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Automated observation and analysis of behavior is important to facilitate progress

in many fields of science. Recent developments in deep learning have enabled

progress in object detection and tracking, but rodent behavior recognition

struggles to exceed 75–80% accuracy for ethologically relevant behaviors. We

investigate the main reasons why and distinguish three aspects of behavior

dynamics that are di�cult to automate. We isolate these aspects in an artificial

dataset and reproduce e�ects with the state-of-the-art behavior recognition

models. Having an endless amount of labeled training data with minimal input

noise and representative dynamics will enable research to optimize behavior

recognition architectures and get closer to human-like recognition performance

for behaviors with challenging dynamics.

KEYWORDS
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1. Introduction

Automated observation and analysis of behavior is important to facilitate progress

in many fields of science, especially in behavioral studies for neurological disorders or

drug discovery, where rodents (mice and rats) are still the most commonly used model

animals in preclinical research. With increasingly large image datasets and computational

hardware capacity, we have seen a tremendous progress in pose estimation for many

different animal species (Mathis et al., 2018; Lauer et al., 2022). In behavior recognition, the

progress has not been that evident. Available systems recognize behaviors with a reliability

of around 70–75% (Dam et al., 2020), or are trained and tested on footage from the same

recording session, for a limited set of specific behaviors. However, in order to be useful in

behavioral research, automated systems that can recognize behavioral activities must be able

to recognize them independent of animal genetic background, drug treatment or laboratory

setup. To match human-level performance in annotating behavior, we need to improve

accuracy, robustness and genericity of automated systems. Accuracy means good precision

and recall per behavior, robustness means consistent accuracy across experimental setups,

and genericity means that the same method is applied to all behaviors. Three approaches

are at hand. First is to standardize laboratory setups, i.e., the test environment in which the

animals are observed (Grieco et al., 2021). This limits the variance but leaves the animal-

and treatment-related variation. Second is to aim for quick adaptation of the recognition

system toward a new setup with minimal annotation effort, i.e., fine-tuning or retraining.

This requires new ground truth data and brings back the manual annotation task for a
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significant number of video segments. Moreover, and more

importantly, researchers who need to compare animal behavior

between treatment groups need one measurement system instead

of separately trained observation models. The third approach is to

explicitly strive for generic recognition with robust methods, which

is in principle possible as humans can do so.

In this paper, we investigate where we stand with respect to

the goal of generic recognition, and what is needed when we

raise the bar for future automated behavior recognition, that is,

(1) to recognize ethologically relevant behaviors, (2) recognize

behaviors robustly across experimental setups, and (3) recognize

new behaviors with limited data and fine-tuning effort.

Robustness across experimental setups requires that the

system can handle variation in three aspects, namely appearance,

behavior execution, and behavioral sequence. For the behavior class

performed, the appearance of the animal is irrelevant, i.e., whether

the animal is white or black, thick or slim, long or short-haired.

The same applies to the appearance of the environment, such as

the walls, floor, feeder, drink spout or enrichment objects. While

their presence may enable or limit certain behaviors, their color and

texture should not affect recognition. Behavior recognition should

also be immutable to how behaviors are executed, i.e., differences

in event duration, pace and subbehavioral pattern. In addition to

the usual event variations, behavior execution varies by physical

or emotional state, and by individual animal, depending on strain,

gender, age, history and medication. Furthermore, execution varies

due to different layout of the environment, such as the size of the

cage or the height of the drink spout. The third aspect for which

automated recognition systems need to be robust is the sequence

of the behaviors performed, as the treatment of animals affects

the frequencies of specific behaviors. Behavior recognition systems

that use history or recurrence such as hidden Markov models

(HMMs), recurrent neural networks (RNNs) or 3D convolutional

neural networks (3D-CNNs) train on temporal context and hence

on behavioral context, and will have difficulty to recognize the

behavior events when applied in a different context.

There are multiple ways to increase robustness of behavior

classification systems. The best way is to train on larger and more

diverse datasets. This is costly and it is not always possible to

cover all experimental diversity beforehand. Alternatively, we can

factor out variance up front by normalizing the input. By using

tracked body points we can focus on the poses and dynamics,

and solve most of the appearance bias (Graving et al., 2019).

Furthermore, there are training “tricks" to improve a model’s

internal robustness, such as dropout and variational encoding of

latent variables (Goodfellow et al., 2016). We can also add variance

by augmentation of the input, altering the input in ways that leave

the behavior intact. Most data augmentation methods used are

augmentations of appearance, such as size, scale or pixel intensity

(Krizhevsky et al., 2017).

Behavior execution differences and behavior sequence

differences are differences in dynamics. We believe that focus

on variation in dynamics can improve behavior modeling

substantially. If we can normalize and augment the behavior

execution and behavior sequence, classification will be more

robust. Stretching and folding the time-series to alter the speed

and intensity of the movement is one way, but we can also vary

the sequence of the behavior events as well as the subbehavioral

pattern. To vary the sequence of the behaviors we need to

detect the events and how they follow each other. To vary the

subbehavioral patterns per behavior, we need to understand the

type and characteristics of the possible subbehaviors and how they

are combined. We give examples of composite rodent behaviors

in Section 3.1.2. We further expect that breaking down composite

behaviors into subbehaviors will also highlight subtle yet essential

constituents and thereby will increase the detection accuracy of

behaviors that are otherwise too difficult to separate from behaviors

that are alike and more frequent.

The main idea of this paper is that acknowledging the

hierarchical and composite structure of behavior can bring

automated behavior recognition to the next level and a step closer

to human-like annotation performance. If we could leave out

the appearance variation and measurement errors and if we had

endless amount of training data, to what extent are state-of-the-art

networks able to model behavior dynamics?

We illustrate and explain three types of composite behaviors

in Section 3.1. These compositions are present in the rat dataset

described in Section 3.2.1. Next, we describe an artificial dataset that

contains these compositions in an abstracted form and can be used

to study the limits of automation models without input noise or

lack of data (Section 3.2.2). Finally, we present behavior recognition

results on both the rat and the artificial data in Section 4 and draw

conclusions in Section 5.

2. Related work

2.1. Supervised behavior recognition

An effective recipe for training a recognition system is to

record a dataset, annotate it and use supervised learning to train

a classifier to recognize the behaviors. The classifier iteratively

finds the best optimization path to get as close to the ground

truth as it can, using all the cues it can find. Hence, the quality

and robustness of the resulting classifier is always dependent on

the representational value of the data trained on. In order to be

robust to using cues that are only coincidentally or concurrently

related to the behavior classes, data augmentation is applied to the

input: typically, image transformations like flipping, scaling, and

rotation. Deep learningmodels are very good at finding informative

cues, but this also means they are sensitive to using cues that

only apply within the training dataset. In almost all studies that

describe behavior recognition systems, the test set is recorded in

the same setup, with animals from the same strain and treatment as

those in the training set. Previous work shows that although deep

models can reach better performance than conventional methods,

the performance is less transferable to different experiment settings

(Dam et al., 2020). Supervised methods that have been applied

are conventional methods as bag-of-words (Dollár et al., 2005),

Bayesian classification (Dam et al., 2013) or tree-based classifiers

used in MARS (Segalin et al., 2021) and SimBA (Nilsson et al.,

2020). Perez and Toler-Franklin (2023) provide an overview of

CNN-based approaches, such as 2D, Two Stream networks and 3D-

CNNs, often combined with recurrent head to model the temporal
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dependencies. In recent years, major advances in deep learning

classification are made using Transformer architectures that are

designed to pick up the most relevant context without constraints

on how far away that context is. Sun et al. (2022) report that

multiple Transformer-derived networks applied to trajectory data

improve the classification of social rodent behavior.

2.2. Data-driven approaches

During the past 10 years, data-driven approaches have been

presented that learn the constituent modules of behavior from

the data itself. MoSeq from Datta Lab introduced behavior

syllables or motifs as behavior components (Datta, 2019) and

uses autoregression filters for classification (Wiltschko et al.,

2020; Costacurta et al., 2022). TREBA (Sun et al., 2021),

and VAME (Luxem et al., 2022) use self-supervised learning

with recurrence on sliding temporal windows to create latent

representations that are used as input in supervised downstream

tasks. These methods are capable of accurately predicting

phenotypes and behaviors from videos withheld from the training

dataset. Self-supervision is very useful when the amount of

training data is small compared to the network complexity, and

in discovering new significant behavior motifs or patterns. For

image classification tasks, Newell (2022) showed that, with self-

supervised pretraining, the top accuracy plateau is reached faster

and with less data. Nonetheless, as in supervised training, accuracy

increase stops around 75–80% (Sun et al., 2022).What most models

have in common is the assumption that behavior consists of a

sequence of behavior states and that the subject switches from

one state to the next. The underlying assumption is that states

can be inferred either statistically by learning the underlying state-

switching process from the observed samples (HMMs), or by

sliding window classification.

2.3. Hierarchical approaches

Other research recognizes that behavior can be looked upon

at different levels and different scales, and that detection can

be improved when models are trained at multiple hierarchical

levels simultaneously. Gupta and Gomez-Marin (2019) show that

worm behavior is organized hierarchically and derive a context-

free grammar to model this. Casarrubea et al. (2018) apply

T-pattern analysis to study the deep structure of behavior in

different experimental contexts. Kim et al. (2019) introduce a

variational approach to learn hierarchical representation of time-

series on navigation tasks. Finally, Luxem et al. (2022) detect

behavioral motifs in an unsupervised manner and let human

experts assign labels to communities of these motifs obtained from

motif traversal analysis. Recent work that most closely resembles

our representation of hierarchical structure in rodent behavior is

that of Weinreb et al. (2023). It builds on Moseq and extends the

auto-regressive model (AR-HMM) by Switching linear dynamical

systems (SLDS). They distinguish three hierarchical levels, namely

behavior syllables, pose dynamics and keypoint coordinates. Their

main purpose however is to denoise the input that contains

erroneous keypoint jitter introduced by failing tracking.

3. Materials and methods

3.1. Behavior

In the following we provide a description of the constituents

that make up behavior, give different examples of composite

behavior and describe other factors that make automated behavior

recognition non-trivial. We derived these constituents and

compositions after visual inspection of the failures of rat behavior

classification that we report in Section 4.1, as well as from the results

on various other datasets reported over the years by users of the

keypoint-based behavior recognition module RBR from Dam et al.

(2013).

3.1.1. Behavior constituents
Figure 1A shows a representation of behavior seen as switching

states. The samples are the observed poses, extended with derived

features at the consecutive timestamps. It is implied that all

observations are related to a single behavior state, and that state

switches are abrupt. This is the way behavioral data is labeled that

is used as ground truth for training recognition systems and that

the system gets to see either one-by-one or in a sliding window

with fixed length. However, when we as humans annotate behavior,

we evaluate the samples differently and distinguish more than

switching states. Subjective experience suggests that we predict

future motion, and only take a closer look when we see deviation of

what we expect, regardless of the subject or the behaviors at hand.

This interpretation of the human brain as a prediction machine is

supported by research in cognitive neuroscience (Keller and Mrsic-

Flogel, 2018; Heilbron et al., 2022). We seem to build a belief about

the goal pose and intentional state of the subject, based on the

observed poses over time. When what we see no longer resembles

our belief, we take a closer look, in order to revise our belief. That

is, we go through the following stages of observation and inference:

The subject displays behavior A - the subject no longer displays

behavior A - the subject is in transition to another behavior - the

subject is in transition toward either behavior B, C or D - the subject

is doing behavior B. We evaluate the consecutive poses until we see

that the subject arrives at a new key pose and infer the behavior

from that. Sometimes we have to wait for a sequence of key poses

before a decision can be made. In a transition between behaviors,

the intermediate poses are merely pose changes to get from one key

pose to another. They are necessary because subjects can only move

around in space and time in a continuous manner. Yet, they do not

define the behaviors, but are defined entirely by the previous and

the next key pose. The constituents that form behavior are therefore

not only states that determine the samples. Apart from states, we

can also distinguish transitions, key poses with no duration and

sequential combinations of these.

With this is mind we propose a new representation of behavior,

shown in Figure 1B. It shows a representation of behavioral

components and how they can be combined, which resembles what

we see whenwe annotate behavior.While we are labeling the events,
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FIGURE 1

Di�erent representations of behavior. (A) Behavior seen as switching states with successive behaviors b at event level and observations x at sample

level (one for every time-step). (B) Behavior seen as hierarchically structured constituents and transitions, with two intermediate levels, namely a

sub-event level and pose level. The sub-event level contains state events s and point events p. The pose level contains key poses k. Key poses are

body postures that are held by the animal during one sub-event. The intermediate samples between successive sub events are transition samples

between di�erent key poses.

we perceive behavior as a sequence of state events, point events and

transitions. State events are defined by key poses with a certain

variation and duration, whereas point events are defined by key

poses with zero or minimal duration. Note that we use point event

slightly different than is common among ethologists, who use point

event to indicate that the duration is not relevant for analysis.

Here we want to emphasize that the behavior is characterized by

a momentary key pose. Transitions are the transitional movements

between different key poses (also known as movement epenthesis).

Behaviors are combinations of these constituents. If we can build

automated models that can detect these constituents, we can

improve the recognition.

Finally a note on what should not be modeled, namely the

dependencies between the behaviors at the top-level. We need to

make sure that the recognition of a behavior is not dependent on

the occurrence of specific previous behavior events. The behavior

transition matrix is an output of an experimental test and this

information should not be used during training to optimize the

recognition, for if the sequence changes because of treatment

effects, the detection will be hampered. In practice this means that

we must have a sufficient amount of diverse training data, either by

collection or augmentation.

3.1.2. Three examples of composite rodent
behavior

We illustrate the composition of behavior into a sequence of

transitions, state events and point events with three examples of

rodent behavior in Figure 2.

Figures 2A, B show a typical rearing event, where the behavior

consists of a transition from the non-rearing key pose before the

rearing, toward the short peeking pose in an upright body position,

followed by the second transition toward the next non-rearing key

pose. What happens often is the detection of a false-positive rearing

event when the actual rearing pose does not occur but the animal is

shortly retreating to change direction. However, the system detects

the transitional movements, i.e., a forward movement or turn

followed by a backward movement or turn. The point event in

the middle that is defining the event as rearing is missing but the

transition samples match most of the samples of the rearing events

in the training set. Note that rearing events can also be state events,

when the upright position is held for some time.

The next example in Figures 2C, D is a jumping event that starts

with the point event of the take-off, followed by a fast-forward

movement and the landing as a second point event. These two point

events, the take-off and the landing, are essential for the jumping

behavior and distinguishes it from mere walking behavior. Yet the

majority of the samples in the jumping event are in the fast-forward

movement, so the behavior distributions of walking and jumping

overlap considerably when all samples are weighted equally.

The third example in Figures 2E, F is a grooming event

that is composed of multiple state events that are not strictly

ordered although the common sequence is grooming snout,

head, fur, genitals. The grooming-snout substate samples overlap

considerably with substates of behaviors eating, sniffing and resting,

but can nevertheless be identified as grooming because they are

surrounded or followed by more outstanding grooming subevents.

In this case it is the context of the surrounding substates that

determine the decision when made by a human annotator.
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FIGURE 2

Three examples of structured behavior, each with a schematic representation and a selection of frames from a single event. (A, B) Show a point event

(rearing), (C, D) show an ordered composition (jumping) that consists of three sub events, namely a point event (take-o�), a state event (stretched

pose) and another point event (landing). (E, F) illustrate an unordered sequence of state events (grooming).
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3.1.3. Distribution characteristics of rodent
behaviors

Apart from the challenging demands posed by the composite

behaviors, additional characteristics of rodent behavior make

automated recognition difficult. These are: high overlap between

poses of different behavior classes, high variance between events of

the same class, mixture of pose distributions for a subset of classes,

unbalance of event frequency distributions hence little training data

for rare but important classes, and finally, high variance in event

duration, which makes it difficult to set global temporal scales for

processing.We give examples of pose overlaps and present behavior

event distributions in Figure 3.

3.2. Data

To analyze the extent to which automated behavior recognition

models are able to model rodent behavior in general and composite

rodent behavior in particular, we experiment with two types of data:

real rat behavior data and artificial abstracted behavior inspired by

real rat behavior.

3.2.1. Rat behavior dataset
The rat behavior dataset was reused from previous work and

is described in (Dam et al., 2013). It consists of 25.3 video hours

of six Sprague-Dawley rats, each in a PhenoTyper 4500 cage1 at

720× 576 pixel resolution, 25 frames per second and with infrared

lighting, hence gray-scale. Subsets of these recordings (∼2.7 h in

14 subvideos) were annotated by a trained observer using The

Observer XT 10.0 annotation software,2 and manually checked and

aligned afterwards to ensure frame accurate and consistent labeling.

In this study we focused on the nine most frequent behavior classes

“drink," “eat," “groom," “jump," “rest," “rear unsupported," “rear

wall," “sniff," and “walk". To focus on the dynamics, we applied

the same input preprocessing as was used in VAME by Luxem

et al. (2022), namely we tracked six body-points using DeepLabCut

(Mathis et al., 2018), and aligned and normalized these.

3.2.2. Artificial time-series
In order to experiment with different types of behavior

dynamics without suffering from incomplete or incorrect features

or insufficient amount of data, we generated artificial time-series

of randomly sampled behavioral events, with predefined behavior

components and substate dependencies inspired by the rodent

behavior components. The sample features, or poses, are drawn

from predefined distributions, with configurable variation across

and inside events. Components are either point events or states

with durations sampled from a distribution, and are concatenated

by transition periods of two to eight samples. Per behavior event,

we added fluctuations with configurable smoothness, amount and

periodicity. As a last step, we added observation noise. The result

is a configurable amount of time-series data that we can train the

1 http://www.noldus.com/phenotyper

2 http://www.noldus.com/observer

recognition models on, with configurable difficulty, depending on

the number of behaviors, number of features, overlap in feature

distributions, complexity of behavior structure, and amount of

overlap between the constituents of different behaviors. With this

procedure we generated two different datasets to experiment with:

(1) artificial state behaviors and (2) artificial composite behaviors.

The code to construct these datasets is publicly available.3 In

the code repository, we included the definitions for the artificial

datasets used here, as well as an example with four features.

3.2.2.1. Artificial state behaviors

The first artificial dataset contains only state behaviors,

modeled after the varying distribution characteristics mentioned

in Section 3.1.3. The feature distributions and an example time-

series of state behaviors are plotted in Figures 4A, B. The following

behaviors are included. First, behaviors with well separated pose

(b01, b02), which should be easy to recognize and are added as

sanity check. Second, behaviors with poses that are alike (b03, b04;

confusion group 1). In real rat data there are behavior pairs have

overlapping poses, for instance “drink" and “sniff ". Third, behaviors

whose pose distributions are a mixture of poses (b05), for instance

as “groom" and “eat". Fourth, behaviors with uncommon event

duration distributions, either long or short (b06, b07; confusion

group 2). Examples in rat behavior are “sleep" and “twitch".

Fifth, periodic behaviors (b08, b09 overlapping with behavior b10;

confusion group 3). Finally, we inserted pose transition samples

between behavior events (b00).

3.2.2.2. Artificial composite behaviors

The second artificial dataset contains two behaviors with well-

separated pose (b01 and b02) and additionally the following

composite behaviors. First, point behaviors, i.e., defined by key

poses of zero or minimal duration, with transitions dependent on

the key poses of surrounding events. Point behaviors are hard to

detect because they may overlap with samples from state behaviors

or with transition samples. An example in the rat behavior data

are rearing events, where the surrounding frames are similar

to sniffing poses. In the artificial dataset, the point behavior is

b11, overlapping with b12. Second, ambiguous subbehaviors in

unordered sequences: behaviors defined as an unordered sequence

of subbehaviors that have their own distributions, and where some

of these subbehavior distributions overlap with other behaviors

(behavior1 = n x {A or B or X}, behavior2 = {P or Q or X}). In the rat

behavior data this corresponds with the overlap between grooming-

snout and eating events (b13, overlapping with b14: confusion

group 4). Third, ambiguous subbehaviors in ordered sequences:

behavior defined by a specific, fixed sequence of subbehaviors,

where some of the subbehaviors also occur in the sequence of other

behaviors (composite behavior A-X-B vs. behavior P-X-Q). An

example in the rat behavior data is jumping behavior that consists

of take-off - stretched pose - landing. The stretched pose is also part

of a walking sequence (b15, overlapping with b16: confusion group

5). Feature distributions and an example time-series of composite

behavior are plotted in Figures 4C, D.

3 https://github.com/ElsbethvanDam/artificial_behavior_data (preliminary

repository location).
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FIGURE 3

Illustrations of the distribution characteristics of rat behavior that make automated recognition challenging. (A) shows four examples of pose

confusions. Clockwise, starting upper left, are the confusions (manual label/automated label) sni�/eat, sni�/drink, eat/groom, groom/eat. (B, C) show

the distributions of the behavior event durations on the entire rat dataset, with and without outliers, to illustrate the big di�erences across and within

behavior classes.

3.3. Classification models

We will now describe the two models we used to evaluate the

current performance of automated rodent behavior recognition.

The first model is a recurrent variational auto-encoder (RNN-

VAE) that we applied to all the data. The second is a

Transformer model for time-series that we applied to the

artificial data.

A good approach is to train a recurrent variational auto-

encoder (RNN-VAE) to get a behavior embedding for every short

timewindow of lengthT (T = 0.5 s) and use this embedding as input

for a small linear network that aims to find n behavioral motifs (n =

30) from the data. Themapping to the motifs is then used to classify

the final behaviors per sample in a supervisedmanner, using a linear

classifier. We followed the network implementation of VAME

(Luxem et al., 2022) with an encoder consisting of two bidirectional
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A B

C D

FIGURE 4

Artificial behavior feature distributions and 1-dimensional time-series example with the behavior event bar on top. (A, B) for artificial state behaviors,

and (C, D) for artificial composite behaviors.

GRU layers (hidden dimension h = 64) and a decoder of one GRU

layer (h = 32) plus a linear layer tomap the input resolution of T×F,

where F denotes the feature dimensionality. The embedding size

varies with the size of the features: For the rat data (14 features)

we used embedding dimension d = 30, and for the artificial data

with only one feature we use d = 6. The output of the encoder is the

concatenation of the hidden RNN states. Before passing the output

of the encoder to the decoder, a joint distribution is learned and

sampled from during training, to ensure better robustness of the

embedding. The n motifs are learned by including in the loss the

clustering-based spectral regularization term [see Luxem et al., 2022

(supporting information), Ma et al., 2019]. In our experiments,

we did not train the motifs and behavior classification separately,

but instead added a supervised classification head. This means we

allowed the network to optimize embedding andmotifs for both the

decoding and the behavior classification task, by optimizing three

losses: a self-supervised reconstruction loss, a clustering loss and

a supervised classification loss. During training, the importance of

the classification loss is gradually increased.

Note that for supervised classification we could have omitted

the motif cluster mapping. We kept it in because we want to

investigate the model’s ability to learn motifs for the difficult (rare,

subtle, composite) behaviors.

As an alternative model, we replaced the RNN-VAE network

with a Transformer network derived from LIMU-Bert (Xu

et al., 2021), a Bert model for time-series, and applied it

to the artificial datasets. The model has four encoder layers,

each with four attention heads and a feed-forward layer with

hidden size h= 80. A linear decoder projects the encoded

input back to the original input size T×F. As in LIMU-

Bert, to train the encoder, the input sequence of 20 samples

is masked with a contiguous span of samples instead of

individual samples to avoid trivial solutions (mask ratio =

0.45), and only the spans are represented and predicted. After

reconstruction, the entire original input sequence is encoded

without masking and a slice of five samples is classified with

a bidirectional GRU classification head (h = 30). As before,

the reconstruction loss and a supervised classification loss are

trained simultaneously.

For all experiments, we performed a hyperparameter

search with Optuna (Akiba et al., 2019) to ensure the

best possible results. The tuned parameters are learning

rate, number of hidden dimensions and the size of the

embedding. For the Transformer network we also tuned

the mask ratio and the window size of the slice that is sent

to classification.
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A

B

FIGURE 5

Confusion matrices with classification results on the rat dataset using the supervised RNN-VAE, per behavior on (A) and per sub-behavior on (B). The

overlaps di�er per subbehavior.

4. Results

4.1. Modeling rat behavior as switching
states

The confusion matrices in Figure 5 presents the result of the

RNN-VAE model on the rat behavior dataset, calculated from the

sequences of the aligned six body-point coordinates per frame.

Figure 5A shows the confusions at event level, Figure 5B shows

confusions at sub-event level. It is clear that the recognition

works well for some of the state behaviors and is less successful

for other behaviors. Half of the drinking frames are detected

as sniffing, and most of the eating samples are seen as sniffing

or grooming. Eating is executed in three different ways: at the

feeder, in which case it overlaps with sniffing, or away from the

feeder in a sitting pose or off the floor, in a way that is also

overlaps with the grooming-snout pose. Nearly all behaviors are

confused with sniffing, which is due to overlap in both pose

and movement intensity of the very wide distribution of sniffing

poses. For a human annotator, it is the context of more explicit

behavior that determines the decision. The confusion in resting

behavior is because the sequences in the test data are very short

compared to the few very long resting periods in the training data,

and in different poses. In the detailed results of the rearings, the

middle part of the rearing (“high") is confused differently than

the upward and downward movements, which can be due to our

observation that rearing events contain a relatively large amount of

transitional samples.

Overall we identify four types of confusion. First, the features

can be sub-optimal, i.e., incomplete, insufficient or just noisy and

incorrect. Next, point behaviors may not be detected. Furthermore,

confusion is likely when the relevant context is not picked up.

Finally, not all confusions are errors. Transitional samples between

states get labeled but are in fact ambiguous ground truth.

4.2. Modeling artificial behaviors

The first set of artificial data contains only state behaviors,

without structure. Both models can recognize the behaviors
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A B

C D

FIGURE 6

Confusion matrices with classification results on the artificial datasets for (A) state behaviors and model RNN-VAE, (B) state behaviors and model

Transformer, (C) composite behaviors and model RNN-VAE, (D) composite behaviors and model Transformer. Confusion groups are outlined in red.

equally well, as shown in confusion matrices in Figures 6A, B.

The confusion that we see is grouped according to the

behavior definitions of the dataset. As expected, classes b01,

b02, and b05 are well-separated. The models have difficulty

with two of the three confusion groups: confusion group 1

with poses that are alike (classes b03 and b04), and confusion

group 2 with uncommon event distributions (classes b06 for

long events and b07 for short events). Confusion group 3

with class-specific periodicity (classes b08, b09, and b10) is

handled correctly. We conclude that both models can learn

state behaviors that have no specific dynamical structure, except

for behaviors with class-specific event durations (confusion

group 2).

The results on the artificial dataset with composite behavior

are presented in Figures 6C, D. This artificial dataset was inspired

by the analysis of confusions made in classifying the rat dataset,

and contains state behaviors, point behaviors and transitions, as

well as state sequences with ambiguous subbehaviors. The behavior

definitions overlap in the same way that the rat behaviors do, see

the definitions in Section 3.2.2. In the confusion matrix, we see

the confusions that we expect, even with a big enough dataset.

Again, classes b01 and b02 are well separated. In both models, point

behavior b11 (equivalent to “rear”) is confused with state behavior

b12 (“sniff "), but also with b15 (“jump"), which is most likely due

to the overlap with the transitional poses that comprise most of the

b11 context samples. In confusion group 4, behavior b13 (“groom")
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was defined as an unordered sequence of substates corresponding

to different grooming poses, one of which is overlapping with state

behaviors b12 (“sniff ") and b14 (“eat”). See Supplementary Figure 1

for the sub-event level confusion matrix. The models did not use

the surrounding context of substates to infer behavior b13. Neither

could themodels solve confusion in confusion group 5, namely find

the conditional context of behavior b15 (“jump") that separates it

from b16 behavior (“walk”).

5. Discussion

Currently available automated systems for the recognition

of animal behavior from video suffer from lack of robustness

with respect to animal treatment and environment setup. In

order to be useful in behavioral research, systems must recognize

the behaviors of control and treated animals regardless of

compound effects on appearance, behavior execution and behavior

sequence. Careful analysis of miss-detections in rat behavior

recognition lead us to distinguish behaviors into four types of

behavior constituents, namely state events, point events and pose

transitions, and sequences thereof. To study the performance of

recognition models on the different types of dynamics, we created

artificial time-series and present results for the most advanced

recognition systems.

The classification results on the artificial dataset show

that, even with sufficient amount of data with absent noise

and ideal annotation quality, and with supervised classification

and hyperparameter tuning, the networks are not capable of

classifying the composite rodent behaviors, or behavior-specific

event durations. Therefore, the solution towardmore robust rodent

behavior classification is not only to train on more data or to

avoid input noise. We also need to improve on how to break

down the composition. If models can learn to compress time-

series into segments that correspond to behavior constituents, they

can analyse segment properties and sequences regardless of the

temporal scale of the segments. The usual way of segmenting

data into equidistant samples and segments of equal duration

is therefore not the best way to segment behavior, and adding

the attention mechanism of the Transformer is not enough to

overcome this.

Although rodents can switch goal poses instantaneously, they

can only change their actual pose in a continuous manner. This

makes certain samples more informative then others. Pose changes

while changing from one behavior to another are not informative

for the behaviors themselves. This is generally true for recordings of

intentional agents. How to infer the agent’s goal poses is unsolved

so far, but if we can discard the uninformative transitional samples

we can reduce confusion. One possible way to achieve this is to

predict future poses, and take as start and stop pose of the transition

the frames that are difficult to predict. Although this seems a good

approach, it is very difficult to steer the predictions from the data

itself given the amount of variation and valid, possible projections.

With the data compressed into behavior segments and

transitions, we would be able to normalize and augment the

behavior execution and the behavior sequence which would make

classifiers more robust. Breaking down composite behaviors will

furthermore increase the detection accuracy of difficult behaviors,

for it allows to highlight short yet necessary constituents.

We showed that adding more training data is not sufficient

to make progress for several ethologically relevant behaviors, and

we argue that understanding the composite nature of animal

behavior is necessary to move the field forward. We believe that

discarding uninformative pose transitions will reduce confusions

and that detection and evaluation of segment sequences will

pick up more relevant context. Future research will focus on

this direction.
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SUPPLEMENTARY FIGURE 1

Sub-behavior level confusion matrices with classification results of model

RNN-VAE on the artificial datasets for (A) state behaviors and (B) composite

behaviors. For the composite behaviors, only some of the sub-behaviors

overlap with other behaviors. Confusion groups are outlined

in red.
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