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Introduction: The function of the autonomic nervous system (ANS) is crucial in 
the development of intradialytic hypotension (IDH). This study introduced the 
entropy of heart rate variability (HRV) and skin sympathetic nerve activity (SKNA) 
to provide a complementary nonlinear and dynamic perspective for evaluating 
ANS function concerning IDH.

Methods: 93 patients undergoing hemodialysis (HD) were enrolled, and the 
baseline data, electrocardiogram (ECG), and SKNA were collected. The patients 
were separated into the IDH and nonIDH groups based on the thresholds, which 
were characterized as reductions in systolic blood pressure (SBP) of at least 20 
mm Hg or mean arterial pressure (MAP) of at least 10 mm Hg. We developed a 
logistic regression model for IDH after analyzing the changes in the time domain, 
frequency domain, the entropy of HRV, and SKNA indices during HD.

Results: After 4-h HD, the detected results for heart rate, the ratio of low frequency 
and high frequency (LF/HF), and average SKNA (aSKNA) all increased in both groups. 
Nine out of the ten HRV indices and aSKNA in the nonIDH group were higher than 
those in the IDH group at most moments. aSKNA was positively correlated with heart 
rate (p = 0.0001) and LF/HF (p = 0.0005) in the nonIDH group, while the correlation 
disappeared in the IDH group, which indicated a worse ANS response in IDH patients. 
The logistic regression model exhibited the results of initial SBP [odds ratio (OR) 1.076; 
p = 0.001], and the difference between the last and first segments (DLF) of heart rate 
[OR 1.101; p =0.012] and LF/HF [OR 0.209; p =0.034], as well as the extreme value of 
the difference between other segments and the first segments (EOF) of aSKNA [OR 
2.908; p =0.017], which were independent indicators for IDH.

Discussion: The new nonlinear and dynamic assessment perspectives provided by 
the entropy of HRV and SKNA help to distinguish differences in ANS patterns between 
IDH patients and nonIDH patients and have the potential to be used in clinical 
monitoring for HD patients.
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1. Introduction

Intradialytic hypotension (IDH), as one of the main complications 
during hemodialysis (HD), is related to several adverse prognostic events, 
including inadequate dialysis dose (Ronco et  al., 2000), end-organ 
ischemia (MacEwen et  al., 2017; Seong et  al., 2018), increased 
cardiovascular events (Stefánsson et al., 2014) and mortality (Shoji et al., 
2004). It is crucial to have a throughout understanding of the physiological 
mechanism of IDH to effectively prevent and treat the condition.

During HD, as intravascular volume decreases, compensatory 
mechanisms are activated to counter the tendency to fall in blood 
pressure (BP) by increasing the plasma refill, cardiac output, and 
peripheral vascular resistance (Chou et al., 2017). IDH is the consequence 
of ultrafiltration exceeding plasma replacement (Davenport, 2022). The 
autonomic nervous system (ANS), comprising the sympathetic and 
parasympathetic nervous systems, is essential to this process. The 
sympathetic nervous activity (SNA), vascular resistance, and heart rate 
are found to increase in patients without IDH during HD, while 
decreasing during IDH episodes in IDH-prone patients, which indicates 
that insufficient sympathetic response contributes to IDH (Converse 
et  al., 1992). Therefore, the accurate assessment of ANS patterns 
contributes to an in-depth understanding of IDH.

Heart rate variability (HRV) is a useful and noninvasive method 
for evaluating ANS function, which represents the changes in 
continuous heartbeats (Heart rate variability, 1996). Time and 
frequency domain analysis of HRV is widely utilized to assess IDH in 
patients with HD (Pelosi et al., 1999; Chang et al., 2016; Park et al., 
2019). Nevertheless, the heart is a nonlinear dynamic system, and 
these linear statistical measures may mask the abnormal nonlinear 
information on heart rhythm (Denton et al., 1990). Entropy is used 
to evaluate the regularity between time intervals, where increased 
regularity tends to indicate a defect in the regulatory system (Mayer 
et al., 2014). Therefore, we introduced entropy methods to describe 
the relationship between regularity changes in heartbeats and 
ANS regulation.

Skin sympathetic nerve activity (SKNA) is a recent and high-
frequency method for the noninvasive detection of SNA, which is 
proved to be well correlated with stellate ganglion activity and valid in 
related studies of diseases with abnormal SNA (Jiang et  al., 2015; 
Doytchinova et al., 2017; He et al., 2020; Kusayama et al., 2020a). The 
cardiac sympathetic nerve alternates at the stellate ganglion, and its 
postganglionic fibers control cardiac activity. Thus stellate ganglion 
activity is indicative of sympathetic activity. SKNA provides a new 
perspective for evaluating SNA with the second-by-second temporal 
resolution. It can be applied to sinus node dysfunction scenarios, which 
are unavailable with HRV (Kusayama et al., 2020b). In an anesthesia 
injection study, SKNA was found to be superior to HRV in describing 
the inhibition of SNA (Xing et al., 2022). SKNA can be used as a more 
intuitive way to describe SNA, which complements the HRV’s 
description of the ANS function.

To research the influence of the ANS on IDH, especially the SNA, 
we recruited patients to compare the ANS patterns between those who 
experienced IDH and those who did not during HD. A wearable device 
was applied to conveniently and noninvasively acquire physiological 
signals from HD patients. To the best of our knowledge, our study is the 
first to implement the methods for the entropy of HRV and SKNA to 
provide the nonlinear and dynamic perspective of the ANS function on 
IDH. Besides, we  conducted correlations between SKNA and HRV 
indices to explore the mapping relationship. Moreover, the multivariate 

model was established by binary logistic regression based on baseline 
data, HRV, and SKNA indicators to determine the risk factors of IDH.

2. Methods

2.1. Participants

The study enrolled 93 patients who underwent maintenance HD at 
the First Affiliated Hospital of Nanjing Medical University between 
August and November 2020. All participants in this study were over the 
age of 18 and had been receiving HD treatment for at least 3 months, with 
each session lasting 4 h, three times a week. Patients who had a previous 
history of arrhythmia, cerebrovascular disease, heart valve disease, acute 
coronary syndrome, pacemaker installation, severe anemia, or severe 
infection were excluded. Written informed consent was obtained from all 
subjects before they participated in the study. To protect patients’ privacy, 
all data were anonymized during the analysis procedure. The study was 
conducted after receiving approval from the Ethics Committee of the First 
Affiliated Hospital of Nanjing Medical University.

2.2. Baseline data

The baseline data were collected, including age, sex, body mass 
index, HD duration, ultrafiltration, the ratio of ultrafiltration and 
weight, systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) before HD. The measurement of systolic blood pressure (SBP) 
and diastolic blood pressure (DBP) was conducted before HD, as the 
baseline, and every hour after the start of HD.

2.3. Blood pressure analysis

We used the four indicators of SBP, DBP, mean arterial pressure 
(MAP), and pulse pressure (PP) to comprehensively evaluate BP in 
HD. MAP was determined by adding 1/3 SBP and 2/3 DBP, while PP 
was determined as SBP minus DBP.

There is no widely accepted definition for the condition in previous 
studies on IDH. We defined IDH, referring to the K/DOQI Clinical 
Practice Guidelines (K/DOQI Clinical Practice Guidelines for 
Cardiovascular Disease in K/DOQI Workgroup, 2005), as a reduction in 
SBP of at least 20 mm Hg or a reduction in MAP of at least10 mm Hg. To 
be clear, we omitted the clinical symptoms in our study, compared to the 
definition in the guidelines. On one hand, it is possible that symptoms 
and treatments are unnecessarily linked to end-organ damage or 
hemodynamic instability, which could be  deceptive (Assimon and 
Flythe, 2017). On the other hand, we intended to pay more attention to 
the changes in objective BP values to uncover the relevant physiological 
changes in patients with asymptomatic or latent IDH. The subjects with 
an SBP reduction of at least 20 mmHg or a MAP reduction of at least 
10 mmHg were divided into the IDH group. Otherwise, they were 
divided into the nonIDH group.

2.4. Acquisition of ECG and SKNA

Our team developed a portable, noninvasive, and high-frequency 
electrophysiological signal acquisition device with a sampling 
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frequency of up to 16 kHZ, input noise as low as 0.1μVrms, and size of 
7 mm * 8 mm * 2 mm, which can simultaneously collect ECG and 
SKNA signals (Xing et al., 2022). Before this, SKNA had not been 
acquired by proprietary acquisition equipment. In comparison with 
the reference system, the acquired signal quality of the device was 
verified to be effective and reliable (Xing et al., 2020, 2022). In this 
study, we used this device to acquire physiological signals from HD 
patients. Subjects were required to remain in the supine position and 
avoid unnecessary movement during HD to improve signal quality, 
while ECG and SKNA signals were simultaneously measured by the 
devices for 4 h (Figure 1A). The sampling frequency was 4 kHz. Three 
wet electrodes were applied to the skin of each subject to monitor 
single lead signals.

2.5. Preprocessing of ECG and SKNA

ECG and SKNA signals were obtained through a 150 Hz low-pass 
filter and a 500 to 1,000 Hz band-pass filter, respectively (Figure 1B). 
We  introduced the preprocessing processes of noise reduction 
(Pandit et al., 2017), R-peak detection (Wang et al., 2022), and signal 
quality assessment (Liu et al., 2019) to ensure the reliability of RR 
intervals. Furthermore, RR intervals that changed more than 20% 
from the previous interval or did not fall within the range of 0.375 s 
to 2 s were removed. Since SKNA signals were not rhythmic like ECG 
signals, the preprocessing of SKNA signals mainly considered the 
removal of outliers. The interquartile range and an absolute value 
threshold of 80 μV were used to identify outliers. All values that were 
not in the range of [Q1-1.5 * IQR, Q3 + 1.5 * IQR] were removed, 
where Q1 was the lower quantile and Q3 was the upper quantile. 
Values outside the absolute value threshold were eliminated. The 
average SKNA (aSKNA) index was determined by computing the 
mean of the rectified SKNA signals. ECG and SKNA signals were 
divided into 5 min and 30 min windows, respectively, with no overlap 
between windows.

2.6. HRV analysis

HRV analysis was performed from three perspectives: the time 
domain, frequency domain, and nonlinear analysis. The indices of the 
time domain analysis included the standard deviation of the RR 
intervals (SDNN), the square root of the mean squared differences of 
subsequent RR intervals (RMSSD), and the proportion obtained by 
dividing the number of interval differences of subsequent RR intervals 
greater than 50 ms by the overall number of the RR intervals (PNN50). 
The indices of the frequency domain analysis included low frequency 
(0.04 to 0.15 Hz, LF), high frequency (0.15 to 0.40 Hz, HF), the ratio 
of low frequency to high frequency (LF/HF), and the ratio of low 
frequency to the sum of low frequency and high frequency (LF/
LF + HF). The nonlinear analysis mainly considered the complexity of 
RR intervals from the perspective of entropy. The indices of the 
nonlinear analysis included approximate entropy (ApEn) (Pincus, 
1995), sample entropy (Richman and Moorman, 2000; Lake et al., 
2002), and fuzzy measure entropy (FuzzyMEn) (Liu et al., 2013). The 
parameters of ApEn and SampEn were chosen as the dimension m = 2 
and the tolerance r = 0.2. The parameters of FuzzyMEn were chosen 
as the dimension m = 2, the local threshold rl = 0.2, the global threshold 
rg = 0.2, the local weight of sequence segments’ similarity nl = 3, and the 
global weight of sequence segments’ similarity ng = 2.

2.7. Statistical analysis

All data statistics were performed based on SPSS and 
MATLAB. Shapiro–Wilk test and Kolmogorov–Smirnov test were 
applied to determine the normality of the data. Continuous data with 
normal distribution were given as mean ± standard deviation (SD). 
Otherwise, data were summarized by median (interquartile range 
[IQR]). Categorical data was given as frequency and percentage. The 
Levene test was conducted to test the homogeneity of variance. 
Independent-sample Student’s t-test, Mann–Whitney U test, and 
Chi-square test were performed to describe the differences between 

FIGURE 1

Schematic of the physiological signal acquisition process and data processing. (A) illustrates the scenario of signal acquisition during hemodialysis (HD). 
(B) shows the electrocardiogram (ECG) and skin sympathetic nerve activity (SKNA) signals separated from the raw signals, respectively.
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the two subgroups. Student paired t-tests and Wilcoxon signed-rank 
test were utilized to explore the changes of physiological data in 
different periods within the group. Pearson correlation coefficient, 
Spearman correlation coefficient, and least square method were used 
to analyze the correlation. To investigate the correlation between 
aSKNA and other indicators, the mean values of segments 1 and 2, 
12 and 13, 24 and 25, 35 and 36, 47, and 48 of each index were 
computed based on the 5 min results, corresponded with the five 
measurements of SBP and DBP. Two-sided p < 0.05 was regarded 
as significant.

Binary logistic regression was employed for univariate and 
multivariate analyses to explore the independent risk factors of 
IDH. In the multivariate analysis, the indicators with p < 0.2 in the 
univariate analysis were included. To more comprehensively explore 
the underlying association between the indicators of physiological 
signals and IDH, this study processed the indicators from three 
dimensions to build multivariate models. Using the 5 min results, 
we calculated the difference between the last and first segments 
(DLF), the extreme value of the difference between other segments 
and the first segments (EOF), and the extreme value of the 
difference between adjacent segments (EDA). It should be stated 
that after each calculation of EOF and EDA, the maximum and 
minimum values were obtained. In univariate analysis, we included 
the maximum and minimum values of EOF and EDA, respectively, 
and consider the corresponding extreme values with smaller 
p-values to be included in the multivariate model. To assess the 
model goodness of fit, the accuracy of the model, the Akaike 
Information Criterion (AIC), and Omnibus Tests of Model 
Coefficients were used.

3. Results

3.1. Participant information

In this study, among the total of 93 patients, 66 subjects had IDH, 
and 27 subjects did not have that, with an incidence rate of 71.0%. 
Table 1 displays the baseline data of the total and the two subgroups. 
The patients in the IDH group were older than those in the nonIDH 
group (65 [53.3, 69] vs. 54.15 ± 3.1, p = 0.039), with higher initial SBP 
(150.7 ± 2.1 vs. 133.6 ± 2.8, p < 0.001). Other characteristics were 
comparable between the two subgroups, and no significant differences 
were found. The mean initial SBP was above the 140 mm Hg threshold 
for hypertension in the IDH group, whereas the mean initial SBP was 
below this threshold in the nonIDH group.

3.2. Changes in BP during HD

The changes in BP indicators during HD in the subgroups are 
shown in Figure 2. The initial SBP, DBP, MAP, and PP were higher in 
IDH patients than those in patients without nonIDH, and the 
differences between the other three indicators were significant except 
for DBP. On the contrary, the final SBP, DBP, and MAP in IDH 
patients were lower than those in patients without nonIDH, and the 
differences in the other three indices were significant except PP. In 
the IDH group, all four indicators showed a significant decrease 

during the first 3 hours of HD, but there were no significant changes 
observed during the last hour, with only slight fluctuations. In the 
nonIDH group, there was no obvious trend in the changes of 
BP-related indicators during HD, and the changes were relatively 
stable, except for the cases of significant rises in DBP and MAP 
during the first hour. From the perspective of slope changes, the 
indicators changed most sharply during the first hour, and the degree 
of change weakened gradually in each subsequent hour.

3.3. Changes in heart rate, HRV, and SKNA 
indices during HD

Figure 3 illustrates the comparison of HRV and SKNA indices, as 
well as heart rate, during HD between the two subgroups. The heart 
rate in IDH patients was significantly lower than that in patients 
without nonIDH at the beginning of HD, gradually increased during 
HD, and was comparable to that of the nonIDH group at the end of 
HD (Figure 3A). Among the 10 HRV indices in the IDH group, 7 
indicators [SDNN, RMSSD, LF, HF, LF/HF, LF/(LF + HF), SampEn] 
were lower than those of the nonIDH group. At most moments, 
PNN50 and ApEn were also lower than those of the nonIDH group, 
while only FuzzyMEn was higher than those of the nonIDH group at 
most moments. The values of SDNN, RMSSD, and LF/HF increased, 
while FuzzyMEn decreased in both subgroups. PNN50, LF, HF, LF/
(LF + HF), ApEn, and SampEn rose in the nonIDH group and reduced 
in the IDH group. LF, LF/HF, LF/(LF + HF), ApEn, and SampEn 
showed good discrimination effects between the two subgroups 
(Figures 3B-K). For SKNA, aSKNA in the IDH group was lower than 
that in the nonIDH group, but there was no statistical difference 
between the two subgroups at each segment. Besides, aSKNA was 
elevated at end-HD in both groups.

TABLE 1 Baseline data of the total and the two subgroups.

Total 
N = 93

IDH 
N = 66

nonIDH 
N = 27

p value

Age (year) 62.0[50.0, 

69.5]

65.0[52.5, 

69.3]

54.2 ± 3.1 0.039

Male (n, %) 62 (66.7) 47 (71.2) 15 (55.6) 0.146

Body mass 

index (kg/m2)

22.9 ± 0.4 22.8 ± 0.4 22.1[20.4, 24.4] 0.666

HD duration 

(year)

3.0[1.4, 6.0] 3.0[1.8, 5.0] 3.0[1.0, 7.0] 0.682

Ultrafiltration 

(kg)

2.6 ± 0.1 2.5 ± 0.1 2.8 ± 0.2 0.293

Ultrafiltration/

Weight (%)

4.1 ± 0.1 3.9 ± 0.2 4.4 ± 0.3 0.155

Pre-HD SBP 

(mm Hg)

145.7 ± 1.9 150.7 ± 2.1 133.6 ± 2.8 <0.001

Pre-HD DBP 

(mm Hg)

78.3 ± 1.2 79.1 ± 1.4 76.4 ± 2.4 0.331

HD, hemodialysis; IDH, intradialytic hypotension; SBP, systolic blood pressure; DBP, 
diastolic blood pressure. p values for variables with p<0.05 are bolded, indicating a 
significant difference between the two subgroups of indicators.
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3.4. Correlation analysis between aSKNA 
and other indices

We examined the correlation between aSKNA and the other 
physical indicators: SBP, heart rate, and HRV indices in the subgroups, 
respectively (Figure 4). As it can be seen, there was no correlation 
between SBP and aSKNA in the nonIDH group, but there was a 
negative correlation (r = −0.1961, p = 0.0155) in the IDH group 
(Figures  4A,M). A moderate correlation was observed between 
aSKNA and heart rate in the nonIDH group (r = 0.3584, p = 0.0001), 
but no correlation in the IDH group (Figures 4B,N). Interestingly, the 
HRV indices of the time domain and entropy related to aSKNA in the 
two subgroups are completely complementary. SDNN (r = 0.1718, 
p = 0.0362), RMSSD (r = 0.1778, p = 0.0350), PNN50 (r = 0.2033, 
p = 0.0176), ApEn (r = 0.2301, p = 0.0042) and SampEn (r = 0.2086, 
p = 0.0097) were all positively correlated with aSKNA in the IDH 
group, while none of these parameters were correlated with aSKNA in 
the nonIDH group. FuzzyMEn (r = −0.3947, p < 0.0001) was correlated 
with aSKNA in the nonIDH group and had no correlation in the IDH 
group. For parameters in the frequency domain, except LF/HF 
(r = 0.3307, p = 0.0005) and LF/(LF + HF) (r = 0.3085, p = 0.0010) in the 

nonIDH group, which were positively correlated with aSKNA, there 
was no correlation in other cases.

3.5. Establishment of IDH risk factor model

Binary logistic regression was utilized to establish models. Firstly, 
univariate analysis was used to analyze the influence of baseline data 
on IDH. The results of the univariate analysis using the baseline data 
are reported in Table 2. Among these characteristics, variables with 
p < 0.2 in the univariate analysis, including age, sex, ultrafiltration/
weight, and SBP before HD, were integrated into the 
multivariate analysis.

Then, to better evaluate the impact of HRV and SKNA indicators 
on IDH, we  processed the indicators in three different ways and 
obtained the results of DLF, EOF, and EDA. The results of the 
univariate models and multivariate models using these calculated 
variables are listed in Table 3. For HRV indices, DLF showed that most 
HRV indicators were integrated into the multivariate analysis, and the 
multivariate model performed best, with the highest accuracy (77.4) 
and lowest AIC (274.268). By contrast, the minimal values of EOF and 

FIGURE 2

The changes in blood pressure (BP) indicators during hemodialysis (HD) in the subgroups. (A) systolic blood pressure (SBP), (B) diastolic blood pressure 
(DBP), (C) mean arterial pressure (MAP), (D) pulse pressure (PP). The red and blue lines stand for the IDH group and nonIDH group, respectively. ‘#’ and 
‘+’ represent statistically significant changes per hour in the IDH group and nonIDH group, respectively. ##p < 0.001, #p < 0.05, +p < 0.05. ‘*’ shows 
statistically significant differences between two subgroups in the same period. **p < 0.001, *p < 0.05. Error bars represent the standard error of the mean 
(SEM).
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EDA for aSKNA were statistically significant in univariate analysis and 
were included in subsequent multivariate analysis.

Finally, the baseline data and SKNA indices with p < 0.2 in the 
univariate analysis and HRV indices from the HRV multivariate 
Model 1 were integrated into the multivariate model for comprehensive 
analysis. Five models with different combinations of variables are 
reported in Table 4. Compared with model 1, models 2, 3, and 4 were 
optimized by adding HRV and SKNA parameters. Model 3 had the 
highest accuracy (84.9) and lowest AIC (250.356), which was also 
superior to the HRV multivariate Model 1 (Table 3). We found that 
higher SBP before HD [odds ratio (OR) 1.076; 95% confidence 
interval (CI) 1.031–1.124, p = 0.001], heart rate-DLF [OR 1.101; 95% 
CI 1.022–1.187, p = 0.012], and aSKNA-EOF [OR 2.908; 95% CI 
1.210–6.989, p = 0.017], and lower LF/HF-DLF [OR 0.209; 95% CI 
0.049–0.885, p = 0.034] were four independent indicators for IDH 
(Table 5).

4. Discussion

Time and frequency domain analysis of HRV was widely utilized 
in previous IDH-related studies. However, this traditional method 
ignores the nonlinear dynamical information on heart rate (Denton 
et al., 1990) and lacks a more intuitive description of SNA (Kusayama 
et al., 2020b). We implemented the methods for the entropy of HRV 
and SKNA to explore the physiological mechanism of IDH, which 

described the nonlinear and dynamic changes of the ANS in IDH. Two 
distinct response patterns of the ANS during HD were observed in the 
two subgroups, and the IDH group showed worse ANS activity and 
ability to cope with the stimulation. Higher initial SBP, the DLF of 
heart rate, and the EOF of aSKNA, as well as the lower DLF of LF/HF 
were found to be independent indicators for IDH.

4.1. ANS patterns revealed by HRV indices

The overall level of HRV indices, excluding FuzzyMEn, was lower 
in the IDH group than that in the nonIDH group. Reduced HRV is a 
remarkable predictor of symptoms and death of a wide broad 
spectrum of diseases, especially cardiovascular diseases (Sessa et al., 
2018; Fang et al., 2020). LF/HF, which describes the balance of SNA 
and parasympathetic nervous activity (PNA), increased in both 
subgroups, consistent with the previous study (Chang et al., 2016; Park 
et al., 2019). However, the same outcomes indicate different ANS 
patterns, mainly due to increased LF in nonIDH patients and 
decreased HF in IDH patients. Lower HF and reduced HF show 
suppressed PNA in the IDH group, which also points to a poor cardiac 
prognosis (Algra et al., 1993).

Moreover, inconsistent interpretations of indices in previous 
studies affected the credibility of HRV. LF was initially interpreted to 
characterize SNA. Nonetheless, accumulating evidence demonstrates 
that LF represents a nonlinear interaction between SNA and PNA 

FIGURE 3

The comparison of heart rate variability (HRV) and skin sympathetic nerve activity (SKNA) indices, as well as heart rate, during hemodialysis (HD) 
between the two subgroups. (A) heart rate, (B) the standard deviation of the RR intervals (SDNN), (C) the square root of the mean squared differences 
of subsequent RR intervals (RMSSD), (D) the proportion derived by dividing the number of interval differences of subsequent RR intervals greater than 
50 ms by the overall number of the RR intervals (PNN50), (E) low frequency (LF), (F) high frequency (HF), (G) LF/HF ratio, (H) LF/(LF + HF) ratio, (I). 
approximate entropy (ApEn), (J) sample entropy (SampEn), (K) fuzzy measure entropy (FuzzyMEn), (L) the average SKNA (aSKNA). The red and blue 
lines represent the IDH and nonIDH groups, respectively. ‘*’ shows statistically significant differences between two subgroups in the same period. 
**p < 0.001, *p < 0.05. Error bars represent the standard error of the mean (SEM).
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(Billman, 2013; Chang et  al., 2016). Although LF/HF indirectly 
represents the intensity of SNA through the balance of ANS, when the 
ANS function is weakened to a certain extent, LF/HF will lose its 
significance (Billman, 2013). This hypothesis is confirmed by the 
evidence that LF/HF and aSKNA were positively correlated in the 

nonIDH group, but this correlation disappeared in the IDH group 
with weaker ANS function. Consequently, in the assessment of 
patients with impaired ANS function, such as those with IDH, HRV 
may not provide an accurate evaluation of SNA, and the obtained 
results should be interpreted with caution.

FIGURE 4

The correlation between the average of skin sympathetic nerve activity (aSKNA) and other physical indicators: systolic blood pressure (SBP), heart rate, 
heart rate variability (HRV) indices in the intradialytic hypotension (IDH) group and nonIDH group. (C,O) the standard deviation of the RR intervals 
(SDNN); (D,P) the square root of the mean squared differences of subsequent RR intervals (RMSSD); (E,Q) the proportion derived by dividing the 
number of interval differences of subsequent RR intervals greater than 50 ms by the overall number of the RR intervals (PNN50); (F), (R) low frequency 
(LF); (G,S) high frequency (HF); (H,T) LF/HF ratio; (I,U) LF/(LF + HF) ratio; (J,V) approximate entropy (ApEn); (K,W) sample entropy (SampEn); (L,X) fuzzy 
measure entropy (FuzzyMEn). (A) to (L) represent the results of the nonIDH group, and (M) to (X) represent the results of the IDH group. The first rows 
of the figures are titled regression equations obtained by the least squares method, and the second rows are titled correlation coefficients and p values.
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4.2. Evaluation of entropy and SKNA during 
HD

ApEn and SampEn and FuzzyMEn describe the regularity of RR 
intervals. ApEn is used to address short-time noisy signals, with 
strong robustness (Pincus, 1991). SampEn solves the self-matching of 
the template in ApEn and is less dependent on data length (Richman 
and Moorman, 2000). FuzzyMEn introduces the fuzzy measure of 
variable similarity and considers both local and global similarity 
comprehensively to have better performance in short-time series 

processing (Liu et al., 2013). The lower values of ApEn and SampEn 
in the IDH group exhibit that patients who had higher regularity of 
heart rate may be prone to a higher risk of cardiovascular diseases 
(Fleisher et al., 1993; Mäkikallio et al., 1998; Rajendra Acharya et al., 
2006; Shin et al., 2006). Besides, it was found that ApEn and SampEn 
showed better discrimination ability for IDH in comparing the 
differences in index values between the two subgroups (Figures 3I-K), 
indicating that ApEn and SampEn can better characterize the 
difference in ANS function. But only FuzzyMEn was included in 
model 3 of HRV when determining the risk factors (p < 0.05, Table 3). 
This illustrates that introducing a global perspective helps predict the 
tendency of IDH over time. FuzzyMEn showed better performance 
on the 5-min scale compared to the 30-min scale, confirming the 
superiority of FuzzyMEn in the processing of short-time sequences.

As an emerging tool for assessing SNA, SKNA overcomes the 
limitation that HRV needs to be based on sinus rhythm and elevates 
time resolution to the level of seconds. During HD, aSKNA increased 
in both subgroups, similar to LF/HF, suggesting sympathetic 
activation, consistent with the expected feedback of compensatory 
mechanism triggered by increased ultrafiltration, which was in line 
with previous studies (Park et al., 2019; Zhang et al., 2022). Lower 
aSKNA in the IDH group indicated that patients had insufficient 
sympathetic activation (Converse et al., 1992). Moreover, aSKNA was 
positively correlated with heart rate in the nonIDH group, but this 
relationship disappeared in the IDH group. The loss might imply 
worse neurologic recovery, which was also observed in individuals 

TABLE 2 The results of the univariate analysis using the baseline data for 
evaluating intradialytic hypotension (IDH).

Variable OR(95% CI) p value

Age 1.042 (1.007, 1.078) 0.018

Sex 0.543 (0.216, 1.368) 0.195

Body mass index 0.994 (0.882, 1.121) 0.922

HD duration 0.974 (0.876, 1.082) 0.619

Ultrafiltration 0.772 (0.477, 1.248) 0.291

Ultrafiltration/Weight 0.000 (0.000, 13232.122) 0.155

Pre-HD SBP 1.071 (1.033, 1.110) <0.001

Pre-HD DBP 1.019 (0.981, 1.060) 0.328

Pre-HD, before hemodialysis; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
OR, odds ratio; CI, confidence interval. p values were obtained from logistic regression, and 
p values for variables with p<0.2 are bolded.

TABLE 3 The results of univariate analysis and multivariate analysis of heart rate variability (HRV) and skin sympathetic nerve activity (SKNA) indices for 
evaluating intradialytic hypotension (IDH).

Univariate analysis Multivariate analysis

DLF EOF EDA Model 1 Model 2 Model 3

#p values
HRV

Heart Rate 0.009 0.015− 0.662+ 0.016 0.049− –

SDNN 0.373 0.315+ 0.558+ – – –

RMSSD 0.141 0.204+ 0.560− 0.236 – –

PNN50 0.141 0.132+ 0.321+ 0.215 0.147+ –

LF 0.333 0.795+ 0.861+ – – –

HF 0.151 0.329+ 0.384+ 0.060 – –

LF/HF 0.011 0.085+ 0.120− 0.016 0.386+ 0.135−

LF/(LF + HF) 0.109 0.208− 0.365+ 0.113 – –

ApEn 0.460 0.297− 0.303+ – – –

SampEn 0.186 0.775+ 0.578− 0.480 – –

FuzzyMEn 0.505 0.165− 0.035+ – 0.694− 0.038+

SKNA aSKNA 0.768 0.009− 0.039− – – –

Constant – – – 0.021 0.044 0.968

Accuracy – – – 77.4 73.1 69.9

AIC – – – 274.268 286.839 290.921

*p value – – – 0.010 0.024 0.028

DLF, the difference between the last and first segments; EOF, the extreme value of the difference between other segments and the first segment; EDA, the extreme value of the difference 
between adjacent segments; SDNN, the standard deviation of the RR intervals; RMSSD, the square root of the mean squared differences of subsequent RR intervals; PNN50, the proportion 
derived by dividing the number of interval differences of subsequent RR intervals greater than 50 ms by the overall number of the RR intervals; LF, low frequency; HF, high frequency; LF/HF, 
LF/HF ratio; LF/(LF + HF), LF/(LF + HF) ratio; ApEn, approximate entropy; SampEn, sample entropy; FuzzyMEn, fuzzy measure entropy; aSKNA, the average SKNA; AIC, Akaike Information 
Criterion. In extreme value calculation, the maximum value and the minimum value are included, and ‘+’ and ‘−’ represent the maximum value and the minimum value, respectively. #p values 
were obtained from logistic regression, and p values for variables with p < 0.2 are bolded. *p values in the last row were obtained from Omnibus Tests of Model Coefficients. *p < 0.05 indicates 
that the model is overall significant.
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receiving targeted temperature control (Kutkut et al., 2021). aSKNA 
was negatively correlated with SBP in the IDH group, but this 
relationship was lost in the IDH group, which revealed a worse 
systemic ability to resist the loss of volume in IDH patients. In the 
IDH group, not only the activation of SNA was insufficient, but also 
other physiological mechanisms failed to resist the reduction of BP.

4.3. Risk factors for IDH

DLF, EOF, and EDA methods were used to process HRV and 
SKNA indices in the establishment of the IDH multivariate model. 
DLF model of HRV performed best, indicating that the difference 
in HRV values before and after dialysis better described the 

TABLE 4 The results of the different multivariate models for predicting intradialytic hypotension (IDH).

Model 1 Model 2 Model 3 Model 4 Model 5

#p value

Pre-HD SBP < 0.001 0.001 0.001 0.001 –

Age 0.085 0.577 0.874 0.706 –

Ultrafiltration/Weight 0.297 0.133 0.087 0.110 –

Sex 0.265 0.551 0.806 0.584 –

Heart Rate-DLF – 0.021 0.012 0.024 0.015

LF/HF-DLF – 0.039 0.034 0.037 0.024

HF-DLF – 0.147 0.169 0.158 0.038

LF/(LF + HF)-DLF – 0.214 0.186 0.210 0.131

RMSSD-DLF – – – – 0.130

PNN50-DLF – – – – 0.184

SampEn-DLF – – – – 0.569

aSKNA-EOF− – – 0.017 – 0.010

aSKNA-EDA− – – – 0.132 –

Constant 0.001 0.013 0.030 0.019 0.002

Accuracy 77.4 81.7 84.9 82.8 78.5

AIC 271.835 255.684 250.356 253.349 265.998

*p value <0.001 <0.001 <0.001 <0.001 <0.001

Pre-HD, before hemodialysis; SBP, systolic blood pressure; LF, low frequency;  HF, high frequency;  LF/HF, LF/HF ratio;  LF/(LF+HF), LF/(LF+HF) ratio; RMSSD, the square root of the mean 
squared differences of subsequent RR intervals; PNN50, the proportion derived by dividing the number of interval differences of subsequent RR intervals greater than 50 ms by the overall 
number of the RR intervals; SampEn, sample entropy; aSKNA, the average of skin sympathetic nerve activity; AIC, Akaike Information Criterion. ‘-DLF’ denotes the difference between the 
last and first segments of the calculated variable. ‘-EOF−’ denotes the minimum value of the difference between other segments and the first segment of the calculated variable. ‘-EDA−’ denotes 
the minimum value of the difference between adjacent segments of the calculated variable. #p values were obtained from logistic regression, and p values for variables with p < 0.05 are bolded. 
*p values in the last row were obtained from Omnibus Tests of Model Coefficients. *p < 0.05 indicates that the model is overall significant.

TABLE 5 The optimal model for predicting intradialytic hypotension (IDH) based on logistic regression.

OR(95% CI) p value

Pre-HD SBP 1.076 (1.031, 1.124) 0.001

Age (per 1 year) 1.004 (0.956, 1.054) 0.874

Ultrafiltration/Weight 0.000 (0.000, 1606.431) 0.087

Sex

 Male 1.000 –

 Female 0.844 (0.218, 3.271) 0.806

Heart Rate-DLF 1.101 (1.022, 1.187) 0.012

LF/HF-DLF 0.209 (0.049, 0.885) 0.034

HF-DLF 1.001 (1.000, 1.002) 0.169

LF/(LF + HF) -DLF 247.191 (0.070, 869089.763) 0.186

SKNA-EOF- 2.908 (1.210, 6.989) 0.017

Constant 0.001 0.030

Pre-HD, before hemodialysis; SBP, systolic blood pressure; LF, low frequency;  HF, high frequency;  LF/HF, LF/HF ratio;  LF/(LF+HF), LF/(LF+HF) ratio; aSKNA, average of skin sympathetic 
nerve activity; OR, odds ratio; CI, confidence interval. ‘-DLF’ denotes the difference between the last and first segments of the calculated variable. ‘EOF-’ denotes the minimum value of the 
difference between other segments and the first segment of the calculated variable. p values for variables with p < 0.05 in the logistic regression are bolded.
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occurrence of IDH. In the final multivariate model comparison, the 
two iterations from model 1 to model 3 indicated that adding HRV 
indices and SKNA index based on clinical baseline information 
helped assess IDH, respectively. The comparison of models 3 and 4 
showed that the maximum change in SKNA from the initial value 
could better distinguish IDH. That is, the changes in SNA during 
HD affect the development of IDH relative to the baseline. Model 5 
was introduced to illustrate the importance of baseline data in 
the model.

In the final assessment model of IDH, higher initial SBP, the 
DLF of heart rate,  and the EOF of aSKNA,  as well as the lower DLF 
of LF/HF became the risk factors for IDH. Higher initial BP 
promotes IDH which is consistent with previous study (Chang 
et al., 2016). The mean initial SBP in IDH patients was above the 
diagnostic criteria of hypertension, which is 140 mmHg, whereas 
that in nonIDH patients were normal. On one hand, we speculate 
that hypertension may be related to greater weight gain when not 
receiving HD but with inadequate dialysis because of an unexpected 
weight gain. On the other hand, we think that IDH patients initially 
may have over-activated sympathetic nerves, which are more 
susceptible to hypertension (Masuo et  al., 2010), resulting in 
vascular overload and pathological changes (Cachofeiro et  al., 
2009), but abnormal SNA gradually decreases with the increase of 
the HD duration (Masuo et al., 2010), even lower than other HD 
patients. Therefore, patients are unable to further raise peripheral 
vascular resistance in response to the increase in SNA, resulting in 
IDH (Dubin et al., 2011). In addition, LF is nonlinearly regulated 
by the SNA and PNA, as well as other factors, with the effect of PNA 
being approximately twice as strong as that of SNA (Randall et al., 
1991). That is, LF/HF is more sensitive to PNA at lower SNA. Thus, 
we  hypothesized that the lower DLF of LF/HF directed to the 
depressed PNA or other factors in IDH patients, which are different 
from the depressed SNA generally believed.

4.4. Limitation

It should be noted that this study still has several limitations. First of 
all, this research was conducted in a single center, and the sample size of 
patients was small, so the data may be biased. Secondly, the lack of clinical 
symptoms and interventions reduced the physiological differences 
between IDH and nonIDH patients, making it more difficult to identify 
IDH. What is more, physical data during HD were collected only once for 
each patient, and no long-term follow-up was formed, so there may 
be some contingency in the results. Finally, although the SKNA assessment 
achieved satisfactory results in this study, the specific physiological 
mechanism of SKNA is still unclear, and the underlying relationship 
between SKNA and HRV indicators needs to be further studied.

5. Conclusion

In this study, a portable, noninvasive, and high-frequency 
electrophysiological acquisition device was used to collect ECG and 
SKNA signals of patients during HD, which were combined with 
baseline data to evaluate ANS function during HD. Compared with 
previous studies, this study introduced the entropy of HRV and 

SKNA methods to provide a nonlinear and dynamic perspective of 
ANS function assessment and investigated the underlying 
physiological mechanism of IDH. We  found different patterns in 
response to plasma loss between IDH patients and nonIDH patients, 
and the IDH group exhibited worse ANS function. In addition, we 
found that higher initial SBP, the DLF of heart rate and the EOF of 
aSKNA, and the lower DLF for LF/HF were independent factors of 
IDH. The SKNA showed good performance in both group 
comparison and model evaluation in this study. Although the entropy 
of HRV was not integrated into the final multivariate model, the 
nonlinear information it provided deserved further exploration.
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