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In the human brain, learning is continuous, while currently in AI, learning

algorithms are pre-trained, making the model non-evolutive and predetermined.

However, even in AI models, environment and input data change over time. Thus,

there is a need to study continual learning algorithms. In particular, there is a

need to investigate how to implement such continual learning algorithms on-chip.

In this work, we focus on Oscillatory Neural Networks (ONNs), a neuromorphic

computing paradigm performing auto-associative memory tasks, like Hopfield

Neural Networks (HNNs). We study the adaptability of the HNN unsupervised

learning rules to on-chip learningwithONN. In addition, we propose a first solution

to implement unsupervised on-chip learning using a digital ONN design. We show

that the architecture enables e�cient ONN on-chip learning with Hebbian and

Storkey learning rules in hundreds of microseconds for networks with up to 35

fully-connected digital oscillators.

KEYWORDS

oscillatory neural networks, on-chip learning, unsupervised learning, pattern recognition,

FPGA implementation

1. Introduction

Current Artificial Intelligence (AI) models are mainly used for two functions,

overcoming the human brain to solve a specific task, or replacing the human brain on more

general purpose tasks (Pehlevan and Chklovskii, 2019). In both cases, AI models need to

learn how to correctly solve a given task. However, while humans are capable of learning

continuously through life to adapt to the changing environment and learn new tasks, current

AI models are trained in advance for inference, making it impossible to learn from evolving

environments and input data (Thrun andMitchell, 1995; Ring, 1997). To adapt AI models to

evolving environments and input data, continual learning is necessary, so there are ongoing

efforts to develop continual learning algorithms for AI models (Thangarasa et al., 2020). In

particular, efforts are concentrated first on supervised continual learning (De Lange et al.,

2022; Mai et al., 2022) to improve the performance of classification models over time, and

then on continual reinforcement learning to learn from the environment, for example in

robotics (Lesort et al., 2020; Khetarpal et al., 2022).

Continual learning algorithms expect to learn novel data while avoiding catastrophic

forgetting (McCloskey and Cohen, 1989; French, 1999) of previously learned data, for

example, considering bio-inspired synaptic plasticity, or reminding solutions (Hayes et al.,

2020; De Lange et al., 2022; Jedlicka et al., 2022). Additionally, continual learning demands

to be implemented on-chip for fast and efficient performances. However, to allow continual
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on-chip learning, each synapse needs to be re-programmable in

a real-time latency requiring additional space, and resources, and

consuming more energy consumption than systems without on-

chip learning.

Moreover, there are several ongoing works to propose hardware

implementations of fast, low-resource, and power-efficient AI

computing paradigms. In particular, neuromorphic computing

(Christensen et al., 2022) takes inspiration from the human brain

neural network for the AI models architectures, and for the data

representation. The most widely used neuromorphic computing

paradigm is called Spiking Neural Network (SNN; Maass, 1997)

which takes inspiration from spikes transmitted among neurons

through the brain synapses by encoding information in the latency

between two spike signals. SNN has been widely explored in the

last decades both in terms of network implementation, with the

development of different SNN-based chips for edge AI computing

(Davies et al., 2018; Pehle et al., 2022), and in terms of learning,

in particular for continual learning (Wang et al., 2014; Lobo et al.,

2019). In this paper, we focus on another neuromorphic paradigm,

called the Oscillatory Neural Network (ONN), which is drawing

attention as an alternative neuromorphic solution for edge AI

computing.

ONN takes inspiration from the collective synchronization of

human brain neurons through oscillations (Tognoli and Kelso,

2009). ONN is an analog-based computing paradigm built as a

network of coupled oscillators (Izhikevich and Kuramoto, 2006;

Schwemmer and Lewis, 2012; Raychowdhury et al., 2019; Csaba

and Porod, 2020; Todri-Sanial et al., 2022) computing with the

parallel phase synchronization of coupled oscillators, called phase

computing. In phase computing, information is encoded in the

phase relationship between oscillators which can potentially limit

voltage amplitude and, therefore, reduce the energy consumption

(Delacour et al., 2023a), making it attractive for edge computing.

Currently, efforts are given on ONN implementation, from

materials to devices, on ONN circuit architecture (Abernot

et al., 2021; Delacour et al., 2023b), and on ONN applications

with demonstrators of ONNs for image processing (Fernandes

et al., 2004; Abernot and Todri-Sanial, 2023), robotic navigation

(Abernot et al., 2022a), or optimization problems (Wang and

Roychowdhury, 2019; Delacour et al., 2022). Yet, learning and

continual learning algorithms for ONN are still to be investigated.

Thus, this work focuses on ONN on-chip learning for pattern

recognition.

In state-of-the-art, ONNs are often studied as a fully-connected

recurrent architecture to perform pattern recognition similar to

Hopfield Neural Networks (HNNs) (Hoppensteadt and Izhikevich,

1997; Nikonov et al., 2015; see Figure 1). While in the literature

ONNs are typically trained with unsupervised learning rules that

were first introduced for HNNs. To the best of our knowledge,

learning rules specific to ONNs are yet to be developed. In this

work, we present an adaptation of HNN unsupervised learning

rules for ONNs while analyzing the different learning rules for

continual on-chip learning. Recently, we introduced an on-chip

learning architecture for a digital ONN implementation (Abernot

et al., 2022b) with the Hebbian learning rule applied to a small

15-neuron ONN for a three-digit pattern recognition application.

In this work, we go beyond by demonstrating that the ONN

FIGURE 1

ONN computing paradigm configured for pattern recognition.

architecture is compatible with other learning rules than Hebbian

by implementing the Storkey learning rule. Next, we analyze the

scalability of the ONN architecture to provide a more complete

evaluation of the system.

The main contributions of the paper are summarized as (i)

adaptation of existing HNN unsupervised learning rules to ONNs,

(ii) development of a continual on-chip learning algorithm on

ONN with unsupervised learning rules, (iii) an implementation

approach for on-chip learning on digital ONN for auto-associative

memory tasks, and (iv) present a scalability analysis of our

approach in terms of latency, precision and resource utilization.

First, Section 2.1 presents the ONN paradigm and its auto-

associative memory capabilities. Then, Section 2.2 gives details

on the various learning rules introduced for HNN and their

compatibility with ONN for on-chip learning. After, Section

2.3 defines the proposed hardware implementation to perform

on-chip learning with a digital ONN design. Section 3 shows

results obtained with our on-chip learning solution for various

ONN sizes, learning algorithms, and weight precision. Finally,

Section 4 discusses the results compared to state-of-the-art

and the advantages and limitations of our on-chip learning

implementation.

2. Materials and methods

2.1. Oscillatory neural networks

In ONNs, each neuron is an oscillator coupled with synaptic

elements representing weights between neurons (Delacour and

Todri-Sanial, 2021), and information is represented in the phase

relationship between oscillators such that ONN computes in

phase using the weakly coupled oscillator dynamics (Schwemmer

and Lewis, 2012). For example, for binary information, if an

oscillator oscillates with a 0◦ phase difference from a reference

oscillator, it will represent a binary “0” value, while if it oscillates

with a 180◦ phase difference from a reference oscillator, it will

represent a binary “1” value. Typically, one oscillator from the

network is used as the reference oscillator. The inference process
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starts with the initialization of each neuron phase as the input

information, then, oscillators’ phases evolve in parallel thanks

to the dynamics of coupled oscillators (Schwemmer and Lewis,

2012) until stabilization to a final phase state, which represents

the ONN inference output (see Figure 1). Phase computation can

potentially reduce the voltage amplitude meanwhile it enables

parallel computation, providing an attractive low-power edge

computing paradigm (Delacour et al., 2023a).

The evolution of the phases during inference is associated with

the minimization of an intrinsic parameter called the energy of the

network. Note, it does not have any relationship with the power

consumption of the system. The energy of the network is defined as

follows:

E =
∑

i

∑

j

Wijφiφj (1)

with φi the phase state of neuron i, φj the phase state of neuron

j, and Wij the coupling weight between neuron i and neuron j.

Considering this intrinsic energy parameter, ONN learning consists

of shaping the energy function, and more importantly, defining the

minima of this energy function given a specific task (see Figure 2A).

For example, ONN can solve graph optimization problems, like

max-cut (Bashar et al., 2020; Delacour et al., 2022, 2023b; Vaidya

et al., 2022), graph coloring (Wang and Roychowdhury, 2019), or

traveling salesman problem (Landge et al., 2020), by mapping a

graph to an ONN such that if you start the ONN with random

phases, it will evolve to the optimal solutions represented by

the minima of the energy function. More commonly, ONN is

used to solve auto-associative memory, or pattern recognition

tasks (Hoppensteadt and Izhikevich, 1997; Nikonov et al., 2015)

using a fully-connected architecture as in HNNs (Hopfield, 1982;

see Figure 1). Interestingly, the energy function is shaped such

that training patterns are minima of the energy landscape (see

Figure 2B), and when the network starts on corrupted information,

it will evolve and stabilize to one of the training patterns. Note, for

simplicity, we represent the energy function as a two-dimensional

function, however, it is N-dimensional depending on the states of

the N neurons.

2.2. ONN on-chip learning for pattern
recognition

In this paper, we focus on auto-associative memory tasks or

pattern recognition. The pattern recognition task is first defined,

then the ONN learning is presented. Finally, we explain constraints,

adaptation, and compatibility of unsupervised learning rules for use

as on-chip learning on ONN.

2.2.1. Pattern recognition
In this work, we define the pattern recognition task, also

called the auto-associative memory task, as the ability to learn

patterns and retrieve them from corrupted input information. For

example, considering images as patterns, a system configured for

pattern recognition can memorize images and retrieve them from

corrupted input with noisy or missing pixels. Classical HNNs

are fully connected recurrent networks, also characterized by an

energy function, which are state-of-the-art neural networks for

solving pattern recognition (Hopfield, 1982). In classical HNN,

each neuron follows a sign activation function, allowing two bipolar

activation values {−1; 1}, where in the case of images, each neuron

represents a pixel, and the neuron activation value {−1} or {1}

represents the pixel color. Thus, classical HNN can treat and learn

binary patterns, like images with black and white pixels. Recently,

alternative HNNs are proposed to treat and learn multi-state or

continuous patterns, such as the complex HNN using complex

activation functions and complex weights (Muezzinoglu et al.,

2003; Tanaka and Aihara, 2009), or the modern HNN considering

a softmax activation function (Ramsauer et al., 2021). For ONNs,

each neuron activation can take various phase values depending

on the ONN design such as for the treatment of multi-state or

continuous information, like gray-scale images.

For pattern recognition, the couplings among neurons

represent the memory of the network. During the learning process,

the training algorithm defines the coupling weight values such that

learning patterns become the minima on the energy landscape.

Learning does not ensure that all local minima are training patterns,

and in some cases, local minima can become stable phase states

while it does not correspond to any learning pattern, which is

also labeled as a spurious pattern (see Figure 2B). During the

inference process, one input pattern is applied to the network by

initializing the oscillators’ phases with the corresponding input

information. Then, phases evolve thanks to the inherent phase

interaction between coupled oscillators until they stabilize and the

final phase state represents the ONN output pattern (see Figure 1).

2.2.2. ONN learning for pattern recognition
Existing learning algorithms to train an ONN for pattern

recognition are mainly unsupervised learning rules, which were

first introduced for HNNs. Unsupervised learning algorithms

only use learning patterns to compute coupling weights, without

additional feedback, unlike supervised learning algorithms, and are

mainly used to solve clustering problems. In pattern recognition,

each pattern becomes the point of attraction of various clusters

created from the energy landscape (see Figure 2A). In this section,

we discuss how to adapt HNN-based unsupervised learning

algorithms for ONN.

Adapting HNN unsupervised learning rules to ONN requires

weight matrix symmetry and zero diagonal values to avoid self-

coupling. Originally, in HNN, the weight matrix is symmetric,

meaning weights between two neurons in both directions have

the same values, and the weight matrix diagonal has zero values

to avoid self-coupling. Later, to improve precision and capacity,

novel unsupervised learning algorithms were introduced allowing

asymmetric weight matrix (Diederich and Opper, 1987; Krauth

and Mezard, 1987; Gardner, 1988) and self-coupling (Gosti et al.,

2019). However, most ONN implementations, in particular analog

ONN implementations, do not support self-coupling and non-

symmetric weights as the coupling is often implemented with

discrete analog components like resistors or capacitors (Delacour

and Todri-Sanial, 2021). Consequently, even if the digital ONN
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FIGURE 2

Simplified representation of an energy landscape for (A) a global interpretation, and (B) an interpretation in the case of pattern recognition.

supports non-symmetric weights and self-coupling, there are

ongoing efforts to develop alternative analog ONN designs to allow

self-coupling and non-symmetric weights (Delacour et al., 2023b).

Most unsupervised learning algorithms introduced for HNN can

be modified to be used with ONNs by adding constraints on the

weight matrix. However, it was shown to impact negatively the

HNN precision and memory capacity (Tolmachev and Manton,

2020). We provide a classification of the unsupervised learning

rules respecting weights symmetry and 0-diagonal in Section 3.

Moreover, using unsupervised learning algorithms introduced for

classical HNN limits patterns to binary information while ONN

with its continuous phase values could, in principle, stabilize to

non-binary patterns e.g., any phase between 0◦ and 360◦. However,

to the best of our knowledge, there exist no unsupervised learning

rules for pattern recognition adapted to ONN capable of learning

non-binary patterns.

2.2.3. ONN on-chip learning adaptation
In this work, we define ONN on-chip learning for pattern

recognition as the ability of an ONN-computing system to learn

new patterns by updating ONN coupling weights meanwhile

avoiding catastrophic forgetting of previously memorized patterns.

There exist mainly two features to categorize unsupervised

learning rules for pattern recognition: locality which means that

the update of the coupling weight between neuron i and neuron

j only depends on activation values of neurons i and j on both

sides of the synapse, and incrementality, which means that the

update of the weights can be done pattern by pattern without

forgetting previously learned patterns. The locality feature is

important for on-chip learning because the update of the weights

can be implemented by using limited additional resources in each

synapse. Though locality is not mandatory as the update of the

weights is not always integrated and implemented at the synapse

level. The incrementality feature is also important to be able to

learn patterns one at a time. For efficient incremental learning,

previously learned patterns are memorized in the weight matrix of

the network to avoid learning them again. To avoid catastrophic

forgetting, some algorithms require repetitive learning of previous

and novel patterns but it is not optimal for on-chip learning as

it requires additional computing, and memory (Personnaz et al.,

1986; Diederich and Opper, 1987; Krauth and Mezard, 1987;

Gardner, 1988). Adding learning capacity to every synapse can be

costly in terms of resources, so it is important to also consider

sparsity and weight precision in the weight matrix. In this work,

we study the impact of weight precision on HNN and ONN

performances.

2.3. On-chip learning architecture

Here, we propose an architecture to perform ONN on-chip

learning for pattern recognition. In particular, we consider a digital

ONN implementation on FPGA, introduced in Abernot et al.

(2021) and we explore its capability for on-chip learning. The on-

chip learning architecture was first introduced in Abernot et al.

(2022b) for a small-size ONN with 15 neurons, however, in this

work, we study architecture scalability for different ONN sizes,

learning rules, and weight precision. Here, we present the digital

ONNdesign implementation for pattern recognition, its adaptation

to on-chip learning, and our evaluation methods.

2.3.1. Digital ONN design
ONNs with their phase dynamics are intrinsically analog in

nature and implemented with analog computing for low-power

implementations (Delacour et al., 2023a). However, digital ONNs

are attractive implementations for studying various applications,

fast demonstration, and investigating scalability (Moy et al., 2022;

Lo et al., 2023). In particular, a digital ONN implementation on

FPGA was introduced in Abernot et al. (2021) to explore novel

ONN architectures, learning algorithms, and applications. The
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FIGURE 3

Schematics of ONN digital design. (A) Schematic of a fully-connected digital ONN. (B) Detailed schematic of a two-neuron digital ONN.

digital ONN on FPGA showcased fast and efficient computation

for edge applications, for example performing obstacle avoidance

on mobile robots by reading proximity sensor information

(Abernot et al., 2022a), replacing convolution filters for image edge

detection (Abernot and Todri-Sanial, 2023), or even accelerating

the SIFT feature detection algorithm (Abernot et al., 2023a). We

believe ONN implementation on FPGA is attractive for real-time

applications for which providing on-chip learning is important.

Hence, we focus on the digital ONN implementation on FPGA

as introduced in Abernot et al. (2021). In the digital design, each

neuron is a 16-stage phase-controlled digital oscillator that can

represent phases between 0 and 180◦ with a precision of 22.5◦ and

each synapse is implemented using signed registers (see Figure 3).

Originally, synapses are fixed to 5-bit signed registers, but in

this work, we study the impact of weight precision on resource

utilization, precision, and latency of the ONN on-chip learning

architecture. We especially test three weight precision, with 3-

, 4-, and 5-bit signed register implementations. Note, the digital

design allows the implementation of non-symmetric weights with

self-coupling (non-zero diagonal). However, in this work, we only

consider symmetric weights without self-coupling to be coherent

and compatible with other ONN implementations, for example,

analog ONN designs (Jackson et al., 2018; Moy et al., 2022).

2.3.2. Architecture for on-chip learning
In this work, we perform ONN on-chip-learning using the

digital ONN design in an architecture implemented on the Zybo-

Z7 development board (Digilent, 2018), which is based on a ZYNQ

processor (Xilinx, 2011). The ZYNQ processor is equipped with

a Processing System (PS), a dual-core Cortex-A9 processor, and

Programmable Logic (PL) resources equivalent to anArtix-7 FPGA.

First, for the ONN on-chip learning architecture, ONN digital

design is implemented using PL resources as in Abernot et al.

(2021) and is controlled by PS to allow the integration of learning

algorithms in PS (see Figure 4).

Communication between PS and PL uses the AXI4-Light

parallel communication protocol. We use PS as master and PL as

slave such that when PS receives external pattern and command,

it controls the digital ONN in PL. If PS receives an external

learning command, the Master updates weights following the

learning rule and sends weights to the digital ONN in PL. If PS

receives an external inference command, PS sends the pattern to

the ONN and receives the ONN output after inference. AXI4-

Light communication accesses four 32-bit AXI4 registers to send

and receive information. The latency of weights transmission, for a

given ONN size, depends on the weight precision and the number

of weights to fit in a 32-bit register.

The learning process starts when PS receives an external

learning command in parallel with an input pattern. It engages the

update of the weights on PS following the implemented learning

rule before sending the updated weights to the digital ONN in PL

through the AXI4-light bus. Note, during weight update, ONN is

in reset mode. Once the weight update is over, ONN comes back

in inference mode and informs PS that the weight update is done.

The inference process starts when PS receives an input pattern with

an inference command, such that PS transmits the input pattern

through AXI4-Light to the digital ONN in PL, the digital ONN

infers, and it sends back its output pattern to PS through the AXI4-

Light. Note, an additional command performs a reset of the weights

to zeros if necessary.

2.3.3. Evaluation
Here, we study the compatibility of HNN learning rules to

ONN on-chip learning for pattern recognition and implement the

compatible learning rules in our digital ONN on-chip learning

architecture.We evaluate the performances of our architecture with

the implemented learning rules through three metrics, resource

utilization, capacity, and latency.

We analyze the resource utilization of our ONN on-chip

learning architecture as it determines the cost of implementation of
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FIGURE 4

Architecture for ONN on-chip learning.

our solution in hardware. In Abernot et al. (2022b), authors showed

that resource utilization increases drastically from off-chip to on-

chip learning for a 15-neuronONN. In this work, we go beyond and

study the scalability of the on-chip learning architecture for larger

ONN sizes.

Memory capacity is defined by the number of patterns a

network (HNN or ONN) can correctly learn and retrieve. It can

be evaluated by learning patterns in the network and verifying

if the network retrieves the correct training pattern when one

of the training patterns is presented. However, we believe it is

also necessary to verify if the network can retrieve the correct

training pattern from corrupted input information, corresponding

to none of the training patterns, to evaluate the robustness

to noise. In this work, we evaluate the capacity of N-neuron

HNN and ONN networks trained with up to N random training

patterns, by testing with corrupted input patterns generated from

training patterns with up to N/2 flipped pixels, represented by

the hamming distance. Note, an inference cycle is performed for

each input pattern. Also note, the size of the network, as well as

the correlation between the training patterns, impact the capacity

of the network, so we perform 100 trials for each configuration.

We first evaluate HNN capacity on Matlab to validate Hebbian

and Storkey learning rules for three HNN sizes (25, 50, and 100

neurons), then we implement Storkey and Hebbian in the on-chip

learning architecture to extract the real capacity metric for a 25-

neuron ONN because the resource utilization limits the ONN size.

A test flow is set up and automatized for testing the digital ONN

on-chip learning architecture using Matlab to send commands and

patterns to the system through a UART communication protocol

(see Figure 4).

We measure the latency of the 25-neuron ONN for on-

chip learning. The latency is divided into three parts, the ONN

computation latency, the weight computation latency, and the

transmission latency. The ONN computation latency is by default

stable no matter the weights and size of the network, so we expect it

to stay stable. The weight computation latency mainly depends on

the learning rule and computation complexity of the learning rule.

And the transmission latency depends on the weight precision and

the network size.

3. Results

This section presents results obtained with both HNN on

Matlab and ONN on FPGA. First, we explain the choice of the most

suitable learning rules to implement for ONN on-chip learning.

Then, we test the learning rules with ONN on-chip learning

constraints inMatlab to study the impact of the weight precision on

theHNN capacity and decide which weight precision to apply to the

digital ONN design. After, we implement the learning rules in our

digital ONN on-chip learning architecture and report on resource

utilization, capacity, and latency of our solution for various weight

precision.

3.1. Learning rules for ONN on-chip
learning

In this work, we focus on local and incremental unsupervised

learning algorithms introduced for HNNs to be compatible

with other ONN implementations. In particular, Tolmachev and

Manton (2020) recently surveyedHNNunsupervised learning rules

for pattern recognition and studied the impact of weight symmetry,

0-diagonal, and incrementality on HNN pattern recognition

capacity. In this work, we consider the various learning rules from

Tolmachev and Manton (2020) as potential candidates for ONN

on-chip learning and investigate which ones are best suited for

ONN on-chip learning (see Table 1). In Tolmachev and Manton

(2020), authors show that iterative rules, requiring learning each

pattern for more than one iteration (Diederich and Opper, 1987;

Krauth and Mezard, 1987; Gardner, 1988) have better precision

than other non-iterative learning rules, however, they are often

not incremental, making them not suitable for on-chip learning

implementation, as shown in Table 1. Table 1 highlights that, based

on the learning rules fromTolmachev andManton (2020), there are

only two unsupervised learning rules which satisfy the ONN on-

chip learning constraints, Hebbian and Storkey. Storkey learning

rule is known to have better capacity than Hebbian, while requiring

more computation. The weights update computation Wij between
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TABLE 1 HNN learning rules features.

Learning
rules

Weight
symmetry

Zero-
diagonal

Local Incremental

Hebbian x x x x

Storkey x x x x

Diederich

Opper I

x x

Diederich

Opper II

x

Gardner x x

Krauth

Mezard

x

Pseudo-

Inverse

x x

neuron i and neuron j, in a network of N neurons to learn a novel

pattern φ with Hebbian learning rule is

Wij = Wij +
1

N
φiφj (2)

And with Storkey learning rule is

Wij = Wij +
1

N
(φiφj − φihji − hijφj) (3)

with hij a local field computed with

hij =

N∑

k=1

Wikφk (4)

For the rest of the paper, we implement both Hebbian and

Storkey learning rules in our digital ONN on-chip learning

architecture.

3.2. Incremental learning with HNN on
Matlab

We study the impact of weight precision on HNN

accuracy for various HNN sizes. In particular, we analyze

the capacity of HNN trained with Hebbian and Storkey

for three HNN sizes, 25, 50, and 100 neurons, as well

as for five weight precision, 2, 3, 4, 5 bits, and full

precision.

Figure 5 shows the HNN capacity for a 100-neuron HNN

trained with Storkey with 1 up to 100 training patterns and

tested for 100 trials with corrupted input patterns with 1

up to 50 hamming distance. A black pixel represents that

over the 100 trials, for a given configuration, all tests were

successful, while a white pixel points out that none of the

tests were successful. The capacity lines highlight, for each

number of training patterns, the maximum hamming distance

of corrupted input patterns supported by the network, such

that the network successfully associates the corrupted input

FIGURE 5

Capacity of a 100-neuron HNN trained with Storkey with 100

training patterns tested with corrupted input patterns with di�erent

hamming distances (1 up to 50 flipped pixels) with the training

patterns. The capacity lines represent for each number of training

patterns the maximum hamming distance of corrupted input

patterns supported by the network, such that the network

successfully associates the corrupted input pattern with a training

pattern for at least θ trials over 100.

pattern with a training pattern for at least θ trials over 100,

with θ = {85; 90; 85; 100}. Then, to simplify the readability

of our results, we choose to represent only the capacity lines

for one value of θ . We choose θ = 90 to have results

representative of a majority of cases and to allow some error

tolerance.

Figure 6 shows the HNN capacity lines for θ = 90 for

the Hebbian and Storkey learning rules for the different weight

precision and network size. Figure 6 also plots the error bounds

for each weight precision configuration. Figure 6 first highlights the

difference in precision and capacity between Storkey and Hebbian

learning rules. HNN trained with Storkey can retrieve a larger

number of training patterns when initialized with more corrupted

input patterns (patterns with larger hamming distances), thus HNN

trained with Storkey shows better capacity than HNN trained with

Hebbian for all weight precision configurations. Then, Figure 6

displays that for Storkey learning, using 5-bit weight precision,

HNN obtains a similar capacity than considering full weights

precision. Note, the impact of reducing weight precision to 4-, 3-, or

2-bit precision depends on the network size. The larger the network

is, the more impact the reduction of the weight precision has on the

network capacity.

3.3. On-chip learning with digital ONN on
FPGA

After selecting suitable learning rules and studying their

efficiency for HNN on Matlab, we implement Hebbian and Storkey

learning rules in our digital ONN on-chip learning architecture and

consider three weight precision with 3-, 4-, and 5-bit precision to

study the impact on the resource utilization, capacity, latency, and

power consumption.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1196796
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Abernot et al. 10.3389/fnins.2023.1196796

FIGURE 6

Capacity of HNN networks of (A, D) 25 neurons, (B, E) 50 neurons, and (C, F) 100 neurons trained with (A–C) Storkey, or (D–F) Hebbian with various

weight precision. The capacity is represented, for each network size, for each learning rule, and each number of training patterns, by the maximum

hamming distance of corrupted input patterns supported by the network, such that the network successfully associates the corrupted input pattern

with a training pattern for at least θ = 90 trials over 100 (90%).

FIGURE 7

Resource utilization for various ONN sizes for various weight precision with (A) LUTs, and (B) Flip-Flops. We compare with the previous digital ONN

with random hard-coded weights in a 5-bit precision (5 bits*).

3.3.1. Resource utilization
First, we report on ONN resource utilization. From Abernot

et al. (2022b), we know that for a small 15-neuron scale

ONN, re-programmable synapses utilize a large number of

resources, in particular Look-Up-Tables (LUTs). In the proposed

architecture, a large number of LUTs are used as reconfigurable

memory of the weight matrix, so due to the fully-connected

ONN architecture, the number of synapses increases following

N(N − 1) for N neurons, and so the number LUTs also

increases. Figure 7 highlights the LUTs and Flip-Flops utilization
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FIGURE 8

Capacity of (A, B) HNN and (C, D) ONN networks of 25 neurons trained with (A, C) Hebbian or (B, D) Storkey.

for ONN with 20 up to 40 neurons with and without on-chip

learning.

To limit the impact of re-programmable synapses, we analyze

the impact of reducing the weight precision on resource utilization.

In Figure 7, we report on the number of Look-Up-Tables (LUTs),

as well as the number of Flip-Flops (FFs) necessary for our digital

ONN implementation, for 3-, 4-, and 5-bit precision. As mentioned

previously, in the proposed architecture, a large number of LUTs

are used as reconfigurable memory of the weight matrix. Thus,

we expect the reduction of the weight precision to also reduce

LUTs utilization. However, Figure 7 indicates that for some ONN

sizes, reducing the weight precision does not reduce the number

of LUTs. For example, for the 35-neuron ONN, the number of

LUTs is larger for the 4-bit precision than for the 5-bit precision.

We believe it depends on the configuration of the FPGA, which

provides fixed-size LUTs. Additionally, the reduction of the weight

precision from 5 to 3 bits does not significantly reduce the resource

utilization as expected, limiting the ONN size for on-chip learning

implementation. With our solution, we can implement an ONN

with up to 35 fully-connected neurons with re-programmable

synapses. Next, we consider a 25-neuron ONN to report on its

capacity and latency.

3.3.2. Capacity
Figure 8 presents capacity lines obtained for a 25-neuron

digital ONN trained on-chip with both Hebbian or Storkey for

three different weight precision (3, 4, and 5 bits) compared with

HNN trained with the same configuration. Figures 6B, D show

that for Storkey on-chip learning, HNN and ONN have similar

capacities. However, considering Hebbian learning, Figures 8A,

C demonstrate ONN has a better capacity than HNN. Figure 8

also shows less ONN capacity variations depending on the weight

precision than HNN capacity. These are unexpected as were not

observed in previous configurations, but this is, to the best of

our knowledge, the first large-scale capacity tests performed with

the digital ONN. We believe the difference between HNN and

ONN trained with the Hebbian learning rule might come from

the difference in the system dynamics between HNN and ONN.

Classical HNN can only take two state values, −1;1, because

of the sign activation function. However, the ONN activation

function allows it to take multi-state or continuous values during

dynamical evolution. Thus, even if an ONN trained with binary

patterns will stabilize to binary phase states 0◦;180◦, the activation

function, which is difficult to derive, allows non-binary phase states

during phase dynamics. We believe that the phase dynamics of

the ONN evolve slowly from a corrupted input pattern to the

correct training pattern, while the sharp HNN activation function

may evolve too fast, reaching a wrong training pattern. HNN

may require more precise weights, as with Storkey, to take the

correct decision, while the ONN can still evolve to a correct

training pattern even with less precise weights. However, we

believe it requires additional investigation to draw conclusions.

It is important to note that our architecture enables incremental
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TABLE 2 Measurements of latency for ONN training and inference with ONN oscillation frequency Fonn = 97.7KHz and PS clock frequency

FPS = 667MHz.

This work Abernot et al. (2022b)

Weights 3 bits (µs) 4 bits (µs) 5 bits (µs) 5 bits

Training

Hebbian learning 55 33 µs

Storkey learning 210 77 µs

Weight precision 140 NA

Weight transmission 18 71 175 86 µs

Total Hebbian 213 266 370 119 µs

Total Storkey 368 421 525 163 µs

Inference

Input transmission 9 NA

ONN computation 17 NA

Output transmission 18 NA

Total 44 NA

on-chip learning of a digital ONN design with two different

learning rules, Hebbian and Storkey, for pattern recognition

tasks.

3.3.3. Latency
Finally, we report on training and inference latency for a

25-neuron ONN working at Fosc = 187.5 KHz. Concerning

inference, we measure input pattern transmission latency from

PS to PL, ONN computation latency in PL, and ONN output

transmission latency from PL to PS. Table 2 shows that ONN

inference takes around two to three oscillation cycles to compute,

similar to the solution with off-chip learning (Abernot et al.,

2021). Then, the transmission of ONN input and output takes

27µs which is 1.5 times higher than the ONN computation.

Note, increasing the ONN size will also increase the transmission

latency as the information to transmit will be larger, while the

ONN computation should stay stable. Thus, the architecture

increases the inference latency compared to off-chip learning

solutions because of information transmission from PS to PL, and

reversely.

Concerning training, we differentiate the latency into three

steps, one to perform the training algorithm in PS, another

to rescale weights to the corresponding weight precision, and

finally to transfer weights from PS to the ONN in PL. Table 2

highlights that Storkey requires more computation time than

Hebbian. This is because Storkey requires more computation than

Hebbian, see Equations (2) and (3), and PS performs sequential

processing. Then, weight transmission increases drastically with

the increase of the weight precision and the number of neurons.

Reducing the weight precision has an important impact to reduce

transmission latency because we use AXI4-Lite with 32-bit parallel

transmission.

Our solution, for a network of 25 neurons, allows computing

Hebbian in 55 µs, and Storkey in 210 µs. Additionally, to

allow reducing weight precision to 3, 4, or 5 bits, additional

treatment is necessary, taking 140 µs. Then, transmission time

depends on the weight precision taking between 18 and 175

µs. In total, training a fully-connected ONN, configured for 5-

bits signed synapses, with a novel training pattern takes 370

µs with the Hebbian learning algorithm and 525 µs with

the Storkey learning algorithm. Thus, because Hebbian and

Storkey have similar precision in the digital ONN design,

it can be more of interest for a system with high time

constraints to implement Hebbian rather than Storkey on-chip

learning.

3.3.4. Power consumption
We extract the estimated post-place and route power

consumption of our digital ONN with re-programmable synapses

on Vivado considering the xc7z020-1clg400c target, and we

compare it with the digital ONN implementation without the re-

programmable synapses (Abernot et al., 2021) and with other fully-

connected ONN implementations (Jackson et al., 2018; Bashar

et al., 2021; Delacour et al., 2023b). We compute the energy

per neuron per oscillation by considering an ONN computation

time of three oscillation cycles. Table 3 highlights that the

digital ONN with re-programmable synapses requires slightly

more energy per oscillation than the digital ONN without re-

programmable synapses (Abernot et al., 2021), certainly because

of the additional LUTs resources necessary for the on-chip

learning. Also, both digital ONNs are in the same energy per

oscillation range as the analog ONN implementation in Bashar

et al. (2021) as they operate at a lower frequency than the other

implementations (Jackson et al., 2018; Delacour et al., 2023b).

Using a higher ONN frequency could reduce the computation time,

ultimately reducing the energy per computation and oscillation,

however, the digital ONN frequency is currently limited by the

FPGA.
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TABLE 3 Comparison of the digital ONN with re-programmable synapses with other fully-connected ONN implementations.

Jackson et al. (2018) Bashar et al. (2021) Delacour et al. (2023b) Abernot et al. (2021) This work

Neurons 100 30 16 60 25

Power 303 mW 1.76 mW 160 µW 20 mW 10 mW

Frequency 1 GHz 45 kHz 1 MHz 187.5 kHz 187.5 kHz

Energy/osc 0.3 pJ 1.3 nJ 10 pJ 1.78 nJ 2.13 nJ

4. Discussion

This paper studies possible algorithms and provides an

implementation to perform continual on-chip learning with a

digital ONN design for pattern recognition. It highlights that HNN

unsupervised learning algorithms are compatible with ONN on-

chip learning only if they satisfy two constraints on the weight

matrix, the symmetry and the 0-diagonal, and two additional

constraints on the learning algorithm, locality, and incrementality.

This work evaluated seven state-of-the-art unsupervised learning

rules developed for HNN (Tolmachev and Manton, 2020) and

defined two of them to be compatible with ONN on-chip learning,

Hebbian and Storkey. Both Hebbian and Storkey learning rules

exhibit similar capacity results when implemented in the proposed

architecture to perform on-chip learning on a 25-neuron ONN,

making them both suitable for continual ONN on-chip learning.

The proposed architecture takes advantage of a Zynq processor

(Xilinx, 2011) equipped with both PS and PL resources to

implement a fully-connected digital ONN introduced in Abernot

et al. (2021) with re-programmable synapses in PL, and execute

the unsupervised Hebbian and Storkey learning algorithms in PS.

The architecture was first introduced in Abernot et al. (2022b) for

a small-size ONN with 15 neurons, while this work evaluates the

scalability of the architecture. First, it is important to highlight

that the solution does not require many changes from the first

digital ONN design, making it easy to adapt and install. The

main scalability limitation of the architecture is due to the digital

ONN re-programmable synapses which demand a large number

of LUTs, even with reduced weight precision, limiting the ONN

size up to 35 fully-connected oscillators while the digital ONN

without re-programmable synapses could reach hundreds of fully-

connected neurons (Abernot et al., 2021). Another limitation of the

architecture is the latency induced by the separation between ONN

learning and computation in PS and PL. On one side, PS allows

to implement and compute a large panel of unsupervised learning

algorithms, executing them sequentially with a fast frequency of

Fps = 666 MHz. On the other side, it generates latency to transmit

the weights from PS to PL, increasing with the ONN size. An

alternative solution is to implement the training algorithms using

the parallel properties of PL resources to provide fast training and

remove the transmission latency. However, we believe it would

utilize additional PL resources, including LUTs, which are already

limited. Another solution is to use other communication protocols

than AXI-Lite between PS and PL, such as AXI-stream which

provides more parallel transmission. Overall, our solution permits

to train a 25-neuron ONN in hundreds of microseconds, between

350 and 550 µs which is the first solution to perform ONN on-chip

learning.

Future work will first explore alternative solutions to try to

overcome the current limitations of the ONN on-chip learning

architecture. Furthermore, the next developments will focus on

possible applications with the ONN on-chip learning architecture.

The digital ONN design has already been used for sensor data

treatment in various applications, like interfacing with a camera

for image recognition (Abernot et al., 2021) or using proximity

sensor data to perform obstacle avoidance (Abernot et al., 2022a),

so we are confident on the integration of our architecture with

different sensors. Possible applications for the digital ONN on-chip

learning architecture could be in the robotics domain where real-

time continual learning is often necessary, and where the digital

ONN design already showcased good performances (Abernot et al.,

2022a). For example, navigation, in the context of mobile robots, is

a complex task depending on the environment, where continuous

learning is necessary to adapt to evolving situations. A first proof

of concept of two pre-trained cascaded ONNs performing obstacle

avoidance from proximity sensors was shown in Abernot et al.

(2022a). Though in Abernot et al. (2022a), the pre-trained ONNs

are capable of finding a novel direction using information from

15 proximity sensors whose configurations are used to define the

training patterns. However, if we consider an obstacle avoidance

application using more sensor information than 15 proximity

sensors, it becomes impossible to define all possible training

patterns before inference. Using ONN on-chip learning allows

training the ONN continuously through time depending on the

environmental configuration given by the sensory information.

Thus, we believe that using the ONN on-chip learning architecture

can be beneficial in the case of applications with large-scale inputs

where all possible configurations can not be anticipated. A first

idea was proposed recently to perform real-time ONN on-chip

learning for an obstacle avoidance application using the proposed

architecture (Abernot et al., 2023b), however, a demonstrator is yet

to be developed.

5. Conclusion

This work analyses unsupervised learning rules for Oscillatory

Neural Network (ONN) learning for pattern recognition tasks, and

in particular for continual ONN on-chip learning. We evaluate the

adaption of unsupervised learning rules developed for Hopfield

Neural Networks (HNNs) for ONN on-chip learning and show

that Hebbian and Storkey learning rules are both suitable for

ONN on-chip learning. Additionally, we propose an architecture

capable of performing ONN on-chip learning using a digital ONN

implementation with various unsupervised learning algorithms. It

uses a Processing System (PS) of a Zynq processor to implement
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the learning algorithms and Programmable Logic (PL) resources

to implement the digital ONN. We point out that the architecture

limits the network in size, with up to 35 neurons, due to the large

resource utilization. Also, with the proposed architecture, learning

and inference latency increase with the network size, which can

become a limitation for time-constrained systems. Our current

solution can train a 25-neuronONN on-chip in hundreds of micro-

seconds, between 350 and 550 µs. This is, to the best of our

knowledge, the first solution to perform ONN on-chip learning

with unsupervised learning algorithms for pattern recognition.

We believe it can be useful for investigating novel ONN learning

algorithms and applications such as reinforcement learning for

robotic applications.
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