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Edge detection is one of the fundamental components of advanced computer 
vision tasks, and it is essential to preserve computational resources while 
ensuring a certain level of performance. In this paper, we propose a lightweight 
edge detection network called the Parallel and Hierarchical Network (PHNet), 
which draws inspiration from the parallel processing and hierarchical processing 
mechanisms of visual information in the visual cortex neurons and is implemented 
via a convolutional neural network (CNN). Specifically, we designed an encoding 
network with parallel and hierarchical processing based on the visual information 
transmission pathway of the “retina-LGN-V1” and meticulously modeled the 
receptive fields of the cells involved in the pathway. Empirical evaluation 
demonstrates that, despite a minimal parameter count of only 0.2  M, the proposed 
model achieves a remarkable ODS score of 0.781 on the BSDS500 dataset and 
ODS score of 0.863 on the MBDD dataset. These results underscore the efficacy 
of the proposed network in attaining superior edge detection performance at a 
low computational cost. Moreover, we believe that this study, which combines 
computational vision and biological vision, can provide new insights into edge 
detection model research.
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1. Introduction

Edge detection is a fundamental task in the field of computer vision, aimed at extracting 
clear edge information from complex backgrounds and textures. It plays a crucial role in 
advanced visual tasks such as object detection (Kyrkou et al., 2013; Dai et al., 2021) and semantic 
segmentation (Tu et al., 2020; Peng et al., 2021), making it an important area of focus of research 
in computer vision.

Convolutional Neural Networks (CNN) have been widely used in computer vision due to 
their excellent feature extraction ability and good performance. In edge detection tasks, CNNs 
have also shown promising results. In CNN-based edge detection models with an encoding-
decoding architecture, a large classification network such as VGG16 (Simonyan and Zisserman, 
2014) is typically employed as the encoding network to extract edge feature information. The 
extracted features from the encoding network are further processed and fused with information 
through the design of a decoding network to obtain the final edge image. Compared to 
traditional edge detection methods (Prewitt, 1970; Sobel, 1970; Canny, 1986; Dalal and Triggs, 
2005; Wang and Shui, 2016) and bio-inspired visual mechanisms for edge detection (Grigorescu 
et al., 2003; Petkov and Subramanian, 2007; Yang et al., 2014; Akbarinia and Parraga, 2018), 
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CNN-based edge detection methods can extract most of the feature 
information in the image, fuse features from different levels, and 
achieve better performance.

The aforementioned CNN-based edge detection network employs 
VGG16 as the encoding network, which has the characteristic of 
having a large number of network parameters, high computational 
cost, and requiring transfer learning to achieve better edge detection 
performance. These characteristics are generally present in encoding-
decoding edge detection models that rely on transfer learning. This is 
because these methods usually adopt encoding networks with deeper 
layer structures, which increase model complexity by stacking a large 
number of small-sized convolution kernels to increase model depth 
and width. However, research has shown that a large number of 
stacked small-sized convolution kernels not only cannot effectively 
increase the receptive field area as theoretically expected (Luo et al., 
2016), but also can cause parameter redundancy (Chen et al., 2016).

Braekevelt (1990) found that compared to human vision, cats are 
myopic and must be 6 meters away to see what an ordinary person can 
see at 20 or 30 meters. This means that the edge information obtained 
by the cat’s visual cortex from the image is not as clear as that of 
humans, but this does not affect the cat’s ability as a mouse hunter. 
That is to say, accurate identification of an object does not necessarily 
require high-quality edge information. From the perspective of 
“sacrificing a small part of network performance, saving computational 
cost, and reserving more computing power for other higher-level 
visual processing tasks,” this article designs a biologically inspired 
lightweight edge detection network.

This article combines the transmission of biological visual 
information between different hierarchical levels with convolutional 
neural networks. Specifically, it corresponds X cells, Y cells, simple 
cells, and complex cells in the visual pathway to the encoding network. 
With the aim of achieving fewer parameters, we designed a lightweight 
biomimetic encoding network that sacrifices some performance while 
still possessing high practical value. Our contributions can 
be summarized as follows:

	 1.	 Inspired by the principle that visual information is efficiently 
processed through the parallel and hierarchical mechanisms of 
visual neurons in the visual cortex, and with the goal of 
reducing model parameters, this paper proposes a lightweight 
edge detection deep learning model that simulates the parallel 
and hierarchical mechanisms of the “retina-LGN-V1” 
visual pathway.

	 2.	 Accurately modeling the receptive field properties of X cells, Y 
cells, and simple cells involved in parallel and hierarchical 
processing in the visual cortex, convolution models were built 
to simulate these properties. Based on these models, a 
lightweight edge detection network was proposed to simulate 
the information transmission characteristics and edge 
detection mechanism in the “retina-LGN-V1” visual pathway.

	 3.	 Our network achieves good performance in edge detection 
tasks with relatively fewer parameters, which leaves more 
storage and computing resources for subsequent advanced 
visual tasks.

We have arranged the content of our paper as follows: In Section 
“Related work”, we introduce the research status of edge detection 
algorithms from both non-biomimetic and biomimetic perspectives. 

In Section “Propose method”, we provide the specific details of our 
proposed PHNet. In Section “Experiment”, we  evaluate the 
performance of PHNet based on the BSDS500 (Arbelaez et al., 2010) 
and MBDD (Mély et  al., 2016) datasets, examining the model’s 
advantages and disadvantages from three aspects: accuracy, 
computational complexity, and parameter size. In Section 
“Conclusions and prospects”, we summarize our research and discuss 
future research directions based on the results.

2. Related work

The task of edge detection has been extensively researched by 
scholars, resulting in the proposal of numerous edge detection 
methods. This article classifies the task of edge detection into two 
broad categories based on the research direction: biologically-inspired 
edge detection, which draws inspiration from bio-vision, and 
non-biologically-inspired edge detection, which is designed based on 
empirical methods.

2.1. Biologically-inspired edge detection 
methods

The biological visual system possesses powerful visual capabilities, 
allowing for the rapid comprehension of complex natural scenes. 
Investigating the design of edge detection methods based on the 
mechanisms by which the visual system processes information is a 
worthwhile research direction. The concept of receptive fields, as an 
important property of visual nerve cells, can effectively reflect the 
response characteristics of these cells to stimuli. Inspired by the 
findings of Hubel and Wiesel (1962) in the primary visual cortex, 
Grigorescu et  al. (2003) simulated the classical and non-classical 
receptive fields of primary visual cortex cells using Gabor functions 
and Gaussian difference functions, respectively. This resulted in the 
edge detection algorithm acquiring certain texture suppression 
capabilities. Petkov and Subramanian (2007) proposed Spatiotemporal 
Gabor filters based on the dynamic characteristics of receptive fields 
in the primary visual cortex to effectively suppress noise and texture 
by integrating spatiotemporal information. Yang et  al. (2014) 
simulated the classical receptive field of primary visual cortex cells 
using Gaussian first-order derivatives and comprehensively considered 
the features of direction, brightness, and contrast to effectively 
improve the edge detection performance of the algorithm. Zhong and 
Wang (2021) explained and modeled the receptive field mechanisms 
of retinal cells’ light/dark adaptation and simple and complex cells 
based on the visual information transmission and processing 
mechanisms from the retina to the V1 area and the visual information 
degradation mechanism. They proposed an edge detection algorithm 
that highly mimics the neural mechanism. Akbarinia and Parraga 
(2018) were inspired by the feedback mechanism of V2 neurons in the 
higher visual cortex and considered four types of peripheral receptive 
fields (Full, Far, Iso-, and Orthogonal-orientation) and relied on the 
contrast adjustment of the four peripheral mechanisms to contribute 
to the center. They also proposed a feedback connection from higher 
visual areas to lower visual areas. Fang et al. (2020) proposed an edge 
detection method that enhances local contrast difference response 
based on the mechanism of bilateral asymmetric receptive fields in the 
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visual pathway. Meanwhile, the processing of color information by the 
visual system is essential in visual cognition. Yang et  al. (2013) 
proposed the CO algorithm based on the color opponent mechanism 
of visual nerve cells’ receptive fields, which simulated red-green and 
yellow-blue color opposition and can more stably detect color edges 
in natural images. Subsequently, Yang et  al. (2015) added sparse 
coding for texture suppression in the CO algorithm and proposed the 
SCO algorithm, which has stronger texture suppression ability than 
the CO algorithm.

The aforementioned biomimetic edge detection method utilizes a 
certain function to simulate visual physiological mechanisms. Inspired 
by the receptive field mechanism of biological vision, Tang et  al. 
(2019) were the first to propose a model that combines CNN with 
biological vision mechanisms, presenting a multi-scale fusion 
encoding network that achieved excellent performance. Subsequently, 
Lin et al. (2022) designed a pre-enhancement network (PENet) by 
simulating the information transmission mechanism of the retina/
lateral geniculate nucleus (LGN), which enhanced the feature 
extraction capability of the encoding network. They further designed 
a decoding network that integrated the hierarchical structure of the 
visual pathway and the integration characteristics of the inferior 
temporal (IT) cortex, thereby enhancing the feature integration ability 
of the decoding network.

2.2. Non-biomimetic edge detection 
methods

Early edge detection methods mostly relied on classical 
mathematical operators. Local brightness gradient detection operators 
such as Sobel (1970) and Prewitt (1970) were among the earliest edge 
detection methods, detecting edge information in images by detecting 
changes in brightness gradient. However, this method is sensitive to 
noise and texture, and is not robust enough. Wang and Shui (2016) 
used the first-order partial derivative of Gaussian to perform 
anisotropic edge detection on color images, proposing the ANND 
edge detection method. The main component was extracted from the 
response of different color channels and directions using singular 
value decomposition to generate an edge intensity map. They also 
improved the performance by fusing gradient-based and Gaussian 
first-order derivative-based edge responses. Later, Li and Shui (2021) 
improved the model’s performance by training a classifier to integrate 
anisotropic edge responses. Although these methods are constantly 
being improved and optimized, they still struggle to extract edges well 
from complex backgrounds, as they lack consideration of different 
types of features and reference to contextual information, making it 
difficult to meet the demands of current applications.

In recent years, the development of deep learning technology has 
led to the proposal of numerous edge detection methods based on 
deep learning. These methods use convolutional neural networks to 
map natural images to edge images. Xie and Tu (2017)were inspired 
by FCN (Long et al., 2015) and DSN (Lee et al., 2015) and proposed 
an end-to-end HED based on convolutional neural networks. They 
used the convolutional part of VGG16 as the encoding network, 
extracted five different scales of features, and used them for edge 
output prediction after upsampling. Liu et al. (2017)improved HED 
and proposed the RCF network, which predicts edges using the 
features of all 13 convolutional layers after upsampling. Wang et al. 

(2017) addressed the issue of blurry edges caused by direct upsampling 
to the same resolution in HED and proposed the CED network. They 
adopted a strategy of slow upsampling and feature fusion at each level 
to ensure that the multi-scale features in the CED network do not lose 
accuracy due to excessive upsampling.

However, these edge detection methods require the use of large 
classification networks such as VGG16 as the encoding network, and 
rely on transfer learning to achieve high-performance edge detection, 
which requires a significant amount of computing resources. 
Therefore, researchers have started to focus on compressing the 
model’s parameters and computing power while maintaining high 
performance. At the same time, traditional edge detection algorithms 
such as Canny (1986), which use pixel relationships, have once again 
attracted researchers’ attention. Su et al. (2021) combined the gradient 
information of traditional edge detection operators with CNN and 
designed a lightweight edge detection network called PiDiNet.

To summarize, edge detection, as the foundation of other 
advanced visual tasks, should occupy fewer computing resources to 
reserve more resources for higher-level visual computing tasks. 
Biological vision has the characteristic of efficiently understanding 
complex natural scenes. Therefore, this paper proposes a lightweight 
edge detection model guided by biological vision mechanisms.

3. Propose method

3.1. Bio-visual concept

Retinal ganglion cells (RGCs) are the most extensively studied and 
well-characterized cells in the retina. In Kuffler (1953), discovered that 
they have concentric antagonistic receptive fields, which contain a 
large number of photoreceptors. The photoreceptors in the center of 
the receptive field provide excitatory signals to the ganglion cells, 
while those in the surrounding area provide inhibitory signals. 
Therefore, researchers divide the receptive fields into excitatory 
centers and inhibitory surrounds. In Rodieck (1965), established a 
mathematical model for this type of concentric antagonistic receptive 
field, which consists of two Gaussian distributions in opposite 
directions, as expressed below:
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The sensitivity of the excitatory center and the inhibitory surround 
is, respectively, controlled by kc and ks, while the range of influence of 
the excitatory center and the inhibitory surround is, respectively, 
controlled by rc and rs, with r rc s< . As it is composed of two mutually 
antagonistic Gaussian distributions, it is also known as the difference-
of-Gaussians model. This spatially antagonistic receptive field is the 
basis for neural ganglion cells to exhibit lateral inhibition physiologically.

Enroth-Cugell and Robson (1966) found that while the Gaussian 
difference model can effectively describe the receptive field of X 
ganglion cells (referred to as X-cells), it fails to match the experimental 
data of Y ganglion cells (referred to as Y cells). X cells and Y cells 
exhibit distinct response patterns to sinusoidal gratings falling within 
their receptive fields. When the sinusoidal grating causes the intensity 
of light within the receptive field of the ganglion cell to be equal to the 
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mean light intensity, X cells show almost no response, whereas Y cells 
produce a strong response to the appearance and disappearance of the 
sinusoidal grating in their receptive field. This difference in response 
to stimuli stems from the distinct receptive field characteristics of X 
cells and Y cells. The excitatory and inhibitory effects of the receptive 
field of X cells can be linearly superimposed, and their receptive field 
model can be represented by the Gaussian difference model shown in 
Figure 1A. In contrast, for Y cells, Hochstein and Shapley’s research 
(Hochstein and Shapley, 1976a,b) suggests that in addition to having a 
concentric antagonistic mechanism, their receptive field also contains 
a non-linear subunit with rectifying properties that is sensitive to the 
second harmonic component within the receptive field. Such a 
receptive field model of Y cells is shown in Figure 1B. Similar to retinal 
ganglion cells, LGN cells also have concentric antagonistic receptive 
fields and can be divided into X cells and Y cells, playing a crucial role 
in the transmission and pre-processing of visual information.

Hubel and Wiesel (1962, 1965) proposed that the receptive fields of 
primary visual cortex neurons are formed by the convergence of 
receptive fields of lower-level neurons. As shown in Figure 2A, the 
receptive field of a simple cell is composed of multiple LGN cells with 
concentric receptive fields, which are arranged in a line on the retina, 
resulting in a narrow receptive field for the simple cell with the line’s 
orientation being its preferred orientation. As shown in Figure 2B, the 
receptive field of a complex cell is formed by the convergence of simple 
cells with bar-shaped receptive fields, which are arranged in a line in 
space. Therefore, the light and dark edges that satisfy the preferred 
orientation of the simple cells can cause a response in the complex cell 
regardless of their location. It is believed (Shou, 1997) that complex cells 
mainly focus on the abstract concept of orientation in visual information. 
There is currently little research and conclusion on hypercomplex cells, 
but it is certain that they have stricter requirements for optimal stimuli 
and only respond to specific orientations such as breakpoints or corners.

3.2. Network architecture

In biological vision, the formation of edge information occurs 
in the retina-LGN-V1 pathway. During this process, the parallel 

processing in the retina and LGN, as well as the hierarchical 
processing in V1, play important roles in extracting edge 
information. In the parallel processing, X-type and Y-type cells 
constitute the X and Y parallel pathways. The hierarchical 
processing then processes the information based on the 
hierarchical forms of simple and complex cells. Inspired by this 
visual information transmission mechanism, we  designed a 
network model with an encoding-decoding structure, as shown in 
Figure 3.

In the encoding network, there are subnetworks for X cells, Y 
cells, simple cells, and complex cells, respectively. The design of the X 
and Y cell subnetworks is inspired by the receptive field properties of 
corresponding cells in the retina and LGN. Similarly, the design of the 
simple and complex cell subnetworks is inspired by the receptive field 
properties of corresponding cells in V1. In the decoding network, the 
target edges are extracted based on the features extracted through 
parallel and hierarchical processing.

The Init Conv is a 1×1 convolutional layer used to adjust the input 
features from 3 channels to C channels. In the parallel processing, the 
two subnetworks are responsible for extracting contrast information, 
while in the hierarchical processing, the two subnetworks respond to 
specific directional features. Furthermore, we increase the receptive 
field of cells by applying max pooling before the information enters 
the modules for simple cells and complex cells. Finally, the contour 
information is formed through the decoding process. The design of 
the X and Y cell subnetworks is detailed in Section “X-cell and Y-cell 
subnetwork”, the design of the simple and complex cell subnetworks 
is described in section “Simple and complex cells subnetwork”, and the 
structure of the decoding network is explained in section 
“Decoding network”.

3.2.1. X-cell and Y-cell subnetwork
As shown in Figure  4A, X cells have concentric antagonistic 

receptive fields. Traditional biomimetic edge detection methods 
directly use the Gaussian difference model proposed by Rodieck 
(1965) to simulate the receptive field of X cells. They use fixed 
Gaussian function templates to simulate the contributions of the 
center and surround mechanisms to cell responses. In contrast to 

FIGURE 1

(A) Receptive field model of X cell; (B) Receptive field model of Y cell.

https://doi.org/10.3389/fnins.2023.1194713
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhou et al.� 10.3389/fnins.2023.1194713

Frontiers in Neuroscience 05 frontiersin.org

these methods, this study uses learnable convolutional kernels to 
simulate the receptive field of X cells.

The ranges of the center and surround mechanisms’ effects on cell 
responses are illustrated in Figure 4B and contribute with opposite 
signs. The center response mechanism is represented by a 7 × 7 depth-
wise separable convolutional layer (ConvC), while the surround 
response mechanism is composed of a 21 × 21 depth-wise separable 
convolutional layer (ConvS). The effective receptive field is constructed 
as a circular ring, and the antagonistic mechanism is formed by 
subtracting the surround response from the center response.

The X-cell subnetwork structure, inspired by the center-surround 
antagonism mechanism in X cells, is depicted in Figure 4C of this 
paper. When given an input feature F with n channels, the convolution 
operation is performed channel-wise using the center-surround 
mechanism of X cells. The mathematical expression for the calculation 
process is as follows:

	
R ReLU Norm F Kc
i i

c
i= ∗( )( )	 (2)

	
R ReLU Norm F Ks
i i

s
i= ∗( )( )	 (3)

Where i n∈{ }1 2, , ,  represents the channel index, Rci  denotes the 
feature of the i-th channel after the center mechanism, and Rsi  
represents the feature of the i-th channel after the surround 
mechanism. Kci  denotes the convolution kernel (ConvC) that simulates 
the center mechanism, while Ksi  represents the convolution kernel 
(ConvS) that simulates the surround mechanism. These kernels are 
circular rings with an inner radius of rc and an outer radius of rs . 
ReLU ⋅( ) denotes the activation function, and Norm ⋅( ) represents the 
normalization operation.

The center and surround responses have opposite contributions, 
meaning they exhibit antagonistic. The antagonistic response of the 
X-cell subnetwork is obtained by calculating the difference between 
the features obtained after the responses of the center and surround 
mechanisms. The calculation process is as follows:

	 E R RX
i

c
i

s
i= − ⋅ω 	

(4)

Where EX
i  represents the antagonistic response of the i-th 

channel, ω is a learnable weight parameter that controls the strength 
of the surround mechanism’s inhibition on the center mechanism. 
After obtaining the antagonistic response of each channel of the X 
cells, this paper employs a standard 1×1 convolution to integrate the 

FIGURE 2

Formation mechanisms of visual cortex cell’s receptive field proposed by Hubel and Wiesel; (A) Simple cell; (B) Complex Cell.

FIGURE 3

Parallel processing and hierarchical processing network framework.
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responses across all channels, resulting in the final response of the 
X cells.

Y cells’ receptive field, in addition to having the same center 
and surround mechanisms as X cells, also possess non-linear 
subunits that exhibit rectification properties, as shown in 
Figure 5A. The receptive field of Y cell models is simulated using 
learnable convolutional kernels. The simulation of the center-
surround mechanism in the Y cell model is the same as that in 
the X cell model, but the Y cell model incorporates unique 
non-linear subunit models.

The contributions of the non-linear subunits to the cell’s response 
have the same sign as the center mechanism and have a distribution range 
that is roughly similar to the surround mechanism. This paper considers 
that the differences between the non-linear subunits depend on their 
distances from the receptive field center. Therefore, the influence range of 
the non-linear subunits is divided into multiple concentric circular 
regions using a certain spacing denoted as W, forming a depth-wise 
separable convolution (Convcol) with multiple differently sized circular 
rings. The construction method of these circular rings is consistent with 
the surround convolution method of X cells. By adjusting the radius, the 
size of each circular ring can be controlled, and each region is responsible 
for a specific type of non-linear subunit. Each non-linear subunit is 
composed of a 3×3 depth-wise separable convolution (Convsub). In the 
example shown in Figure  5B, the influence range of the non-linear 
subunits is divided into four regions, each corresponding to a different 
type of non-linear subunit.

The structure of the Y-cell subnetwork is shown in Figure 5C. For an 
input feature F containing n channels, the Y-cell subnetwork performs a 
channel-by-channel convolution of it and obtains the Y cell response by 

integrating the pericentral mechanism response with the overall response 
of the nonlinear subunits, since the pericentral antagonistic response 
mechanism remains the same as the X cell subnetwork computational 
process. The Y-cell subnetwork computational process is as follows:

	 E E RY
i

X
i

NLU
i= + 	

(5)

The computation process for obtaining RNLU
i , which represents 

the feature of the i-th channel after the response of the non-linear 
subunit, is as follows:

	
R

k
ReLU Norm F K KNLU

i

j

k
i

sub
i j

col
i j= ∗( )( ) ∗

=
∑1
1

, ,

	
(6)

Where k  represents the number of non-linear subunits, Ksub
i j,  

denotes the learnable convolutional kernel for the j-th non-linear 
subunit, and Kcol

i j,  is responsible for collecting the response of the 
j-th non-linear subunit in its corresponding region to the central 
position. It has a ring-shaped structure with a width of w and 
operates in a serial manner with the convolution operation of the 
non-linear subunit. After obtaining the Y-cell responses of each 
channel, the conventional 1 × 1 convolution is used in this paper 
to integrate each channel to obtain the final Y-cell responses.

3.2.2. Simple and complex cells subnetwork
Simple cells have elongated receptive fields and exhibit orientation 

selectivity. To simulate this, we used learnable orientation-selective 

FIGURE 4

(A) Simulation of X cell receptive field; (B) Extent of the central and surrounding mechanisms; (C) X cell subnetwork.
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convolutional kernels with four different directions, as shown in 
Figure 6. For input feature F  with n channels, we processed it channel-
wise. The response of the i-th simple cell, denoted as Esi , can 
be expressed as follows:

	
E Norm MaxPool F Ks
i

j

i
ori
i j= ( ) ∗( )( )

=
∑1
4

1

4

ReLu
,

	
(7)

Here, MaxPool ⋅( ) represents a 2 2×  pooling operation, which is 
used to enlarge the receptive field of the simple cells. Kori

i j,  is the 
learnable convolutional kernel of the i-th simple cell in the j-th 
direction. After obtaining the response of each channel’s simple cells, 

we  integrated them using a 1 × 1 convolution to obtain the final 
response of the simple cells.

There is no precise description of the receptive field of complex 
cells. However, it is certain that they have elongated receptive fields, 
similar to those of simple cells. As mentioned earlier, the receptive 
field of a complex cell is formed by the convergence of receptive fields 
of several simple cells, and the difference between simple and 
complex cells may be dynamically reflected in the visual cortex cells. 
Therefore, in this article, the receptive field of complex cells is not 
directly modeled. Instead, we  use direction-selective convolution 
kernels, the same as those used for simple cells, to simulate the 
receptive field of complex cells. The convergence of the receptive field 
of complex cells to that of simple cells is represented through a 

FIGURE 5

(A) Simulation of Y cell receptive field; (B) Manner of partitioning the area of responsibility of the non-linear subunits; (C) Y cell subnetwork.

FIGURE 6

Convolutional Kernels simulating orientation-selective receptive fields.
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hierarchical processing approach. The hierarchical network 
consisting of simple cell models and complex cell models is shown in 
Figure 7.

3.2.3. Decoding network
The decoding network has a structure as shown in Figure 8A, and 

the feature integration module is shown in Figure  8B. It uses a 
progressive upsampling approach to integrate features of different 
sizes, effectively ensuring the accuracy of edge information. In order 
to better focus on edge information and reduce the influence of 
surrounding texture information, we propose a multi-scale attention 
mechanism, as shown in Figure 8C.

4. Experiment

In this section, we conducted a performance evaluation of the 
proposed model based on the BSDS500 and MBDD datasets. 
We analyzed the model from three aspects: accuracy, computational 
complexity, and parameter quantity, and provided an assessment of its 
strengths and weaknesses.

4.1. Experimental details

In the proposed encoding network, the number of channels in 
the feature maps was set to 32, and the sizes of all the center and 
surround mechanism convolutional kernels were set to 7 and 21, 
respectively. For the Y-cell model, the size of the non-linear 
subunit convolutional kernel was set to 3×3, and the number of 
kernels responsible for the annular region was set to 5, with a 
width of 4.

During the model training process, a relatively large learning rate 
was used to train the model, and gradient clipping was employed to 
overcome the problem of exploding gradients. Gradient clipping refers 
to the practice of limiting the values of large gradients in a deep neural 
network during the training process, to prevent the learned parameters 
from being updated in a direction that produces even larger gradients. 
Specifically, in this paper, the L2 norm of the gradients was used to 
limit the gradients of the parameters. After gradient clipping, the 
gradients for a set of parameters G were restricted to a certain 
maximum value.
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The symbol  G 2 represents the L2 norm of the gradient G, and 
n is the threshold value set for the gradient. It is evident that when the 
L2 norm of the gradient exceeds the threshold value, the actual 
gradient used for updates will be  scaled down to a smaller value, 
otherwise no operation is required on the gradient.

We implemented, trained, and tested our proposed network 
using the PyTorch (Imambi et  al., 2021) deep learning 
framework. All convolutional kernels in the network were 
randomly initialized with a Gaussian distribution with a mean 
of 0 and a variance of 0.02. We used the AdamW (Loshchilov and 
Hutter, 2017) optimizer for training the model with an initial 
learning rate of 1 × 10–3 and processed only one image per data 
iteration. The loss function is consistent with the literature (Su 
et al., 2021).

We evaluate our model on the BSDS500 and MBDD datasets. On 
the BSDS500 dataset, the model undergoes 10 iterations on all training 
data, and the learning rate is reduced to 0.1 times the previous 
iteration’s after completion of the 9th iteration. On the MBDD dataset, 
the model undergoes 7 iterations on all training data, and the learning 
rate is reduced to 0.1 times the previous iteration’s after completion of 
the 4th and 6th iterations. We  use the standard non-maximum 
suppression algorithm to refine the output edges when evaluating the 
model’s performance.

All our experiments were conducted on a server with the 
following specifications: a Windows 10 operating system, an lntel(R) 
Xeon(R) Silver 4210R CPU, an NVIDIA GeForce 3,090 GPU, and 
128GB of Random-access memory (RAM).

4.2. Evaluation standards

In the evaluation of edge detection algorithms, researchers often 
use the F-score as a performance metric in classification tasks. Martin 
et al. (2004) employed the F-score to evaluate the performance of 
various algorithms in edge detection. The F-score is calculated using 
the following formula:

	
F P R

P R
=

⋅
−( ) ⋅ + ⋅1 α α 	

(9)

In the equation, P represents the precision rate, R represents the 
recall rate, and α  is the weight that balances the contribution of 
Precision and Recall. Typically, α  is set to 0.5. P and R are calculated 
as follows:

FIGURE. 7

Hierarchical processing.
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P TP

TP FP
=

+ 	
(10)

	
R TP

TP FN
=

+ 	
(11)

Here, TP refers to the number of pixels predicted as edges that are 
actually edges, FP refers to the number of pixels predicted as edges 
that are not edges, and FN refers to the number of pixels predicted as 
non-edges that are actually edges.

Furthermore, the Precision-Recall (PR) curve is a graphical 
representation with Precision on the Y-axis and Recall on the X-axis, 
as shown in Figure 9. Higher Precision and Recall values indicate 
better algorithm performance. In other words, a PR curve located 
closer to the upper right corner of the graph indicates better model 
performance, and the area under the curve should be maximized.

The choice of threshold during the binarization process 
significantly affects the evaluation results of edge detection algorithms. 
This means that selecting a reasonable threshold is crucial for 
evaluating algorithm performance. To ensure fair and reasonable 
performance evaluation, Arbelaez et  al. (2010) proposed three 
performance measures: Optimal Dataset Scale (ODS) and Optimal 
Image Scale (OIS). ODS involves setting the same threshold for all 
images in the dataset to maximize the F-score across the entire dataset, 
reflecting the overall algorithm performance. OIS involves setting 
different thresholds for each image to maximize the F-score on each 
image individually and then taking the average, reflecting the 
algorithm’s best performance across different images.

In addition to evaluating the model using ODS F-measure and 
OIS F-measure, this paper also analyzes the model using Floating 
Point Operations (FLOPs) and parameter count (Params). FLOPs 
measure the computational complexity of the model by counting the 
number of floating-point operations performed when processing data. 

FIGURE 8

Decode network structure. (A) Decode. (B) Feature Integration module. (C) Multi-scale attention (MSA).

FIGURE 9

Precision-recall curves of our models and some competitors on 
BSDS500 dataset.
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Each multiplication or addition of floating-point numbers in the 
model is counted as one operation. In this paper, the calculation of 
FLOPs for convolutional layers without biases is as follows:

	 FLOPs C K H W Ci o= × × × × ×2 2
	

(13)

where Ci is the number of input channels, K  is kernel size, H  and 
W  are the height and width of the input features, and Cois the number 
of output channels. To ensure fair comparison and convenience, in 
this paper, the FLOPs are uniformly calculated using H W= =320 320,  
as the dimensions. Params represent the number of trainable 
parameters in the model. For example, in the Y cell subnetwork, the 
parameter count of a 32-channel 3×3 non-linear subunit convolutional 
kernel is 32 * 3 * 3 = 228.

4.3. Ablation experiments

In order to investigate the impact of different modules proposed 
in this study on the model’s performance, we  conducted ablation 
experiments on the BSDS500 dataset. The results are presented in 
Table 1. The models X, Y, and S represent the X-cell model, Y-cell 
model, and direction-selective convolution model (simulating simple 
and complex cells), respectively. The “✔” indicates that the 
corresponding module is used in the model, while the “✘” indicates 
that the traditional convolution is used instead. It can be seen that 
when the network uses only the X-cell model, Y-cell model, or 
direction-selective convolution model S separately, there is an 
improvement in ODS compared to the traditional convolution 
method. However, when all three modules proposed in this study are 
applied to the network, ODS further improves. This indicates that the 
three modules proposed in this study contribute to improving the 
edge detection performance of the parallel hierarchical network.

To investigate the impact of the proposed multi-scale attention 
module on the model, we  conducted an ablation experiment by 
removing the attention module while keeping all other experimental 
details the same. The results are recorded in Table 2. It is evident from 
the results that the multi-scale attention significantly improves the 

edge detection performance, indicating the effectiveness of this 
module in the proposed network.

4.4. BSDS500 dataset experiment

The BSDS500 dataset is widely used for evaluating the 
performance of edge detection models, which includes 200 training 
images, 100 validation images, and 200 testing images. Due to the 
limited amount of training data, this paper uses data augmentation on 
the 200 training images and 100 validation images, and also expands 
the training data with the PASCAL VOC dataset.

This paper compares PHNet with several methods, including 
transfer learning-based methods(TL-based methods) such as HED 
(Xie and Tu, 2017), RCF (Liu et al., 2017), BDCN (He et al., 2019); 
lightweight deep learning methods such as TIN (Wibisono and Hang, 
2020b), FINED (Wibisono and Hang, 2020a), and PiDiNet (Su et al., 
2021); bio-inspired methods such as SED (Akbarinia and Parraga, 
2018), SCO (Yang et  al., 2015; Tang et  al., 2019); and non-deep 
learning methods such as gPb (Arbelaez et al., 2010), OEF (Hallman 
and Fowlkes, 2015), SE (Dollár and Zitnick, 2014). The results are 
recorded in the Table 3 and Figure 9.

Table 3 shows the performance of each model in terms of ODS, 
OIS, parameter count Params, and computational complexity 
FLOPs at a single scale. PHNet has some competitiveness in ODS 
and OIS compared to other models, and it has the least number of 
parameters compared to other methods, indicating that PHNet can 
effectively use convolutional kernel parameters and save 
computational resources.

Compared with HED, RCF, and BDCN, which are based on 
transfer learning, these models use VGG16 as the encoding network 
for edge detection. The performance improvement from HED to RCF 
and then to BDCN comes at the cost of increasing Params and FLOPs. 
These methods improve edge detection performance by designing 
increasingly complex decoding networks. Compared with RCF, 
PHNet has 3.1 and 3.2% lower ODS and OIS performance indicators, 
respectively, but only requires 1.3% of its Params and 43.7% of its 
FLOPs. Compared with BDCN, PHNet has 4.8 and 4.9% lower ODS 
and OIS performance indicators, respectively, but its Params and 
FLOPs are only 1.2 and 28%, respectively.

BDCN tests the model’s performance by gradually reducing the 
number of network modules when using fewer parameters. The 
specific method is to gradually remove the deep modules of the 
VGG16 backbone network. BDCN3 is a network variant of BDCN 
that only retains the first three stages of the VGG16 backbone network. 
In comparison, PHNet is only 1.9% lower in ODS, and its Params and 
FLOPs are only 6.2 and 35%, respectively. Comparing PHNet with 
BDCN2, it is found that as the number of network modules in the 
BDCN method decreases, PHNet’s ODS has already begun to surpass 
BDCN method, with a difference of 2.8%, while PHNet still has fewer 
Params and smaller FLOPs. In general, the comparison with HED, 
RCF, and BDCN methods shows that edge detection methods based 
on transfer learning have a large amount of parameter redundancy, 
and their utilization efficiency of parameters is very low.

The TIN, FINED, and PiDiNet models are lightweight edge 
detection neural network models designed to reduce model 
parameter count and computational complexity. It can be observed 
that the Params of these networks differ at least an order of 

TABLE 1  Results of ablation experiments with different modules on 
BSDS500 dataset.

X model Y model S model ODS OIS

✘ ✘ ✘ 0.768 0.786

✔

✘ ✘ 0.772 0.792

✘
✔

✘ 0.774 0.793

✘ ✘
✔

0.778 0.796

✔ ✔ ✔

0.781 0.797

TABLE 2  Results of ablation experiments with Multi-scale attention (MSA) 
on BSDS500 dataset.

MSA ODS OIS

✘ 0.775 0.793

✔

0.781 0.797

https://doi.org/10.3389/fnins.2023.1194713
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhou et al.� 10.3389/fnins.2023.1194713

Frontiers in Neuroscience 11 frontiersin.org

magnitude compared to traditional networks. Compared to TIN, 
PHNet excels in both edge accuracy performance metrics and model 
parameter count and computational complexity, surpassing TIN by 
1.2 and 0.2% in ODS and OIS, respectively, with Params accounting 
for 83.3% of the difference. Compared to FINED, PHNet achieves 
similar ODS performance with lower parameter count. As for 
PiDiNet, the trade-off between model performance and complexity 
makes it difficult to determine which model is better. It should 
be  noted that in the implementation of the network models, 
rectangular and annular convolution kernels were used, and any 
excess parts were included in the calculation of Params and FLOPs. 
Therefore, PHNet’s actual Params and FLOPs are expected to be even 
lower. When implemented using lower-level code, the advantages of 
PHNet in terms of parameter count and computational complexity 
will be even greater. Figure 10 shows some edge detection results of 
PHNet model in the BSDS500 dataset, where NMS represents the 
non-maximum suppression post-processing of the edge output. It 
can be observed that PHNet’s ability to suppress texture components 
is still insufficient.

In conclusion, this paper presents a model that achieves good 
performance with a low parameter count, thanks to the powerful 
fitting capabilities of convolutional neural networks and the 
effectiveness of biological vision mechanisms.

4.5. MBDD dataset experiment

The MBDD dataset, also known as the Multi-cue Boundary 
Detection Dataset, comprises 100 stereo video sequences captured by 
binocular cameras, with a unified resolution of 1280×720. For each 
video sequence, low-level edges and object boundaries are annotated 
for the last frame of the left part of the sequence. Following the same 
methodology as other works (Su et al., 2021), we randomly divided 

the 100 images into 80 training images and 20 testing images, and 
performed data augmentation on the training images using the 
BSDS500 dataset enhancement method. The data was then 
independently partitioned three times, and 20 testing images were 
used for performance evaluation, with the average of the three 
evaluation results being taken as the final result.

Table 4 compares the performance of our model with Multicue 
(Mély et al., 2016), HED (Xie and Tu, 2017), RCF (Liu et al., 2017), 
and PiDiNet (Su et al., 2021) in terms of ODS, OIS, parameter quantity 
(Params). The variance of the three evaluation results is indicated in 
brackets for ODS and OIS. In the low-level edge experimental data, 
PHNet exhibited excellent performance in terms of ODS and 
OIS. Moreover, when considering Params and FLOPs, PHNet only 
surpassed HED and RCF in their respective detection capabilities for 
low-level edges by approximately 1% in terms of parameter quantity. 
Compared to PiDiNet, PHNet led by 0.9% in terms of ODS with only 
28% of its parameter quantity, and by 1.4% in terms of OIS. The 
variance data also indicated that our model exhibited excellent 
stability in low-level data. Therefore, these results suggest that PHNet 
exhibited excellent performance in the low-level data of the MBDD 
dataset. However, in the object boundary experimental data, PHNet 
exhibited a significant lag compared to other models, which is 
consistent with our analysis of PHNet’s texture suppression ability in 
the BSDS500 experiment.

It seems understandable that PHNet model exhibits this 
phenomenon in Figure 11, because it models the neural activity in the 
visual cortex at a micro level, simulating the one-way forward 
processing of visual information. However, visual cortical neurons not 
only receive feedforward signals, but also receive feedback signals 
from higher-level visual cortices. These feedback signals rely on 
extensive inter-projection between different visual cortices, and can 
regulate the physiological activity of lower-level visual neurons to 
optimize their information processing.

TABLE 3  Evaluation results on BSDS500 dataset.

Type Method ODS OIS Params FLOPs

TL-base method

HED (Xie and Tu, 2017) 0.788 0.808 14.72 M 31.4G

RCF (Liu et al., 2017) 0.806 0.823 15.51 M 36.6G

BDCN (He et al., 2019) 0.820 0.838 16.30 M 56.0G

BDCN2 (He et al., 2019) 0.766 – 0.28 M 22.6G

BDCN3 (He et al., 2019) 0.796 – 2.26 M 34.0G

Lightweight method

TIN (Wibisono and Hang, 2020b) 0.772 0.795 0.24 M 12.9G

FINED (Wibisono and Hang, 2020a) 0.790 0.808 1.43 M 29.3G

PiDiNet (Su et al., 2021) 0.807 0.823 0.72 M 8.3G

Biology-inspired method

SED (Akbarinia and Parraga, 2018) 0.710 0.740 – –

SCO (Yang et al., 2015) 0.670 0.710 – –

Tang (Tang et al., 2019) 0.762 0.778 – –

Non-deep Learning method

gPb (Arbelaez et al., 2010) 0.729 0.755 – –

OEF (Hallman and Fowlkes, 2015) 0.746 0.770 – –

SE (Dollár and Zitnick, 2014) 0.743 0.764 – –

Biology-inspired Lightweight 

method
PHNet(Our) 0.781 0.797 0.20 M 16.0G

https://doi.org/10.3389/fnins.2023.1194713
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhou et al.� 10.3389/fnins.2023.1194713

Frontiers in Neuroscience 12 frontiersin.org

5. Conclusion and prospects

Taking the sacrifice of a small amount of network performance 
in exchange for lower computational costs as a starting point, this 
article proposes a lightweight edge detection deep learning model, 
which utilizes a parallel hierarchical visual information processing 
mechanism in the simulated visual cortex neurons. The model 
achieves a more detailed simulation of the shape and response 
mechanisms of cell receptive fields through large trainable 
convolution kernels. Circular and annular trainable convolution 
kernels are used to simulate the center-surround mechanism of X and 
Y cells receptive fields, and the antagonistic properties of convolution 
responses are reflected by subtraction. Small convolution kernels and 
annular trainable convolution kernels are used to simulate the 
non-linear subunit properties of Y cells, and the contribution of 
non-linear subunits to the center mechanism is realized by cascading 
combinations. Narrow trainable convolution kernels with different 
orientations are used to simulate the direction selectivity of simple 

cell receptive fields. These convolution models form the lightweight 
edge detection network PHNet proposed in this paper.

We tested the edge detection performance of the PHNet model on 
the BSDS500 and MBDD datasets and found that our model can 
achieve competitive performance with very few parameters compared 
to some traditional edge detection networks. It also has higher 
parameter utilization efficiency, which can reserve more computational 
and storage resources for other visual processing tasks on resource-
constrained platforms.

Furthermore, experimental results reveal certain limitations of 
the PHNet model, including the lack of ability to integrate visual 
features over a large range and the deficiency in extracting boundary 
information of high-level objects. This is attributed to the absence of 
feedback signals from higher-level visual cortices in the PHNet 
model. These signals participate in regulating the physiological 
activities of lower-level visual neurons to optimize information 
processing. Therefore, investigating the modulation of lower-level 
visual information by higher cortices may enhance the performance 

FIGURE 10

Visualization of contour detection results on BSDS500 dataset from PHNet.

TABLE 4  Evaluation results on MBDD dataset.

Method Low-level edge Object boundary Params

ODS OIS ODS OIS

Human 0.750 (0.024) – 0.760 (0.017) – –

Multicue (Mély et al., 2016) 0.830 (0.002) – 0.720 (0.014) – –

HED (Xie and Tu, 2017) 0.851 (0.014) 0.864 (0.011) 0.814 (0.011) 0.822 (0.008) 14.72 M

RCF (Liu et al., 2017) 0.857 (0.004) 0.862 (0.004) 0.817 (0.004) 0.825 (0.005) 15.51 M

PiDiNet (Su et al., 2021) 0.855 (0.007) 0.860 (0.005) 0.818 (0.003) 0.830 (0.005) 0.72 M

PHNet (Our) 0.863 (0.002) 0.872 (0.002) 0.773 (0.003) 0.791 (0.007) 0.2 M
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of biologically-inspired edge detection models in object 
boundary detection.

Overall, considering the extremely small parameter and 
computational cost of the PHNet model, its demonstrated edge 
detection performance is still satisfactory.
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FIGURE 11

Visualization of testing results on MBDD dataset from PHNet. The first row is the original image, the second row is the Low-level edge training label, 
the third row is the output of the model trained with the Low-level edge, the fourth row is the Object boundary training label, and the fifth row is the 
output of the model trained with the Object boundary.

https://doi.org/10.3389/fnins.2023.1194713
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://github.com/PXinTao/PHNet


Zhou et al.� 10.3389/fnins.2023.1194713

Frontiers in Neuroscience 14 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Akbarinia, A., and Parraga, C. A. (2018). Feedback and surround modulated boundary 

detection. Int. J. Comput. Vis. 126, 1367–1380. doi: 10.1007/s11263-017-1035-5

Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2010). Contour detection and 
hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916. 
doi: 10.1109/TPAMI.2010.161

Braekevelt, C. R. (1990). Fine structure of the feline tapetum lucidum. Anat. Histol. 
Embryol. 19, 97–105. doi: 10.1111/j.1439-0264.1990.tb00892.x

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern 
Anal. Mach. Intell. PAMI-8, 679–698. doi: 10.1109/TPAMI.1986.4767851

Chen, C.-F., Lee, G.G., Sritapan, V., and Lin, C.-Y. (2016). Deep convolutional neural 
network on iOS mobile devices, in 2016 IEEE International Workshop on Signal 
Processing Systems (SiPS): IEEE), 130–135.

Dai, Q., Fang, F., Li, J., Zhang, G., and Zhou, A. (2021). Edge-guided composition 
network for image stitching. Pattern Recogn. 118:108019. doi: 10.1016/j.
patcog.2021.108019

Dalal, N., and Triggs, B. (2005). "Histograms of oriented gradients for human 
detection", in: 2005 IEEE computer society conference on computer vision and pattern 
recognition (CVPR'05): IEEE), 886–893.

Dollár, P., and Zitnick, C. L. (2014). Fast edge detection using structured forests. 
IEEE Trans. Pattern Anal. Mach. Intell. 37, 1558–1570. doi: 10.1109/
TPAMI.2014.2377715

Enroth-Cugell, C., and Robson, J. G. (1966). The contrast sensitivity of retinal ganglion 
cells of the cat. J. Physiol. 187, 517–552. doi: 10.1113/jphysiol.1966.sp008107

Fang, T., Fan, Y., and Wu, W. (2020). Salient contour detection on the basis of the 
mechanism of bilateral asymmetric receptive fields. SIViP 14, 1461–1469. doi: 10.1007/
s11760-020-01689-1

Grigorescu, C., Petkov, N., and Westenberg, M. A. (2003). Contour detection based 
on nonclassical receptive field inhibition. IEEE Trans. Image Process. 12, 729–739. doi: 
10.1109/TIP.2003.814250

Hallman, S., and Fowlkes, C. C. (2015). "Oriented edge forests for boundary 
detection", Proceedings of the IEEE conference on computer vision and pattern 
recognition), 1732–1740.

He, J., Zhang, S., Yang, M., Shan, Y., and Huang, T. (2019). "Bi-directional cascade 
network for perceptual edge detection", Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition), pp. 3828–3837.

Hochstein, S., and Shapley, R. (1976a). Linear and nonlinear spatial subunits in Y 
cat retinal ganglion cells. J. Physiol. 262, 265–284. doi: 10.1113/jphysiol.1976.
sp011595

Hochstein, S., and Shapley, R. (1976b). Quantitative analysis of retinal ganglion cell 
classifications. J. Physiol. 262, 237–264. doi: 10.1113/jphysiol.1976.sp011594

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and 
functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154. doi: 10.1113/
jphysiol.1962.sp006837

Hubel, D. H., and Wiesel, T. N. (1965). Receptive fields and functional architecture in 
two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289. doi: 
10.1152/jn.1965.28.2.229

Imambi, S., Prakash, K. B., and Kanagachidambaresan, G. (2021). “PyTorch” in 
Programming with TensorFlow. eds. K. B. Prakash and G. R. Kanagachidambaresan 
(London: Springer), 87–104.

Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian 
retina. J. Neurophysiol. 16, 37–68. doi: 10.1152/jn.1953.16.1.37

Kyrkou, C., Ttofis, C., and Theocharides, T. (2013). A hardware architecture for real-
time object detection using depth and edge information. ACM Trans. Embed. Comput. 
Syst. 13, 1–19. doi: 10.1145/2539036.2539050

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2015). "Deeply-supervised nets", 
in: Artificial intelligence and statistics: PMLR, 562–570.

Li, O., and Shui, P.-L. (2021). Color edge detection by learning classification network 
with anisotropic directional derivative matrices. Pattern Recogn. 118:108004. doi: 
10.1016/j.patcog.2021.108004

Lin, C., Zhang, Z., and Hu, Y. (2022). Bio-inspired feature enhancement network for 
edge detection. Appl. Intell. 52, 11027–11042. doi: 10.1007/s10489-022-03202-2

Liu, Y., Cheng, M.-M., Hu, X., Wang, K., and Bai, X. (2017). "Richer convolutional 
features for edge detection", in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition), 3000–3009.

Long, J., Shelhamer, E., and Darrell, T. (2015). "Fully convolutional networks for 
semantic segmentation", in: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition), 3431–3440.

Loshchilov, I., and Hutter, F. (2017). Decoupled weight decay regularization arXiv 
preprint arXiv:1711.05101.

Luo, W., Li, Y., Urtasun, R., and Zemel, R. (2016). "Understanding the effective 
receptive field in deep convolutional neural networks," in Advances in Neural Information 
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016. 
eds. D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon and R. Garnett (Barcelona, 
Spain), 4898–4906.

Martin, D. R., Fowlkes, C. C., and Malik, J. (2004). Learning to detect natural image 
boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. 
Mach. Intell. 26, 530–549. doi: 10.1109/TPAMI.2004.1273918

Mély, D. A., Kim, J., Mcgill, M., Guo, Y., and Serre, T. (2016). A systematic comparison 
between visual cues for boundary detection. Vis. Res. 120, 93–107. doi: 10.1016/j.
visres.2015.11.007

Peng, P., Yang, K.-F., Luo, F.-Y., and Li, Y.-J. (2021). Saliency detection inspired by 
topological perception theory. Int. J. Comput. Vis. 129, 2352–2374. doi: 10.1007/
s11263-021-01478-4

Petkov, N., and Subramanian, E. (2007). Motion detection, noise reduction, texture 
suppression, and contour enhancement by spatiotemporal Gabor filters with surround 
inhibition. Biol. Cybern. 97, 423–439. doi: 10.1007/s00422-007-0182-0

Prewitt, J. M. (1970). Object enhancement and extraction. Pic. Process. Psychopict. 10, 
15–19.

Rodieck, R. W. (1965). Quantitative analysis of cat retinal ganglion cell response to 
visual stimuli. Vis. Res. 5, 583–601. doi: 10.1016/0042-6989(65)90033-7

Shou, T. (1997). Brain mechanisms of visual information processing. Shanghai: Shanghai 
Scientific & Technological Education Publishing House.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition arXiv preprint arXiv 1409.1556.

Sobel, I.E. (1970). Camera models and machine perception. 
California: Stanford University.

Su, Z., Liu, W., Yu, Z., Hu, D., Liao, Q., Tian, Q., et al. (2021). "Pixel difference 
networks for efficient edge detection", in: Proceedings of the IEEE/CVF International 
Conference on Computer Vision), 5117–5127.

Tang, Q., Sang, N., and Liu, H. (2019). Learning nonclassical receptive field 
modulation for contour detection. IEEE Trans. Image Process. 29, 1192–1203. doi: 
10.1109/TIP.2019.2940690

Tu, Z., Ma, Y., Li, C., Tang, J., and Luo, B. (2020). Edge-guided non-local fully 
convolutional network for salient object detection. IEEE Trans. Circ. Syst. Video Technol. 
31, 582–593. doi: 10.1109/TCSVT.2020.2980853

Wang, F.-P., and Shui, P.-L. (2016). Noise-robust color edge detector using gradient 
matrix and anisotropic Gaussian directional derivative matrix. Pattern Recogn. 52, 
346–357. doi: 10.1016/j.patcog.2015.11.001

Wang, Y., Zhao, X., and Huang, K. (2017). "Deep crisp boundaries", in: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition), 3892–3900.

Wibisono, J.K., and Hang, H.-M. (2020a). Fined: fast inference network for edge 
detection. arXiv preprint arXiv:2012.08392.

Wibisono, J.K., and Hang, H.-M. (2020b). "Traditional method inspired deep neural 
network for edge detection", in: 2020 IEEE International Conference on Image 
Processing (ICIP): IEEE), 678–682.

Xie, S., and Tu, Z. (2017). Holistically-nested edge detection. Int. J. Comput. Vis. 125, 
3–18. doi: 10.1007/s11263-017-1004-z

Yang, K.-F., Gao, S.-B., Guo, C.-F., Li, C.-Y., and Li, Y.-J. (2015). Boundary detection 
using double-opponency and spatial sparseness constraint. IEEE Trans. Image Process. 
24, 2565–2578. doi: 10.1109/TIP.2015.2425538

Yang, K., Gao, S., Li, C., and Li, Y. (2013). Efficient color boundary detection with 
color-opponent mechanisms, in Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2810–2817.

Yang, K.-F., Li, C.-Y., and Li, Y.-J. (2014). Multifeature-based surround inhibition 
improves contour detection in natural images. IEEE Trans. Image Process. 23, 5020–5032. 
doi: 10.1109/TIP.2014.2361210

Zhong, H., and Wang, R. (2021). Neural mechanism of visual information degradation 
from retina to V1 area. Cogn. Neurodyn. 15, 299–313. doi: 10.1007/s11571-020-09599-1

https://doi.org/10.3389/fnins.2023.1194713
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1007/s11263-017-1035-5
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1111/j.1439-0264.1990.tb00892.x
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/j.patcog.2021.108019
https://doi.org/10.1016/j.patcog.2021.108019
https://doi.org/10.1109/TPAMI.2014.2377715
https://doi.org/10.1109/TPAMI.2014.2377715
https://doi.org/10.1113/jphysiol.1966.sp008107
https://doi.org/10.1007/s11760-020-01689-1
https://doi.org/10.1007/s11760-020-01689-1
https://doi.org/10.1109/TIP.2003.814250
https://doi.org/10.1113/jphysiol.1976.sp011595
https://doi.org/10.1113/jphysiol.1976.sp011595
https://doi.org/10.1113/jphysiol.1976.sp011594
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1152/jn.1965.28.2.229
https://doi.org/10.1152/jn.1953.16.1.37
https://doi.org/10.1145/2539036.2539050
https://doi.org/10.1016/j.patcog.2021.108004
https://doi.org/10.1007/s10489-022-03202-2
https://doi.org/10.1109/TPAMI.2004.1273918
https://doi.org/10.1016/j.visres.2015.11.007
https://doi.org/10.1016/j.visres.2015.11.007
https://doi.org/10.1007/s11263-021-01478-4
https://doi.org/10.1007/s11263-021-01478-4
https://doi.org/10.1007/s00422-007-0182-0
https://doi.org/10.1016/0042-6989(65)90033-7
https://doi.org/10.1109/TIP.2019.2940690
https://doi.org/10.1109/TCSVT.2020.2980853
https://doi.org/10.1016/j.patcog.2015.11.001
https://doi.org/10.1007/s11263-017-1004-z
https://doi.org/10.1109/TIP.2015.2425538
https://doi.org/10.1109/TIP.2014.2361210
https://doi.org/10.1007/s11571-020-09599-1

	Learning parallel and hierarchical mechanisms for edge detection
	1. Introduction
	2. Related work
	2.1. Biologically-inspired edge detection methods
	2.2. Non-biomimetic edge detection methods

	3. Propose method
	3.1. Bio-visual concept
	3.2. Network architecture
	3.2.1. X-cell and Y-cell subnetwork
	3.2.2. Simple and complex cells subnetwork
	3.2.3. Decoding network

	4. Experiment
	4.1. Experimental details
	4.2. Evaluation standards
	4.3. Ablation experiments
	4.4. BSDS500 dataset experiment
	4.5. MBDD dataset experiment

	5. Conclusion and prospects
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	References

