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Objective:Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder

a�ecting the upper and lower motor neurons. Though the pathogenesis of ALS is

still unclear, exploring the associations between risk factors and ALS can provide

reliable evidence to find the pathogenesis. This meta-analysis aims to synthesize

all related risk factors of ALS to understand this disease comprehensively.

Methods: We searched the following databases: PubMed, EMBASE, Cochrane

library, Web of Science, and Scopus. Moreover, observational studies, including

cohort studies, and case-control studies, were included in this meta-analysis.

Results: A total of 36 eligible observational studies were included, and 10 of them

were cohort studies and the rest were case-control studies. We found six factors

exacerbated the progression of disease: head trauma (OR = 1.26, 95% CI = 1.13,

1.40), physical activity (OR = 1.06, 95% CI = 1.04, 1.09), electric shock (OR = 2.72,

95% CI = 1.62, 4.56), military service (OR = 1.34, 95% CI = 1.11, 1.61), pesticides

(OR = 1.96, 95% CI = 1.7, 2.26), and lead exposure (OR = 2.31, 95% CI = 1.44,

3.71). Of note, type 2 diabetes mellitus was a protective factor for ALS. However,

cerebrovascular disease (OR = 0.99, 95% CI = 0.75, 1.29), agriculture (OR = 1.22,

95% CI = 0.74, 1.99), industry (OR = 1.24, 95% CI = 0.81, 1.91), service (OR = 0.47,

95% CI = 0.19, 1.17), smoking (OR = 1.25, 95% CI = 0.5, 3.09), chemicals (OR =

2.45, 95% CI = 0.89, 6.77), and heavy metal (OR = 1.5, 95% CI = 0.47, 4.84) were

not risk factors for ALS based on meta-analyses.

Conclusions: Head trauma, physical activity, electric shock, military service,

pesticides, and lead were risk factors for ALS onset and progression. But DM was

a protective factor. This finding provides a better understanding of ALS risk factors

with strong evidence for clinicians to rationalize clinical intervention strategies.

INPLSY registration number: https://inplasy.com/inplasy-2022-9-0118/,

INPLASY202290118.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron

disease (MND) affecting the upper and lower motor neurons in

the spinal bulb, cerebral cortex, and spinal cord (van Es et al.,

2017). Muscle atrophy and dysfunctions are the most common

symptoms of this neurodegenerative disease (Loeffler et al., 2016;

Pender et al., 2020). There are four subtypes of MND based on

clinical symptoms, including amyotrophic lateral sclerosis (ALS),

progressive muscular atrophy (PMA), progressive bulbar palsy

(PBP), and primary lateral sclerosis (PLS) (Aiello et al., 2022). With

the progression of the disease, PMA, PBP, and PLS will eventually

lead to ALS, the most common type of MND (Walters et al.,

2019). The epidemiology of ALS indicates that the incidence rate

is estimated to be ∼2.6 cases per 100 000 individuals annually (Xu

et al., 2020). About 80% of patients who suffer from the disease die

within 5 years due to respiratory muscle failure, but only 10% of

cases can survive for more than 10 years from diagnosis (Talbott

et al., 2016; Longinetti and Fang, 2019). ALS may not only result

in high readmission rates and dysfunctions such as limb paralysis,

decreased respiratory function, and muscle atrophy, but it also has

a significant negative impact on the psychological and financial

burden of patients and relatives (Conroy et al., 2021).

Nowadays, the etiology and pathogenesis of ALS remain

unclear. Therefore, no effective cure has yet been found for this

condition. USA Food and Drug Administration approved the

only drug, riluzole, a glutamatergic neurotransmission inhibitor

that can slightly benefit survival (Jaiswal, 2019). Riluzole only

prolongs the life span for 3–5 months, costing $1,000 per month

(Thakore et al., 2020). Consequently, most patients are treated

in a palliative capacity and live with the situation (Salzmann

et al., 2022). Baumann et al. (2019) pointed out that the

emergence of ALS probably involves multifactorial interactions

of complex mechanisms. Due to the debilitating nature of the

disease, identifying risk factors in ALS is essential, which is

of great significance for a comprehensive understanding of the

epidemiological characteristics of ALS and scientific prevention

and treatment. There is currently some evidence for specific risk

factors for ALS, including elderly age (Chen et al., 2015), smoking

(Calvo et al., 2016), physical activity (Harwood et al., 2016), military

service (Seals et al., 2016a), diabetesmellitus (DM) (Cui et al., 2021),

and alcohol consumption (Huisman et al., 2015). However, some

studies have reported conflicting results (Huisman et al., 2015;

Kioumourtzoglou et al., 2015). Given these controversial results

and the small sample sizes of several studies, we aimed to explore

risk factors in ALS by collecting data from published research in

electronic databases in the past decade to obtain a reference value

based on a large sample with high reliability.

2. Materials and methods

This meta-analysis strictly adhered to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (McInnes et al., 2018). There was no need for

ethical approval because this was a systematic review. The

protocol has been registered in the INPLSAY platform with the

number INPLASY202290118.

TABLE 1 Search strategy of PubMed.

Search
number

Query Results

#1 “Amyotrophic Lateral Sclerosis”[Mesh] 21,990

#2 ((((((((Sclerosis, Amyotrophic

Lateral[Title/Abstract]) OR (Gehrig’s

Disease[Title/Abstract])) OR (Gehrig

Disease[Title/Abstract])) OR (Charcot

Disease[Title/Abstract])) OR (Motor Neuron

Disease, Amyotrophic Lateral

Sclerosis[Title/Abstract])) OR (Lou Gehrig’s

Disease[Title/Abstract])) OR (ALS -

Amyotrophic Lateral

Sclerosis[Title/Abstract])) OR (ALS

Amyotrophic Lateral

Sclerosis[Title/Abstract])) OR (Lou Gehrig

Disease[Title/Abstract])

692

#3 #1 or #2 22,355

#4 (relative[Title/Abstract] AND

risk∗[Title/Abstract]) OR (relative risk[Text

Word]) OR risks[Text Word] OR cohort

studies[MeSH:noexp] OR

(cohort[Title/Abstract] AND

stud∗[Title/Abstract])

1,102,056

#5 #3 and #4 1,309

2.1. Search strategy

We searched the following electronic databases PubMed,

EMBASE, Web of Science, Cochrane library, and Scopus to

identify relevant studies from January 2012 to June 2022, using

a combination of MeSH terms and keywords: “Amyotrophic

Lateral Sclerosis,” “risk factors,” “case-control studies,” “cross-

sectional studies,” and “Cohort Studies.” Meanwhile, we

comprehensively searched observational clinical trials including

cohort and case-control studies, which are ongoing via the WHO

International Clinical Trials Registry Platform (WHO ICTRP) and

ClinicalTrials.gov. We also screened the references of included

studies in order to avoid missing eligible studies that have not been

retrieved by the search strategy. Preprint servers (such as medRxiv

and Research Square) were searched for unpublished data. The

search strategy of PubMed is shown in Table 1. The rest of the

databases comply in the same way.

2.2. Inclusion and exclusion criteria

Observational studies include cross-sectional studies, case-

control studies, and cohort studies. For the part of cross-sectional

studies and case-control studies, the inclusion criteria for the meta-

analysis were as follows: (1) the original studies reported the

relationship between specific risk factors and ALS, as well as odds

ratio (OR) and 95% confidence interval (CI); (2) participants were

diagnosed with ALS by professional medical institutions regardless

of nation, age, sex, or race; (3) healthy dwellers or patients without

neurodegenerative disease were assigned to the control group; (4)

NOS assessment with higher than 7 scores. For the part of cohort

studies, the original studies were required to provide adjusted
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relative risk (RR) or hazard ratio (HR) and 95% CI, and other

criteria were the same as for the case-control studies.

The exclusion criteria were as follows: (1) ALS patients

accompanied by other neurodegenerative diseases; (2) systematic

review, randomized controlled trials, case reports, animal research,

and conference papers; (3) repeated publications and data-missing

studies; (4) studies with no risk factor reported, or studies reported

risk factors but no OR, RR; (5) unreasonable statistical methods; (6)

the NOS quality assessment below seven stars.

2.3. Study selection

All retrieved studies were managed with NoteExpress 3.0

software. Firstly, two independent reviewers excluded studies not

meeting the inclusion criteria after reading the title and abstract.

And then, we downloaded the rest of included studies and read

the full text to check which studies followed the inclusion criteria.

We reached a consensus by discussing any disagreements in the

systematic review process with a third reviewer.

2.4. Data extraction and quality assessment

Two reviewers independently extracted the following items of

included studies: title, published year, first author, type of study

design, source of cases and controls, numbers of patients and

controls, risk factor (s), OR, RR, HR, and CI. After extracting data,

two investigators cross-checked the data. For the potential studies

with missing data, we contacted the corresponding author for raw

data via email. Any disagreement would be resolved by discussion.

Two independent reviewers assessed the quality of case-control

and cohort studies by the Newcastle-Ottawa scale (NOS) (Stang,

2010). A case-control or cohort study in NOS involves three

domains (Selection, Comparability, and Exposure) covering four,

two, and three points. High-quality research gains more than

seven stars. Only more than seven points were considered high-

quality research. This systematic review mainly included high-

quality studies (a NOS score higher than seven stars) to improve

the reliability of evidence. Scoring details for all included studies

were shown in Supplementary Table 1.

2.5. Statistical analysis

All risk factors for ALS have been extracted from original

studies. If more than two observational studies reported a specific

risk factor, we would perform meta-analyses based on this factor.

The primary outcome is the ORs of ALS by possible risk factors

in case-control studies and RRs/HRs of ALS risk factors in cohort

studies. I2 statistics assess heterogeneity (Higgins et al., 2003).

I2 > 75% is recognized as significant heterogeneity, 50% < I2 ≤

75% is recognized as moderate heterogeneity, 25% < I2 ≤ 50%

is recognized as low heterogeneity, and I² ≤ 25% was recognized

as homogeneity. We used the fixed effects model if heterogeneity

was low or homogeneous. Otherwise, we choose the random effects

model. Sensitivity analysis was performed to detect the source of

heterogeneity. Every time we remove a potential heterogeneous

study, we must explain the reason. STATA15.0 was operated in the

statistical analyses mentioned above.

3. Results

3.1. Study selection and characteristics

Database searches resulted in 12,067 studies, which were

initially considered for this meta-analysis. A total of 5,770

studies were excluded due to duplication and year discrepancies.

By reviewing the titles and abstracts, another 5,781 studies

were excluded since case reports, non-English literature, letters,

inconsistent content, or conferences did not meet the inclusion

criteria. After reading the full texts, 432 studies were excluded

because the contents were unavailable, risk factors were not

reported, statistical methods were not reasonable, and ORs or RRs

were not reported. Finally, the remaining 84 studies were scored

by NOS, and 48 were below seven scores excluded. Thereinto,

36 studies, which were scored above seven scores, were finally

included in the meta-analysis. The study selection process is shown

in Figure 1. The characteristics of the included studies are shown in

Table 2.

3.2. Meta-analyses of risk factors in ALS

3.2.1. Head trauma
Among included studies, five (Peters et al., 2013; Seelen et al.,

2014; Seals et al., 2016a; Andrew A. et al., 2021; Beaudin et al., 2022)

reported head trauma as a risk factor for ALS, one (Peters et al.,

2013) of which was a cohort study, and the rest were case-control

studies. From the forest plot, slight heterogeneity was detected

(I2 = 29.5%). Therefore, the fixed-effects model was performed for

the meta-analysis of head trauma, and it was a risk factor for ALS

(OR = 1.26, 95% CI = 1.13, 1.40, P = 0.225), which indicated that

a 1.26 times higher risk of developing ALS with head trauma than

without experiencing head trauma (Figure 2).

3.2.2. Cerebrovascular disease
Two studies (Seelen et al., 2014; Kioumourtzoglou et al., 2016)

reported Cerebrovascular disease (CVD) as a risk factor for ALS.

From the forest plot, an evident heterogeneity was detected (I2

= 88.1%), and the random effects model was performed for the

meta-analysis. The results indicated that CVD was not a risk factor

for ALS (OR = 0.99, 95% CI = 0.75, 1.29, P = 0.004; Figure 3).

However, they did not classify the specific types of CVD. It is

unknown which type of CVD has a greater impact on ALS.

3.2.3. Diabetes mellitus
Five studies (Seelen et al., 2014; Kioumourtzoglou et al., 2015;

Mariosa et al., 2015; Sun et al., 2015; D’Ovidio et al., 2018) reported

DM as a risk factor for ALS. We analyzed the data and found

significant heterogeneity (I2 = 91.7%). After reading the above

five studies comprehensively, we found three case-control studies
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FIGURE 1

Flow diagram of selection process.

(Seelen et al., 2014; Kioumourtzoglou et al., 2015; Mariosa et al.,

2015) and two cohort studies (Sun et al., 2015; D’Ovidio et al.,

2018). Therefore, we performed the subgroup analysis by different

study types. The results showed slight heterogeneity (I2 = 25%) in

the case-control study group. A fixed-effects model was performed

for meta-analysis. The results indicated that DM was a protective

factor for the onset and progression of ALS (OR = 0.74, 95% CI =

0.66, 0.84, P = 0.264). Besides, the risk of developing ALS was 26%

lower in those with DM than those without DM (Figure 4).

3.2.4. Occupation
Among included studies, four (Das et al., 2012; Su et al.,

2016; Peters et al., 2017; Filippini et al., 2020) reported the

effect of occupation on the risk of developing ALS. Based

on the characteristics of the occupation, we stratified the

occupations into agriculture, industry, and services and performed

statistical analyses.

(1) Agriculture

Two studies (Das et al., 2012; Filippini et al., 2020)

reported agriculture as a risk factor for ALS, and

no heterogeneity was detected (I2 = 8.8%). A fixed-

effects model was performed for meta-analysis. Based

on the forest plot, agriculture was not a risk factor for

ALS (OR = 1.22, 95% CI = 0.74, 1.99, P = 0.295;

Figure 5A).

(2) Industry

Three studies (Das et al., 2012; Peters et al., 2017; Filippini et al.,

2020) reported industry as a risk factor for ALS. No heterogeneity

was detected (I2 = 0%), and a fixed-effects model was performed

for meta-analysis, concluding that industry was not a risk factor for

ALS (OR= 1.24, 95% CI= 0.81, 1.91, P = 0.665) (Figure 5B).

(3) Service

Two studies (Das et al., 2012; Su et al., 2016) reported

the service industry as a risk factor for ALS. Moderate

heterogeneity was detected (I2 = 56.6%), and a random-effects
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TABLE 2 Baseline of included studies.

Author References Publication
year

Study
type

Cases Controls Source of
controls

Risk factor

Kamalesh2012 Das et al. (2012) 2012 Case-control 110 240 Non-neurodegenerative

disorders people

4 , 5 , 7 , 11 , 14 ,

19 , 28

Tracy2012 Peters et al. (2013) 2012 Cohort 3,888 19,632 Dweller 1

Elinor2013 Fondell et al. (2013) 2013 Cohort 42 40,046 Dweller 22

Yu2014 Yu et al. (2014) 2014 Case-control 66 66 Non-neurodegenerative

disorders patients

5 , 6 , 9 , 28

Meinie2014 Seelen et al. (2014) 2014 Case-control 722 2,268 Dweller 1 , 2 , 3

Feng2015 Lin et al. (2015) 2015 Case-control 729 14,580 Dweller 12

Ching2015 Tsai et al. (2015) 2015 Case-control 729 7,290 Dweller 16 , 23

D.Mariosa2015 Mariosa et al. (2015) 2015 Case-control 224 1,437 Non-ALS patients 3

Marianthi2015 Kioumourtzoglou et al.

(2016)

2015 Case-control 516 47,787 Dweller 2

Marianthi2015 Kioumourtzoglou et al.

(2015)

2015 Case-control 55 9,239 Dweller 3

Mark2015 Huisman et al. (2015) 2015 Case-control 674 2,093 dweller 26

Angela2015 Malek et al. (2015) 2015 Case-control 66 66 Non-ALS patients 11

Yu2015 Sun et al. (2015) 2015 Cohort 615,492 614,835 Non-DM patients 3

Ryan2016 Seals et al. (2016b) 2016 Case-control 116 8,922 Dweller 8

Su2016 Su et al. (2016) 2016 Case-control 156 128 Healthy control 8 , 9 , 10 , 13 , 17

Peters2016 Peters et al. (2016) 2016 Case-control 163 229 Dweller 24

Harwood2016 Harwood et al. (2016) 2016 Case-control 317 715 Dweller 6

Tracy2016 Peters et al. (2017) 2016 Case-control 59 227 Dweller 4

Yvonne2016 Eaglehouse et al. (2016) 2016 Cohort 28 121 Non-DM patients 6

Ryan2016 Seals et al. (2016b) 2016 Case-control 3,650 365,000 Dweller 1

Anne2018 Visser et al. (2018) 2018 Case-control 1,557 2,922 Dweller 6

D’Ovidio2018 D’Ovidio et al. (2018) 2018 Cohort 76,279 651,698 Non-DM patients 3

Ola2019 Nakken et al. (2019) 2019 Cohort 2,968 1,465,282 Dweller 21

Tommaso2020 Filippini et al. (2020) 2020 Case-control 95 135 Dweller 4 , 7 , 10

Andrew2021 (Andrew A. S. et al.,

2021)

2021 Case-control 188 376 Dweller 1 , 7 , 10

Andrew2021 (Andrew A. S. et al.,

2021)

2021 Case-control 500 1,949 Healthy control 9

Yu2021 Yu et al. (2021) 2021 Case-control 1,636 4,024 Healthy control 15

Rosenbohm2021 Rosenbohm et al. (2021) 2021 Case-control 393 791 Dweller 4

Skajaa2021 Skajaa et al. (2021) 2021 Cohort 852 974,304 Dweller 20

Thompson2021 Thompson et al. (2022) 2021 Cohort 294 429,710 Dweller 27

Sun2021 Sun et al. (2021) 2021 Cohort 483,442 2,392,647 Healthy control 25

Beaudin2022 Beaudin et al. (2022) 2022 Case-control 403 378 Healthy control 1 , 9

Mitsumoto2022 Mitsumoto et al. (2022) 2022 Case-control 95 106 Healthy control 9 , 10

Andrew2022 Andrew et al. (2022) 2022 Case-control 553 762 Healthy control 10

He2022 He et al. (2022) 2022 Cohort 140 203 Healthy control 18 , 29

TE2022 Wang et al. (2023) 2022 Cohort 36 99 Not exposed to lead 10

1 head trauma; 2 CVD, cerebrovascular disease; 3 DM, diabetesmellitus; 4 occupation; 5 smoking; 6 physical activity; 7 electricity shock; 8 military service; 9 pesticide; 10 lead; 11chemical

agent; 12 hypotensor; 13 educational status; 14 residential; 15 air pollution; 16 steroid; 17 service industry; 18 high metabolism; 19 water resources; 20 statin; 21 BMI, body mass index; 22

alopecia; 23 aspirin; 24 trace metals in blood; 25 intestinal biopsy; 26 nutrition; 27 lipid metabolism; 28 heavy metal; 29 FVC, forced vital capacity.
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FIGURE 2

Forest plot of head trauma.

FIGURE 3

Forest plot of cerebrovascular disease.

model was performed for meta-analysis. From the forest plot,

we could learn that the service industry was not a risk factor

for ALS (OR = 0.47, 95% CI = 0.19, 1.17, P = 0.129;

Figure 5C).

In summary, occupations including agriculture, industry, and

services were not risk factors for ALS onset and progression.

3.2.5. Smoking
Two studies (Das et al., 2012; Yu et al., 2014) reported smoking

as a risk factor for ALS. Significant heterogeneity was detected (I2 =

75.2%), and a random-effects model was performed for the meta-

analysis. The result indicated that smoking was not a risk factor for

ALS (OR= 1.25, 95% CI= 0.5, 3.09, P = 0.044; Figure 6).
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FIGURE 4

Forest plot of diabetes mellitus.

3.2.6. Physical activity
Six studies (Yu et al., 2014; Eaglehouse et al., 2016; Harwood

et al., 2016; Visser et al., 2018; Rosenbohm et al., 2021) reported

physical activity as a risk factor for ALS. Significant heterogeneity

was detected (I2 = 91.7%). To find the source of heterogeneity,

we performed sensitivity analysis and found that Rosenbohm et al.

(2021) was the source, and the heterogeneity was significantly

reduced after removing the study (I2 = 24.1%). Finally, a fixed-

effects model was chosen for meta-analysis, and vigorous physical

activity was considered a risk factor for ALS (OR = 1.06, 95% CI

= 1.04, 1.09, P = 0.266). Moreover, we concluded that about 1.06

times higher as much as in those who did not take the vigor exercise

(Figure 7).

3.2.7. Electric shock
After comprehensively reading the included studies, electric

shock is defined as people suffering from electric injury or living

in a long-term electromagnetic field. Three studies (Das et al., 2012;

Filippini et al., 2020; Andrew A. et al., 2021) reported electric shock

as a risk factor for ALS, no heterogeneity was found among the

findings (I2 = 27.6%). A fixed-effects model was chosen for the

meta-analysis. From the result, we concluded that electric shock

was a risk factor for ALS (OR = 2.72, 95% CI = 1.62, 4.56, P =

0.251), which indicated the risk of suffering from ALS in electric

shock environments was 2.78 times higher than in non-electric

shock environments (Figure 8).

3.2.8. Military service
Two studies (Seals et al., 2016b; Su et al., 2016) reported

military service as a risk factor for ALS. Moderate heterogeneity

was detected (I2 = 44.4%), and a fixed-effects model was selected

for meta-analysis. From the result of the forest plot, military

service was a risk factor for ALS (OR = 1.34, 95% CI =

1.11, 1.61, P = 0.18), and those with military service had 1.34

times the risk of ALS of those who did not experience it

(Figure 9).

3.2.9. Pesticides
Five studies (Yu et al., 2014; Su et al., 2016; Andrew A.

et al., 2021; Beaudin et al., 2022; Mitsumoto et al., 2022) reported

pesticides as a risk factor for ALS. Slight heterogeneity was detected

(I2 = 36.4%), and a fixed-effects model was selected for meta-

analysis. From the forest plot, we concluded that pesticide was

a risk factor for ALS (OR = 1.96, 95% CI = 1.7, 2.26, P =

0.178). In addition, the risk of suffering from ALS in those exposed

to pesticides was 1.96 times higher than in those who were not

(Figure 10).
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FIGURE 5

(A) Forest plot of occupation in agriculture. (B) Forest plot of occupation in industry. (C) Forest plot of occupation in service industry.
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FIGURE 6

Forest plot of smoking.

FIGURE 7

Forest plot of physical activity.

3.2.10. Lead
Six studies (Su et al., 2016; Filippini et al., 2020; Andrew

A. S. et al., 2021; Andrew et al., 2022; Mitsumoto et al.,

2022; Wang et al., 2023) reported lead as a risk factor

for ALS. Significant heterogeneity was detected (I2 =

75.9%). Based on the sensitivity analysis result, Su et al.

(2016) is the source of heterogeneity. After removing it,

the heterogeneity was lower than before (I2 = 59.2%, P =

0.044 < 0.05), though it was still present. A random-effects

model was performed for meta-analysis. We concluded

that lead was a risk factor for ALS (OR = 2.31, 95%

CI = 1.44, 3.71, P = 0.044). The risk of ALS in those

exposed to lead was 2.31 times higher than in those not

exposed (Figure 11).
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FIGURE 8

Forest plot of electric shock.

FIGURE 9

Forest plot of military service.

3.2.11. Chemicals
Two studies (Das et al., 2012; Malek et al., 2015) reported

that chemicals were risk factors for ALS. Significant heterogeneity

was detected (I2 = 77.3%) according to the forest plot.

Moreover, the random effect model was selected for meta-

analysis. In conclusion, the chemical agent was not a risk

factor for ALS (OR = 2.45, 95% CI = 0.89, 6.77, P = 0.036;

Figure 12).

3.2.12. Heavy metal
In two studies (Das et al., 2012; Yu et al., 2014) reported

that heavy metals were risk factors for ALS. However, the

original studies did not report the definition and classification

of heavy metals. No heterogeneity was detected according

to the forest plot (I2 = 3.7%), and the fixed-effects model

was selected for meta-analysis. Based on the statistical

result, we concluded that heavy metals were not risk factors
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FIGURE 10

Forest plot of pesticides.

FIGURE 11

Forest plot of lead.

for ALS (OR = 1.5, 95% CI = 0.47, 4.84, P = 0.308;

Figure 13).

3.2.13. Other risk factors
The remaining 17 risk factors were hypotensor,

educational status, residential, air pollution, steroid,

service industry, high metabolism, water resources,

statin, BMI, alopecia, aspirin, trace metals in blood,

intestinal biopsy, nutrition, lipid metabolism, heavy

metal, and FVC. However, these risk factors were only

reported in one independent study and thus not be

analyzed. The details of these risk factors are shown

in Table 2.
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FIGURE 12

Forest plot of chemicals.

FIGURE 13

Forest plot of heavy metal.

4. Discussion

Thirty-six observational studies were included in this study, 11

of which were cohort studies, and the rest were case-control studies.

In this meta-analysis, we included high-quality observational

studies by NOS quality assessment to ensure the quality of evidence.

The scores of the included studies were more than seven grades.

With the low incidence of ALS defined as a rare disease and the

unclear mechanism, randomized controlled trials (RCT) were not

feasible. Observational studies, as a component of epidemiological

studies, are effective study types for exploring risk factors for

the disease. This study aimed to explore the risk factors for ALS

and perform a systematic review and meta-analysis based on

observational studies.
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We used STATA 15.0 software and Review Manager 5.3 for

meta-analysis. Based on the statistical analyses, we concluded that

head trauma, physical activity, electrical shock, military service,

pesticides, and lead were related to the onset and progression of

ALS, but diabetes mellitus was its protective factor.

In this study, head trauma was a risk factor for ALS, and the

relationship between the progression of ALS and head trauma

has drawn attention among researchers. Head trauma is known

to result in neurodegenerative diseases and cognitive impairment

(Gupta and Sen, 2016). In a previous meta-analysis, head injury

was identified as a risk factor for the development of ALS

(Chen et al., 2007). However, after adjusting the time difference

between the time of head trauma and the time of ALS onset,

no direct association between the two groups. Schmidt et al.

(2010) conducted a cohort study among veterans and found

that patients with a history of head trauma within 15 years

before the record date had a higher risk of developing ALS

(OR= 2.33, 95% CI = 1.18–4.61). However, after reading the

included studies, we found that one study (Andrew A. et al.,

2021) reported the frequency of head trauma associated with the

onset of ALS. The study analyzed one and multiple injuries of

head trauma frequency. The aim was to explore in-depth the

relationship between head trauma and ALS. Further dose-response

and stratification analyses are needed to determine whether head

trauma is associated with the site, number, and severity of the

injury, and more large-sample, prospective cohort studies are

needed for evidence support.

According to the result of meta-analysis, CVD is not a risk

factor for ALS. CVD consists of various diseases of the brain

blood vessels, which present hemorrhagic or ischemic vessels in

the brain tissue. Researchers have now found that alterations in

vascular homeostasis may be relevant to the pathogenesis of ALS

(Sutedja et al., 2011). Low levels of vascular endothelial growth

factor are more likely to lead to the degeneration of motor

neurons (Goncalves et al., 2017). This study revealed that total

CVD is not a risk factor for the progression of ALS based on the

statistical analysis. However, Kioumourtzoglou et al. (2016) found

a protective effect of atherosclerosis and ischemic heart disease on

the progression of ALS.

DM is a protective factor for ALS in statistical analysis. The

current mechanism of DM in ALS focuses on the following

hypotheses. DM can resist the increased energy expenditure and

high metabolism in ALS patients and play a protective role, which

delays the onset of ALS (Blasco et al., 2017). Secondly, DM is

associated with high concentrations of granule protein precursors, a

biomarker associated with TDP-43-mediated axonopathy, and the

abnormal protein of TDP-43 aggregation is one of the significant

risk factors for ALS (Cieslarova et al., 2017). Therefore, it can be

hypothesized that DM may act through TDP-43. In this meta-

analysis, by subgrouping different study types, the results of the

case-control studies showed a moderate protective effect of DM on

the onset and progression of ALS. After comprehensively reading

the full texts of the five included studies, we found that only one

study (Seelen et al., 2014) performed a correlation analysis between

autoimmune diseases and ALS, but the results showed no statistical

significance. However, better protection was not demonstrated in

the cohort studies. In this study, the result of cohort and case-

control studies were inconsistent. A US cohort study found that

patients with DM before onset had a later onset, while having

T2DM in an older age groupmay reduce the risk of developing ALS,

while having T1DM in a younger age groupmay increase the risk of

developing ALS (Hollinger et al., 2016). Thus, this may be a source

of study heterogeneity. Therefore, more prospective cohort studies

with larger samples are needed to demonstrate this.

The occupation was not a risk factor for ALS. The included

studies were divided into agriculture, industry, and services

industry based on the nature of the occupation because of its

evident heterogeneity. It was finally concluded that none of the

three significant occupations was a risk factor for the onset and

progression of ALS. It has been pointed out that people engaged

in agriculture and industry are more likely to be exposed to

pesticides, heavy metals, tobacco, and other neurotoxic substances,

and the combined effect of these factors may be the main reason

for the increased risk of the disease in this group (Saastamoinen

et al., 2022). Therefore, we further explored whether pesticides,

lead, chemicals, and heavy metals were risk factors for ALS.

With statistical analyses, we found that pesticides and lead were

risk factors for the progression of ALS, while heavy metals and

chemicals were not among their risk factors. Lead has potent

neurotoxicity, mainly in the central nervous system (CNS) and

peripheral nervous system (PNS), with CNS toxicity being the

most obvious. Some studies have found that short-time exposure

to high lead concentrations may cause subacute changes in motor

neurons (Thomson and Parry, 2006). The pathogenic mechanisms

of pesticide-induced neurological damage are well-understood.

Cholinesterase inhibition, polymorphism of paraoxonase, and

induction of oxidative stress are the leading causes of neurological

damage caused by pesticides. In this study, we did not find an

evident relationship between heavy metals and chemicals and the

onset of ALS, while many studies have concluded that heavy

metal exposure is not associated with the risk of developing ALS

(Vinceti et al., 2012; Nicoletti et al., 2016). However, this study

did not analyze the heavy metal type and exposure duration as

covariates. Further studies are needed to determine whether there

is a correlation between the covariates and ALS.

Smoking was not a risk factor for ALS. Smoking history was

regarded as the primary differentiation method, which may ignore

the effects of confounders such as dose and gender differences.

Neurotoxic components such as nicotine and formaldehyde

produced during tobacco combustion are the leading cause of the

increased risk of ALS development, inhibiting oxy phosphatase

activity and leading to oxidative stress of cellular DNA, leading

to apoptosis (Thorne et al., 2009). Furthermore, we explored the

reason for lacking a significant result, and we concluded that one

of the included studies had a small sample size, which was not

representative, and it did not adjust for confounders.

Physical activity was a risk factor for ALS. Physical activity

causes the body to produce more reactive oxygen species, leading

to nucleotide damage, increasing the oxidative load on cells, and

cellular damage. A Mendelian randomization study found a causal

relationship between the heritability of frequent and vigorous

exercise and ALS (Julian et al., 2021).
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Electric shock was a risk factor for ALS. The nervous system

is one of the sensitive systems of the body in response to external

environmental stimuli and a target for exposure to environmental

electromagnetic fields. Several studies have found a correlation

between occupational exposure to low-frequency magnetic fields

and the risk of developing neurodegenerative diseases (Rinaldi

et al., 2015; Kopeikina and Ponomarev, 2021). In this study, data

analysis revealed that people with long-term EMF exposure were

2.72 times more likely to develop ALS than non-exposed people.

Military service was a risk factor for ALS. Multiple exposures

may occur during military service, including pesticides, head

trauma, viral infections, organic solvents, and formaldehyde

(McKay et al., 2021). These exposures may be suggested to be a

linkage to an increased risk of ALS. This study only examines

whether there is an association between ALS and military service,

and further analyses of possible exposure factors in military service

should be conducted in order to be able to improve the level

of evidence. Of note, both included studies describe military

service as a type of occupation. In order to standardize the

occupational factors, we divided the occupations into agriculture,

industry, and services according to their nature. For more detailed

findings, we conducted separate meta-analyses of the two studies

on military service.

Chemicals were not a risk factor for ALS. A review of the full

text of the included literature revealed that the chemical agents

in this study were neurotoxic substances, including aromatic and

organochlorinated solvents. Chronic exposure to chemical agents

can cause heterogeneous metabolic pathways, and one study found

that (Weisskopf et al., 2009) the genotype of glutathione synthase

interacts with chemicals such as solvents to increase the risk of

developing ALS.

The remaining 17 factors, which were only reported once

and could not be performed in meta-analyses, may be a risk or

protective factor for the development and progression of ALS.

We do hope that more high-quality observational studies will

be included in the meta-analysis in the future to provide strong

evidence to support the results.

The strengths of this study lie in the comprehensive analysis

of all risk factors for ALS in recent years and the inclusion

of high-quality observational studies by NOS quality scores to

ensure the credibility of the evidence. Secondly, we included

retrospective case-control and prospective cohort studies to

provide a comprehensive view of the relationship between risk

factors and ALS. Third, we performed subgroup and sensitivity

analyses to provide more reliable estimates. Finally, our study

included participants of various nationalities, considering genetic

differences due to ethnicity. A collation of the included studies

revealed that 17 were targeted at European populations, 14 at North

American populations, and five at Asian populations. However, our

study also has some limitations. First, we included observational

studies, which are not scientifically designated compared to the

randomized controlled trials (RCTs) category. Of note, due to

the limited number of studies, five risk factors, including CVD,

smoking, military, chemical, and heavy metal, only had two

studies when meta-analyses were performed. Nevertheless, the

PRISMA guideline recommends that a meta-analysis of one

outcome be conducted with more than three studies. Under this

circumstance, we should interpret the results with caution. We

hope more relevant and high-quality observational studies will

be included and provide a more reliable result. In addition,

although ORs with fully adjusted models were used in our study,

confounders varied across studies and may have had some degree

of influence on the results. Finally, the only included studies

were papers that could be published in the public domain, so we

need to consider the effect of publication bias on the results of

this study.

Besides, we classified the risk factors into lifestyle,

underlying disease history, and occupation according to the

nature of the risk factors. Physical activity, electric shock,

and smoking could be defined as a lifestyle. CVD, DM,

and head trauma are defined as underlying diseases. Lead,

pesticides, military service, chemicals, and heavy metals are

considered occupations. Due to inconsistencies between

studies, effect sizes could hardly be combined according

to the inclusion and exclusion criteria. However, we still

hope that interaction and possible superpositions effects

between a class of factors could be analyzed with more

high-quality studies.

5. Conclusion

Taken together, we investigated the following risk factors

associated with the onset and progression of ALS: head trauma,

physical activity, electric shock, military service, pesticides, and

lead. However, in meta-analyses, CVD, occupation, smoking,

chemicals, and heavy metals were not associated with ALS

onset and progression. In addition, DM was considered as a

protective factor, which helped patients with DM complicated

by ALS to assess their prognosis better. Moreover, we look

forward that more longitudinal studies will be conducted to further

elucidate the relationship between the type of DM and ALS onset

and progression.
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