i

Q

i i
K
i i

V
i= ( ) 

(4)

 
Attention X Y ,Y , ,YH t t t

M

t
( ) = …





1 2  
(5)

 X
i S W CU∈ ×( )×
  (6)

FIGURE 3

The overall architecture of this paper proposed Focal Cross Transformer. The left image represents the encoder path architecture diagram of the 
overall architecture, and the right image represents the proposed Focal Cross Transformer.

FIGURE 4

As an illustration of this paper focal cross-attention model, the image on the left represents fine-grained local self-attention while the image on the 
right represents coarse-grained global self-attention, The input feature X was calculated through fine-grained and coarse-grained strategies. In the 
fine-grained strategy, the input feature was mapped to the T-head and then the head was divided. Next, we calculated horizontal and vertical 
autogenous attentions in parallel. Finally, the self-attention results for the two parallel groups in the horizontal direction and vertical directions were 
cascaded. A similar operation was performed for the coarse-grained strategy.

https://doi.org/10.3389/fnins.2023.1192867
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zongren et al. 10.3389/fnins.2023.1192867

Frontiers in Neuroscience 06 frontiersin.org

 
M

H

S
i , , ,M

u

= = …{ }, 1 2

 
(7)

 
W W W

Q

i
K
i

V
i C dt, , ∈ ×



 (8)

In these formulae, the corresponding vertical window size is 
similar. The horizontal and vertical parallel grouping results are 
then cascaded.

 Focal Cross Attention X Concat head , head , , headT− = …( ) ( )1 2  (9)

3.4. Network encoder

Considering that processing the three-dimensional (3D) 
Transformer will significantly increase computational complexity and 
memory consumption, we slice the input feature and slice along the 
depth direction to obtain a two-dimensional image with input feature

 X∈ ×


240 240

 (10)

The overlapped convolutional tokens (kernel = 7, stride 4) were 
then used to obtain the tokens of

FIGURE 5

Visualization of MRI brain tumor segmentation under different methods. Focal Cross Transformer was compared with the results derived from Unet3D, 
3D PSwinBTS, TransBTS, and other models on the BraTS 2021 dataset.
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H W
4 4

60 60× ∈( )×
X 

 
(11)

The dimension of each token was C. Then patch token was 
captured short-term and remote semantic information was acquired 
through the focal cross transformer layer. In the encoder path, there 
were four stages, each of which had Ni focal cross transformer layers; 
this maintained the number of tokens. Each focal cross transformer 
layer was divided into fine-grained and coarse-grained self-attention 
mechanisms according to granularity level, thus balancing 
computational complexity and self-attention learning ability according 
to granularity. At each level of granularity, the self-attention window 
range was extended by a parallel Cross window; then, the horizontal 
and vertical self-attention weights were concatenated. To form a 
hierarchical structure between the focal cross transformer layers, 
we  used a convolutional layer (kernel = 3, stride 2) to reduce the 
number of tokens and double the channel size. The complete encoder 
architecture is shown in Figure 3.

3.5. Network decoder

To generate segmentation results in the original slice image, 
we introduced a CNN decoder for up-sampling and to generate pixel-
level segmentation. Slice image features

 X

H H
C

∈
× ×



32 32
8

 (12)

were converted by the feature mapping layer following the encoder 
layer. Specifically, the sequence data was projected into the standard 
two-dimensional space through the feature mapping module; then, the 
image size was expanded and the number of channels was halved by 
up-sampling through transpose convolution. Then, this paper stacked the 
upper sampling layer and the convolution layer four times to produce 
high-resolution segmentation results. Finally, the slices were concatenated 
to produce segmentation results in the original 3D space.

3.6. Positional encoding

Since the sequence order of the self-attention mechanism 
remained constant, it can lose important positional information. In an 
ablation experiment performed previously with Swin Transformer 
(Liu et al., 2021), it was proven that location information can affect the 
accuracy of image classification; therefore, sresearchers tend to use 
various location coding mechanisms to re-add the lost location 
information. At present, absolute position coding, relative position 
coding and conditional position coding are commonly used. The 
absolute position code uses sinusoidal functions of different 
frequencies to generate the code, which is then added to the input. 
Relative position coding considers the distance between markers in 
the input sequence and can naturally process long sequences of input 
information during training. Conditional location coding (CPE) 
relaxes the limitations imposed by explicit location coding on input 
size, thus allowing Transformer to handle inputs of different sizes. 

However, both absolute and relative location coding can add location 
information to the input token before the Transformer block. This 
paper concept was derived from the locally enhanced location coding 
proposed by Dong et al. (2022), in which this model applied location 
information to the linear projection value and then directly 
incorporated the location information into each Transformer block.

 
Z a b v

i

t

j

n

ij

t

ij

t

ij

t= +( )
=
∑

1  
(13)

In Equation (5), Zit  represents the T th element of vector Zi, aijt  
represents the result of calculation at the t th element, the queue, key, 
and bijt  represents position coding information. vijt  represents the value 
of the self-attention calculation.

4. Experimental results

In this paper, Brats2021 and Brats2019 data sets are used to verify 
the proposed model. Experimental results and ablation experiments 
demonstrate that the proposed model extends the receptor field by 
parallel cross window and improves the global dependence by using 
local fine-grained and global coarse-grained interactions. It can limit 
the computational complexity and improve the segmentation accuracy 
of brain tumors.

4.1. Training data and pre-processing

4.1.1. Training data
The datasets used for model verification in this study were all Brats 

datasets. This type of dataset is provided by the brain tumor segmentation 
challenge organized annually by the Medical Image Computing and 
Computer Assisted Intervention Society (MICCAI). This challenge has 
been held for 10 consecutive years and exerts significant influence in the 
field of medical image segmentation. All imaging data sets are manually 
segmented by 1 to 4 experienced specialists following the same protocol; 
then, their markings are reviewed by board-certified neuroradiologists. 
In the present study, the first dataset we used was Brats2021, which 
included 2,000 patients (8,000 mpMRI scans) including the training set 
(1,251 patients), the validation set (219 patients), and the test set (530 
patients). Each sample consisted of MRI scans from four modes: native 
T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted 
(T2), T2 Fluid Attenuated Inversion Recovery (T2-flair) volumes, post-
contrast T1-weighted (T1GD), T2-weighted (T2), and T2 fluid 
attenuated inversion recovery (T2-flair) volumes. This paper also 
included different clinical modalities and a variety of instruments from 
multiple medical institutions. Each mode had a data size of 240 × 240 × 
155 and shared split labels. Each label had four classes {0,1,2,4}: label 0: 
background; label 1: necrotic tumor core (NCR); label 2: peritumoral 
edematous/invaded tissue (ED), and label 4: GD-enhancing tumor (ET). 
The second data set was brats2019, which was not a subset of brats2021; 
the two datasets were significantly different. The only common data were 
the images and annotations of BraTS’12-'13; but this did not affect 
experimental comparisons. The data set included a training set (335 
cases) and a validation set (125 cases). The number of samples and 
modes in each data set were the same.
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4.1.2. Pre-processing
All Brats mpMRI scans are available as NIfTI files (.nii.gz).

Standardized and enhanced methods were used to process the input 
data before it was entered into the model for verification. Since the 
MRI images provided were not standardized, we normalized the gray 
level of each image and kept the background region as 0. The brats 
data set has been pretreated with cranial stripping and other 
procedures. At the same time, four types of data enhancement were 
implemented in this paper in order to prevent overfitting problems 
and enhance the Rubon property of the model.

 1. Random cropping: considering the large number of black 
background voxels in the border of the original image, the 
image was randomly cropped to size (128 × 128 × 128) voxels.

 2. Random flip: the image is flipped randomly with a probability 
of 50% along the coronal plane, sagittal plane and axial plane.

 3. Intensity normalization: as the data sets are collected from 
different instruments in different institutions, the image 
intensity will be  different, and it is necessary to carry out 
intensity normalization. In this paper, Z-Score normalization 
is used to process data.

 
X

X
j
i j

i
j

j

( )
( )

=
− β

α  
(14)

Where β  is the mean and α  is the standard deviation.
 4. Gaussian noise: gaussian noise is added to the training process 

to improve the robustness and generalization ability of the 
model. Gaussian noise is a noise generated by adding normal 
distributed random values with a mean of zero and standard 
deviation to the input data.

4.2. Implementation details and evaluation 
metrics

4.2.1. Implementation details
This paper trained model with Pytorch, using 8 NVIDIA RTX A5000 

(24GB memory) to train 7,050 epochs from scratch using a batch size of 
16. For optimization, this paper adopted the Adam optimizer and set its 
initial learning rate as 0.0003. To achieve more effective convergence, this 
paper set the decay rate as 0.9 in each iteration. For data set preprocessing, 
this paper adopted standardization, random flipping, and other strategies 
to prevent overfitting, but many epochs still needed to be trained. In the 
training stage, the original training data set was segmented according at 
a ratio of 8:2 for model training, adjustment, and optimization. According 
to the inference stage, this paper rescaled the original image and cut the 
intensity value. Then, this paper uploaded the evaluation model and 
prediction results to the official website of the host party.

4.2.2. Evaluation metrics
The model used four evaluation metrics for analysis 

and comparison.

 1. The dice similarity coefficient (DSC), which was used to 
measure the similarity between the brain tumor region 

predicted by the proposed Focal Cross transformer and the 
actual segmentation results provided by Brats; the value range 
was [0,1] and the greater the value, the higher the accuracy of 
model prediction. Of these, true positive (TP), the actual brain 
tumor region, was used to predict the brain tumor region; 
while true negative (TN was predicted to be the normal brain 
tissue region. The false positive (FP) region was actually normal 
but was predicted to be brain tumor region. The false negative 
(FN) region was actually negative but was predicted to 
be normal.

 
Dice

TP

FP TP FN
=

+ +
2

2  
(15)

 2. Hausdorff_95 (95% HD), the Dice coefficient was sensitive to 
the region inside the tumor, and the Hausdorff distance was 
sensitive to the delimited boundary. The Hausdorff_95 
represents the last value of the Hausdorff distance multiplied 
by 95% and was used to eliminate the influence of outlier value 
small subsets.

 
Hausdorff distance P Sup d x,Y , Sup d X,yx Z y Y95 95= ∈ ∈( ) ( ){ }  (16)

 3. Sensitivity, it refers to the proportion of pixels whose true value 
is tumor that are judged as corresponding tumor or edema.

 
Sensitivity

TP

TP FN
=

+  
(17)

 4. Specificity, it refers to the proportion of pixels that are judged 
to be normal among the pixels whose true values are normal.

 
Specificity

TN

TN FP
=

+  
(18)

4.3. Main results

4.3.1. Brats 2021
As with previous brain tumor segmentation research, this paper 

first performed a five-fold cross-validation evaluation on the training 
set. The average Dice scores of this model for the ET, WT and TC 
regions were 89.39, 93.58 and 88.65%, respectively. Similarly, at the 
interface stage, this paper also evaluated the performance of the model 
by qualitative and quantitative analysis. On the verification set 
submitted to the official website, we also compared the segmentation 
results of this model with currently available models; quantitative 
analysis results are shown in Table 1. The visualized results are shown 
in Figure 5.

The Dice scores of this model on the BraTS 2021 validation set for 
ET, TC and WT were 88.28, 86.35 and 93.28% respectively, and the 
corresponding results of the Hausdorff were 4.58, 5.26 and 3.78, 
respectively. Compared with a previous classical algorithm (Table 1), 
the segmentation accuracy was higher, and the segmentation (in 
Hausdorff distance) was also significantly improved. Compared with 
the classical Unet3D model, the Dice coefficient of the model 
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proposed in this paper for the ET, TC and WT areas, was increased by 
9.26, 6.62 and 4.21%, respectively. Since the UNet3D model only used 
a CNN to learn local feature information, its learning ability for global 
and long-distance semantic features was insufficient, thus resulting in 
a big difference between the segmentation accuracy and this model. 
Compared with the TransBTS model combined with Transformer and 
UNet, the Dice coefficient of the Focal Cross Transformer method for 
the ET, TC and WT regions, increased by 1.68, 1.09 and 1.81%, 
respectively. Compared with the Swin Unter model with layered Swin 
Transformer, the Dice coefficient of the model proposed in this paper 
for the ET and WT regions increased by 1.48 and 0.68%, respectively, 
and decreased by 1.15% in the TC region. In the next experiment, 
we found that adjusting the width of the stripes in focal cross-attention 
could further improve the segmentation accuracy of the Focal Cross 
Transformer model in the TC region, but could lead to a large increase 
in computational complexity and memory. Therefore, this paper 
adopted the current configuration on the BraTS 2021 dataset for 
model validation (Table 2).

4.3.2. Qualitative analysis
This paper visualized the segmentation results of the model on the 

BraTS 2021 dataset by applying Unet3D, 3D PSwinBTS, TransBTS and 
other methods. During visual display, we were unable to obtain the 
ground truth value for the verification set in the BraTS 2021 dataset; 
thus, this paper performed five-fold cross-validation evaluation of 
Unet3D, 3D PSwinBTS, TransBTS, and focal cross Transformer model 
on the training set.

4.3.3. Brats 2019
this paper also evaluated the segmentation results of model on the 

BraTS 2019 validation set. Because the BraTS 2019 dataset and the 
BraTS 2021 dataset are different in terms of the number of cases; the 
sequence type and image size were the same. This paper directly 
applied hyperparameters on the BraTS 2021 dataset to train model. 
The average Dice scores of the Focal Cross Transformer model on the 
BraTS 2019 validation set for ET, WT and TC were 89.68, 93.88 and 
89.25%, respectively. The Hausdorff results were 4.32, 4.26 and 3.28, 
respectively. Compared with the Unet3D, 3D PSwinBTS, and 
TransBTS models, the Focal Cross Transformer model showed clear 
improvements in the Dice coefficient and the Hausdorff two 
evaluation indices (Table 2).

The model presented in this paper achieves excellent 
performance on BraTS 2019 validation set. This was mainly 
because the model uses Fine-grained local self-attention and 
Coarse-grained global self-attention mechanisms to extract the 
input characteristic information from brain tumors and extract 
rich local semantic information through fine-grained grained 
mechanisms. Then, global semantic information was captured with 
coarse granularity. This strategy effectively improved the pixel level 
segmentation accuracy.

4.4. Ablation study

To more effectively verify the performance of the model, this 
paper performed extensive ablation experiments to prove the 
rationality and feasibility of the model’s design principle. This paper 
investigated the model’s capabilities in several different ways. Unet3D, T
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3D PSwinBTS and TransBTS proved that the combination of CNN 
and Transformer effectively improved the performance of the model. 
Therefore, this paper no longer independently verified the influence 
of CNN and Transformer on the performance for brain 
tumor segmentation.

4.4.1. Coarse-grained global and fine-grained 
local

This paper used fine-grained tokens locally and coarse-grained 
tokens globally, rather than implementing a full self-attention fine-
grained mechanism. The combination of coarse-grained global self-
attention and fine-grained local attention mechanism is an important 
aspect of the model proposed in this paper. However, full self-attention 
adopted by vision Transformer cannot be  applied to brain tumor 
segmentation due to high levels of computational complexity. 
Therefore, it is not possible to verify cases that only use fine-grained 
full self-attention mechanisms. This paper only verified the comparative 
performance between a model that adopted the combination of global 
coarse-grained and local fine-grained mechanisms and a model with 
the same granularity. This paper use the combined CNN and cross 
Transformer model in the encoder to perform a comparison 
experiment between the segmentation of brain tumors with the same 
particle size and the current model combined with coarse-grained 
global and fine-grained local mechanisms. The input features size is 
shown in Formula (1); then, slices were generated along the depth 
direction. For each slice and the input size of the image is shown in 
Formula (2), step convolution was used to convert the input image into 
a patch token of H/4 × W/4. In the encoder path, step convolution was 
used for down-sampling to achieve the layered architecture. Table 3 
shows the results of comparative experiments. For ET, TC and WT, 
Dice coefficients of the coarse-grained global and fine-grained local 
models increased by 2.02, 3.03 and 3.69%, respectively.

4.4.2. Cross window
In the model, this paper extended the scope of the self-

attention window by applying a parallel cross window and then 
concatenated the horizontal and vertical self-attention weights. 
This paper created sw = 1 and sw = 2 Windows separately in the 
horizontal direction to learn self-attention, and the same 
configuration was also adopted in the vertical direction; ‘sw’ 
indicates the size of the sharded self-attention window width. 
Table 4 shows the Dice coefficients of self-attentional learning and 
cross window model for ET, TC and WT in the horizontal and 
vertical directions, respectively. By performing comparative 
experiments, this paper proved that by combining horizontal and 
vertical self-attention weights, this model effectively increased the 
receptive field of the self-attention window and improved the 
segmentation performance of the model.T
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TABLE 3 Ablation study on coarse-grained global and fine-grained local 
mechanism.

Method Dice (%)

ET TC WT

Coarse-grained 85.26 84.32 89.59

Coarse-grained global 

and fine-grained local
87.28 87.35 93.28
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5. Conclusion

This paper developed a novel segmentation model for brain 
tumors. Fine-grained local self-attention and coarse-grained global 
self-attention mechanisms were combined to extract characteristic 
input information from brain tumors and extract rich local semantic 
information through fine-grained mechanisms. Then, global 
semantic information was captured with coarse granularity. The 
cross window concurrent multi-head and self-attention mechanism 
was used to learn the self-attention weight in the window from both 
horizontal and vertical directions, thus expanding the receptive field 
of self-attention learning. This also balanced the relationship 
between computational complexity and self-attention learning 
ability in Transformer. Experimental results on the Brats2021 and 
Brats2019 datasets validated proposed model. In future research, 
we will continue to explore ways to improve Transformer’s global 
self-attention learning ability and reduce computational complexity 
so that we  can build an efficacious segmentation model for 
brain tumors.
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