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Introduction: The human brain comprises heterogeneous cell types whose 
composition can be altered with physiological and pathological conditions. New 
approaches to discern the diversity and distribution of brain cells associated with 
neurological conditions would significantly advance the study of brain-related 
pathophysiology and neuroscience. Unlike single-nuclei approaches, DNA 
methylation-based deconvolution does not require special sample handling or 
processing, is cost-effective, and easily scales to large study designs. Existing 
DNA methylation-based methods for brain cell deconvolution are limited in the 
number of cell types deconvolved

Methods: Using DNA methylation profiles of the top cell-type-specific 
differentially methylated CpGs, we employed a hierarchical modeling approach 
to deconvolve GABAergic neurons, glutamatergic neurons, astrocytes, microglial 
cells, oligodendrocytes, endothelial cells, and stromal cells.

Results: We demonstrate the utility of our method by applying it to data on normal 
tissues from various brain regions and in aging and diseased tissues, including 
Alzheimer’s disease, autism, Huntington’s disease, epilepsy, and schizophrenia.

Discussion: We expect that the ability to determine the cellular composition in 
the brain using only DNA from bulk samples will accelerate understanding brain 
cell type composition and cell-type-specific epigenetic states in normal and 
diseased brain tissues.
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Introduction

The human brain is arguably the most complex organ regarding its cellular composition and 
diversity (Guillaumet-Adkins and Heyn, 2017). Understanding the cellular heterogeneity and 
complexity of the brain is fundamental; indeed, assessment of brain cell alteration in neurological 
and psychiatric disorders plays a critical role in underlying the disturbance of brain cellular 
homeostasis. For instance, neuronal cell loss is one hallmark of Alzheimer’s disease (Serrano-Pozo 
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et  al., 2011). Recent studies using single-cell RNA sequencing 
(scRNA-seq) technology have revealed the landscape of brain cell 
diversity (Guillaumet-Adkins and Heyn, 2017; Mu et al., 2019). Genome 
and transcriptome profiling in individual brain cells has enabled the 
disentangling of its complex cellular composition. However, due to the 
heterogeneity of brain cells within different regions, the results from 
scRNA-seq vary widely by the regions where sc-RNA seq technology has 
been applied (Guillaumet-Adkins and Heyn, 2017; Mu et al., 2019). 
Although scRNA-seq provides insights and promising findings that are 
beginning to define this brain cell heterogeneity, the precise cell 
composition landscape of the brain remains incomplete. Flow cytometry 
technologies like fluorescence-activated cell sorting (FACS) have been 
used to sort a heterogeneous mixture of cells, e.g., immune cells (Leavitt 
et  al., 2017; An and Chen, 2018; Milward et  al., 2019). However, 
challenges involving cell components’ isolation, especially for the 
complex composition of cell populations like the brain, impede the use 
of FACS to understand its cell heterogeneity (Guez-Barber et al., 2012; 
Crouch and Doetsch, 2018). Other challenges in making accurate 
sorting of brain cells complex include destroying cells during sorting and 
postmortem autolysis, as human brain samples are typically acquired 
postmortem (Suarez-Pinilla and Fernandez-Vega, 2015; Cossarizza et al., 
2017). Some studies have overcome sorting challenges by identifying 
nuclei markers as proxies for cell identification (Marcilla et al., 2001; 
Tsuchiya et al., 2003; Shi et al., 2004). Researchers have used neuronal 
nuclei (NeuN) as a biomarker for identifying neuronal cells (Gusel'nikova 
and Korzhevskiy, 2015). Although this approach can distinguish 
neuronal brain cells from non-neuronal brain cells, individual brain cell 
heterogeneity is not captured. A more direct, DNA-based approach to 
accurately deconvolute brain cell-type composition from bulk tissues can 
overcome challenges in studying brain cell type heterogeneity in brain-
related disorders, including neurodegenerative diseases and cancer.

DNA methylation is an epigenetic modification that regulates 
gene expression and is essential to establish and preserving cellular 
identity (Bogdanovic and Lister, 2017). Genome-wide DNA 
methylation arrays provide a standardized and cost-effective approach 
to measuring DNA methylation. When combined with a cell-type 
reference library, DNA methylation measures allow the assessment of 
underlying cell-type proportions in heterogeneous mixtures (Salas 
et al., 2018, 2022). In recent years, DNA methylation has been widely 
utilized as a biomarker of immune cell types to infer cellular 
composition (Titus et  al., 2017; Salas et  al., 2022). Initially, using 
differentially methylated regions identified between purified leukocyte 
subtypes, we developed a reference-based deconvolution algorithm to 
estimate the distribution of subtypes of leukocytes in whole blood 
samples (Houseman et al., 2012). We later optimized the library by 
developing the IDOL algorithm and expanding the immune cell types 
in the library (Koestler et al., 2016; Salas et al., 2018, 2022). Methods 
now enable referenced-based libraries for estimating cell composition 

in the tumor microenvironment (Zhang et al., 2022), skin (Muse et al., 
2022), and biospecimens from the breast (Muse et al., 2023).

Like in other human tissues, the identity of brain cell types is 
preserved in epigenomic markers, including DNA methylation 
(Kozlenkov et  al., 2018; Rizzardi et  al., 2019). Previous research 
devised two major approaches for brain cell deconvolution. 
Guintivano et  al. developed a reference-based algorithm, cell 
epigenotype specific (CETS) marks, to quantify neuronal and 
non-neuronal cell proportions in brain samples utilizing the 
differential DNA methylation identified between neuronal and 
non-neuronal cells (Guintivano et  al., 2013). Teschendorff et  al. 
developed the EpiSCORE algorithm, which uses single-cell RNA-seq 
constructed DNA methylation libraries for multiple tissue 
deconvolution, including brain (Teschendorff et al., 2020; Zhu et al., 
2022). EpiSCORE achieved deconvolution for six brain cell types. 
Here, we introduce a reference-based method using a hierarchical 
modeling approach with differential DNA methylation patterns 
among seven major brain cell types, Hierarchical Brain Extended 
Deconvolution (HiBED), for estimating cell-type proportions in brain 
samples. The reference libraries are based upon DNA methylation 
identities preserved in GABAergic (inhibitory) neurons (GABA), 
glutamatergic (excitatory) neurons (GLU), astrocytes, microglial cells, 
oligodendrocytes, endothelial cells, and stromal cells. We demonstrate 
that application of HiBED uncovers brain cell heterogeneity in various 
regions and alterations of brain cell distribution in aging and brain-
related disorders.

Materials and methods

All analyses were performed using R version 4.2.0.

Discovery data sets

We used five publicly available data sets containing DNA 
methylation data on purified brain cells to construct our brain 
deconvolution libraries (Table 1). The discovery data sets included 
isolated samples from human primary astrocytes from the post-
mortem sub-ventricular deep white matter (Weightman Potter et al., 
2021; n = 6), endothelial cells from the cord tissue (Lin et al., 2018; 
n = 12), GABAergic neurons (GABA; Kozlenkov et al., 2018; n = 5) 
and glutamatergic neurons (GLU; Kozlenkov et al., 2018; n = 5) from 
the post-mortem dorsolateral prefrontal cortex, microglial cells from 
the post-mortem medial frontal gyrus, superior temporal gyrus, 
subventricular zone and thalamus (de Witte et  al., 2022; n  = 18), 
oligodendrocytes from the post-mortem Brodmann area 46 
(Mendizabal et al., 2019; n = 20), and stromal cells from the cord tissue 
(Lin et al., 2018; n = 14). Due to the lack of age and sex information 
for astrocytes, Horvath methylation age and inferred sex were 
calculated using ENMIX (Xu et al., 2016) and SeSAMe (Zhou et al., 
2018), respectively. DNA methylation data on oligodendrocytes was 
generated from whole-genome bisulfite sequencing (WGBS), while 
the rest was from either Illumina methylation 450 K or EPIC bead 
array. To integrate the data from different platforms, we  used 
methyLiftover (Titus et al., 2016), which maps DNA methylation data 
from bisulfite sequencing to CpG sites measured with Illumina 
methylation bead-array platforms on oligodendrocyte WGBS data. 

Abbreviations: HiBED, hierarchical brain extended deconvolution; WGBS, whole-

genome bisulfite sequencing; sc-RNA, single-cell RNA; NeuN, neuronal nuclei; 

GABA, GABAergic neurons; GLU, glutamatergic neurons; CETS, cell epigenotype 

specific; GNR, glia to neuron ratio; CNS, central nervous system; CP/QP, 

constrained projection/ quadratic programming; EWAS, epigenome-wide 

association studies; FACS, fluorescence-activated cell sorting; FANS, fluorescence-

activated nuclei sorting; Pearson’s r, Pearson’s correlation coefficient; SD, standard 

deviation; R2, coefficient of determination; RMSE, root mean square error.
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After integrating the data, we  performed beta-mixture quantile 
normalization (BMIQ) to normalize the methylation value using 
ChAMP (Teschendorff et al., 2013; Tian et al., 2017). We removed 
cross-reactive probes, SNP-related probes, sex chromosome probes, 
and non-CpG probes from the analysis. The final data set for 
identifying cell-type-specific DNA methylation included 80 samples. 
After integration, normalization, and removal of missing values, the 
data set consisted of 309,287 CpGs.

HiBED hierarchy and brain 
cell-type-specific CpG identification

The HiBED deconvolution hierarchy was established based on 
cellular identification in the human brain. Two layers with four 
categories were set for seven brain cell types in the hierarchy 
(Figure 1). Layer 1 contains three cell groups (glial, neuronal, and 
endothelial and stromal cells). Layer 2A includes endothelial and 
stromal cells. Layer 2B has three glial cell types (astrocyte, microglia, 
and oligodendrocyte). Layer 2C includes two neuronal cell types 
(GABA and GLU). We  used an adaptation of the meffil.cell.type.
specific.methylation function in the perishky/meffil package (Min et al., 
2018), which used linear regression with empirical Bayes adjustment 
statistics to reduce methylation profiles to most cell-type-specific sites 
to identify discernible CpGs in each layer and category across brain 

cell subpopulations within the category. One library is generated for 
each category in the hierarchy.

We tested nine sets of libraries with multiple methylation 
directions and various numbers of CpGs per cell type generated by 
parameter specification in the function. Libraries with 
hypermethylated CpG loci only, hypomethylated CpG loci only, and 
hyper and hypomethylated CpG loci hybrid were initially created. For 
each direction, 50, 100, and 200 CpG loci ranked by t-statistics were 
included in the libraries. We compared the dispersion separability 
criterion (DSC) among seven brain cell sub-populations across 
libraries to evaluate the performance among the nine libraries (Bell-
Glenn et al., 2022). The results suggested the best overall performance 
of the library with 50 hybrid CpG loci per cell type 
(Supplementary Figure S1). We  also used the absolute difference 
between actual and estimated values using the libraries to assess the 
performance. The library with 50 hybrid CpG loci per cell type 
consistently demonstrated the best performance with the lowest 
absolute difference value (Supplementary Figure S2). Thus, the 
libraries with 50 hybrid CpG loci per cell type were selected as the 
reference libraries for HiBED deconvolution. Heatmaps illustrate the 
differential methylation state between cell types across the four layers. 
InfiniumMethylation BeadChips Annotation file was used to map the 
CpGs in the libraries to the associated genes (Zhou et al., 2017). UCSC 
Genome Browser was used to investigate the CpG location relative to 
the association gene (Kent et al., 2002). The libraries were then used 

TABLE 1 Baseline characteristics of the discovery data sets.

Cell type N Mean age (sd) n Male (%) Accession Source Platform

Astrocyte 6 27.4 (11.2)* 6 (100)# GSE166845 (29) GEO EPIC

Endothelial 12 Newborn 8 (66.7) FlowSorted.CordTissueAndBlood.EPIC (30) R package EPIC

GABA 5 24.6 (3.7) 5 (100) syn4588488 (24) Synpase 450 K

GLU 5 24.6 (3.7) 5 (100) syn4588488 Synpase 450 K

Microglia 18 83 (17.8) 4 (22.2) GSE191200 (31) GEO EPIC

Oligodendrocyte 20 55.7 (15.8) 13 (65) GSE107729 (32) GEO WGBS

Stromal 14 Newborn 10 (71.4) FlowSorted.CordTissueAndBlood.EPIC R package EPIC

Total 80

*Horvath methylation age was inferred using the ENMIX due to the lack of age information.
#Sex was inferred using the SeSAMe package due to the lack of sex information.

FIGURE 1

HiBED brain deconvolution hierarchy with four layers for seven brain cell types (Created with BioRender.com).
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in conjunction with the constrained projection quadratic 
programming approach described by Houseman et al. to estimate the 
proportions of brain cell types (Houseman et al., 2012). There are 
three steps established in HiBED to project brain cell proportions. 
First, the Layer 1 library was used to estimate the proportions of 
neurons, glial cells, and endothelial and stromal cells. Second, Layer 
2A, 2B, and 2C libraries were used to estimate endothelial cell and 
stromal cell, neuronal cell types (GABA and GLU), and glial cell types 
(astrocyte, oligodendrocyte, microglia) respectively. Third, the cell 
proportions estimated from Layer 1 libraries were deconvoluted to 
respective cell proportions by weighting the cell proportions estimated 
from Layer 2 libraries. The HiBED deconvolution function was then 
created in the HiBED package in R with 2 layers of deconvolution that 
is user-specifiable. The first layer outputs estimated cell proportions 
for neuronal, glial, and endothelial and stromal cells. The second layer 
outputs estimated cell proportions for GABA, GLU, astrocyte, 
oligodendrocyte, microglia, endothelial cell, and stromal cell. HiBED 
can be applied to WGBS and methylation microarray data. For WGBS 
data, the users need to use methyLiftover to convert the WGBS data to 
microarray data first (Titus et  al., 2016). The HiBED package is 
available at.1

HiBED validation

We generated 50 in silico synthetic mixtures of brain cell 
subpopulations to validate the libraries using 80 purified brain cell 
samples from the discovery data sets (Table  1). Seven random 
numbers were generated from a uniform distribution and the 
proportions for those numbers were calculated and assigned to seven 
cell types for each sample. The 50 artificial samples contain a gradient 
of cell proportions for each cell type. The cell-type-specific DNA 
methylation matrices were generated by randomly sampling the 
purified brain cell samples for each cell type and averaging the 
methylation beta value for each probe. Standard deviations were 
calculated from randomly selected purified samples. The artificial bulk 
brain sample DNA methylation matrices were then generated by 
multiplying predefined cell proportion matrices and purified 
methylation matrices. The projected proportion was investigated for 
correlation with the expected proportion for each cell type. Pearson’s 
correlation and root mean squared error were used to evaluate the 

1 https://github.com/SalasLab/HiBED

performance. For external validation, we applied the algorithm to a 
previously used neuronal cell projection DNA methylation data set on 
GEO (GSE41826) that included 58 sorted neuronal and 58 
non-neuronal nuclei samples from post-mortem frontal cortex, 9 in 
silico neuronal mixture with a gradient neuron proportion 10% 
increase, and 20 bulk brain samples with fluorescence-activated nuclei 
sorting (FANS) measured neuronal proportion (Guintivano et al., 
2013; Table 2). We also tested HiBED on microglial samples from 
bipolar, schizophrenia, and major depression disorder patients with 
an age range 21–93 (de Witte et al., 2022) and adult vein endothelial 
cells (Sarkar et al., 2020; Table 2). The performance of HiBED was 
compared with CETS and EpiSCORE on the in silico neuronal 
mixture, the FANS-measuered bulk brain samples, and the diseased 
microglia samples.

HiBED application

We identified 516 samples from 11 publicly available GEO data 
sets containing DNA methylation data on the normal brain with 
various sub-regions (Table 3; Pidsley et al., 2013, 2014; De Souza et al., 
2016; Horvath et al., 2016; Watson et al., 2016; Murphy et al., 2017; 
Viana et al., 2017; Gasparoni et al., 2018; Smith et al., 2018). To make 
a more general comparison across the brain, we  collapsed those 
regions into four significant subgroups, cerebellum, basal ganglia, 
hippocampus, and cortex. The Infinium signal intensity files were 
pooled across the data sets, and beta-mixture quantile normalization 
(BMIQ) was employed for data processing. With HiBED, 
we proceeded to deconvolve brain cells in the application data sets and 
demonstrate the brain cell composition with 7 HiBED cell types across 
the regions using notched boxplots and stacked bar plots. We also 
calculated the glia-to-neuron ratio (GNR) and showed the distribution 
of GNR across the brain regions. Glial cell composition with HiBED 
glial cells (astrocyte, microglia, oligodendrocyte) was demonstrated 
in the cortex region. Furthermore, we interrogated the aging effect on 
cell proportions within brain sub-regions by correlating the predicted 
cell proportions with age in the cerebellum, basal ganglia, 
hippocampus, and cortex. Pearson’s correlation coefficient was used 
to demonstrate the relationship between age and cell proportions.

Next, we applied the deconvolution algorithm to four independent 
GEO data sets containing DNA methylation data on neurological and 
psychiatric disorders and control samples (Table 4). The disease data 
sets included 16 multiple Alzheimer’s disease samples and 14 controls 
in basal ganglia, 22 autism samples and 23 controls in the cortex, 197 
Huntington’s disease and control samples in basal ganglia and cortex, 

TABLE 2 Baseline characteristics of the external validation data sets.

Sample N Mean age (sd) n Male(%) GEO accession

NeuN+ 58 32.05 (15.84) 28 (48.3)

GSE41826 (26)
NeuN- 58 32.05 (15.84) 28 (48.3)

Mix 9 50.00 (0.00) 9 (100.0)

Bulk 20 37.20 (19.37) 10 (50.0)

Microglia 36 60 (22.7) 16 (44.4) GSE191200 (31)

Vein endothelial cell 8 48.3 (0.9) 0 (0) GSE142439 (42)

Total 145
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19 epilepsy samples and 14 controls in cortex and hippocampus, and 
20 schizophrenia samples and 23 controls in cortex (Nardone et al., 
2014; Pidsley et al., 2014; Horvath et al., 2016; Martins-Ferreira et al., 
2022). For consistency, we  performed BMIQ normalization on 
methylation beta values for those data sets. Four hundred and sixty-
seven samples were eventually contained in the disease datasets. 
We  compared HiBED cell proportion differences by brain region 
between diseased and control samples. Multivariable linear regression 
models were used to adjust for sex and age. Due to the lack of age 
information for epilepsy and Autism data sets, Horvath methylation 
age was calculated using ENMIX (Xu et al., 2016).

Results

HiBED development

We used multiple validated genome-wide DNA methylation data 
sets on purified brain cell populations. Five publicly available data sets 
that contain DNA methylation data from 80 GABA, GLU, astrocytes, 
microglial cells, oligodendrocytes, endothelial cells, and stromal cells 
were used as the discovery data sets (Table 1). After integrating the 
data with quality control, we performed genome-wide differential 
methylation analyses on 309,287 CpGs to identify our 
deconvolution libraries.

Four libraries were developed based on the brain cell hierarchical 
tree (Figure 1). In Layer 1, 81 CpGs were identified to discern three 
major brain cell groups. In Layer 2A, 183 CpGs were specified to 
distinguish endothelial and stromal cells. In Layer 2B, 237 CpGs were 
identified to discern glial cell types. In Layer 2C, 120 CpGs were 
identified to distinguish neuronal cell types. The heatmaps in 
Supplementary Figure S3 demonstrated discriminative methylation 

status for the brain cell type-specific CpGs in the libraries. The 
libraries are relatively different, with 26 overlapping CpGs across the 
four libraries, 22 CpG appeared in 3 out of 4 libraries, and 18 CpGs in 
total overlapped in 2 out of 4 libraries (Supplementary Figure S4).

Cell identity genes associated with HiBED

Among the genes associated with the CpGs in the libraries, 
we  identified well-established genes related to cell identity. 
Cg08331427 is in an intron of ECSCR (Endothelial Cell Surface 
Expressed Chemotaxis And Apoptosis Regulator) and is a 
hypomethylated probe in the HiBED Layer 2A library distinguishing 
endothelial cells and other cell types (Supplementary Figure S5A). 
ECSCR is expressed in endothelial cells and blood vessels, where it 
functions in cell shape changes and EGF-induced cell migration (Lu 
et al., 2012). Cg23165166 is in an intron of COL5A2 (Collagen Type 
V Alpha 2 Chain) and marks hypomethylation in stromal cells 
compared to other cells in the HiBED Layer 2A library 
(Supplementary Figure S5B). COL5A2 encodes an alpha chain for 
fibrillar collagens in stroma (Egusa et al., 2007). Cg19360930 is in an 
exon region of WDR35 (WD Repeat Domain 35) and is 
hypomethylated in astrocyte compared to other cells in the HiBED 
Layer 2B library (Supplementary Figure S5C). WDR35 has been found 
to have the highest expression in astrocytes across 80 cell types in 
RNA single-cell type specificity analysis from the Human Protein 
Atlas (Uhlen et  al., 2015). Cg04341806 is in an intron of LCP1 
(Lymphocyte Cytosolic Protein 1) and hypomethylated in microglia 
compated to other cells in the HiBED Layer 2B library 
(Supplementary Figure S5D). LCP1 is a myeloid marker for 
macrophage and microglial populations (Herbomel et al., 1999; Jin 
et al., 2019; Wu et al., 2020). Cg05578056 is in an intron of LMF1 

TABLE 3 Baseline characteristics of the application data sets with normal brain samples from various regions.

Sample N
Mean age 

(sd)
n Male 

(%)
GEO accession

Cerebellum 40 63.15 (20.04) 26 (65.0) GSE43414 (43), GSE61431 (47), GSE72778 (44)

Hippocampus 20 63.55 (18.27) 14 (70.0) GSE72778, GSE89703 (46)

Basal ganglia

caudate nucleus 12 56.33 (17.52) 10 (83.3) GSE72778

midBrain 2 45.50 (10.61) 1 (50.0) GSE72778

Cortical structure

frontal cortex 180 66.14 (21.40) 113 (62.8) GSE43414, GSE61380 (47), GSE61431, GSE66351 (48), GSE72778, GSE80970 (51), GSE88890 (50)

temporal pole 154 77.10 (14.35) 80 (51.9) GSE43414, GSE66351, GSE67419 (50), GSE72778, GSE76105 (49), GSE80970

cingulate cortex 30 47.27 (19.96) 24 (80.0) GSE72778, GSE88890

entorhinal cortex 5 76.00 (10.61) 3 (60.0) GSE43414

motor cortex 12 56.33 (17.52) 10 (83.3) GSE72778

visual cortex 23 55.26 (16.67) 19 (82.6) GSE72778

inferior parietal 11 54.09 (16.46) 9 (81.8) GSE72778

superior parietal 12 56.33 (17.52) 10 (83.3) GSE72778

occipital pole 9 62.89 (25.79) 5 (55.6) GSE72778

cortex 6 62.17 (21.83) 6 (100) GSE79064 (45)

Total 516
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(Lipase Maturation Factor 1) and hypomethylated in oligodendrocytes 
compared to other cell types in the HiBED Layer 2B library 
(Supplementary Figure S5E). LMF1 hallmarks the highest expression 
in oligodendrocyte precursor cells and oligodendrocytes across 80 cell 
types in RNA single-cell type specificity analysis from the Human 
Protein Atlas (Uhlen et al., 2015). Cg04812615 is in an intron of PAK6 
(P21 Activated Kinase 6) and hypermethylated in GABA compared to 
other cell types in the HiBED Layer 2C library 
(Supplementary Figure S5F). PAK6 has been found to play a vital role 
in regulating morphological changes in GABAergic neuron 
development in the cortex (Goyette et  al., 2019). Cg02632583 is 
located in an intron of SLC38A10 (Solute Carrier Family 38 Member 
10) and marks hypomethylation in GLU compared to other cells in 
the HiBED Layer 2C library (Supplementary Figure S5G). SLC38A10 
regulates glutamate homeostasis in cortex cells (Tripathi et al., 2022). 
The results showed that HiBED libraries captured critical functional 
genes that enabled discernibility between brain cell subpopulations.

HiBED validation

The libraries were then used with the constrained projection/
quadratic programming approach from Houseman et al. to estimate 
brain cell types’ proportions in mixed samples (Houseman et  al., 
2012). We first generated 50 in silico synthetic mixtures of brain cell 
subpopulations using the purified brain cell samples to validate the 
method. The predicted proportion was then tested for correlation with 
the expected proportion for each cell type. The results showed a high 
correlation and < 1% deviation between the predicted proportion and 
expected proportions for all cell types (average R2  = 1, average 
RMSE = 0.83%, Figure 2). As external validation, we used GSE41826, 
a publicly available data set (Table  2) with sorted neuronal and 
non-neuronal nuclei samples from postmortem frontal cortex, in silico 
neuronal mixture with a gradient increase in neuron proportion, and 
bulk brain samples with neuronal proportion data from fluorescence-
activated nuclei sorting (FANS) on neuronal nuclei (Guintivano et al., 
2013; Gusel'nikova and Korzhevskiy, 2015). The neuronal proportions 
were inferred by HiBED first-layer deconvolution. For the in silico 
neuronal mixture samples, we observed a high correlation between 
the HiBED estimated neuron proportion and expected neuron 

proportion (R2 = 1, p = 7.8e-11, Figure 3A). The HiBED performance 
on neuron projection is similar to previously described CETS neuron 
projection method (R2  = 1, p  = 3.23e-10) and outperforms the 
EpiSCORE method (R2  = 0.95, p  = 6.2e-06), although the CETS 
method consistently underestimates the true neuron proportion 
(Supplementary Figure S6A). For bulk brain samples, a significant 
positive correlation was noted between the estimated neuron 
proportion and FANS-measured neuron proportion (R2  = 0.55, 
p = 2e-04, Figure 3B), consistent with the CETS projection results 
(R2  = 0.61, p  = 4.5e-05) and outperforms the EpiSCORE method 
(R2 = 0.61, p = 4.5e-05, Supplementary Figure S6B). HiBED Layer 1 
deconvolution showed a predominant neuron proportion 
(Mean = 85.08%, SD = 2.46%) in sorted neuronal nuclei (NeuN+) 
samples and a substantial proportion of glial cells (mean = 86.81%, 
SD = 1.38%) in non-neuronal nuclei (NeuN-) samples (Figure 3C). 
HiBED Layer 2 deconvolution demonstrated higher proportions of 
GLU and GABA in NeuN+ samples (GLU: mean = 66.39%, 
SD = 4.80%; GABA: mean = 18.69%, SD = 3.87%) and relatively higher 
proportions of oligodendrocytes, microglia, and astrocytes compared 
to other cell types in NeuN- samples (oligodendrocyte: mean = 66.21%, 
SD = 5.59%; microglia: mean = 14.61%, SD = 4.74%; Astrocyte: 5.99%, 
SD = 0.61%, Figure  3D). HiBED demonstrated consistent high 
performance on microglial samples from patients with psychiatric 
disorders aging from 21 to 93 (Microglia: Mean = 97.04%, SD = 1.77%, 
Supplementary Figure S7A) and adult vein endothelial cells 
(Endothelial cell: Mean = 93.38%, SD = 5.14%, 
Supplementary Figure S7B). HiBED outperforms EpiSCORE on 
microglial samples from patients with psychiatric disorders (HiBED: 
microglia mean = 97.04%, SD = 1.77%; EpiSCORE: microglia 
mean = 49.98%, SD = 3.36%, Supplementary Figure S8). These results 
validated the HiBED libraries and showed that the projection 
algorithm based on the libraries could estimate the proportions of 
seven brain cell types in bulk brain samples.

HiBED-profiled brain cell composition 
difference by region

Next, we  applied the algorithm to eleven publicly available 
independent data sets that contain DNA methylation data on 

TABLE 4 Baseline characteristics of the application data sets with diseased brain samples and their corresponding normal controls.

Condition N Mean age (sd) n Male (%) Brain region GEO accession

Alzheimer’s disease 16 93.31 (19.58) 4 (25.0) Basal ganglia GSE72778 (44)

Healthy control 14 54.79 (16.84) 11 (78.6) Basal ganglia GSE72778

Autism 22 36.27 (7.05)* 22 (100.0) Cortex GSE53924 (52)

Healthy control 23 38.01 (10.82)* 23 (100.0) Cortex GSE53924

Huntington’s disease 197 56.14 (14.85) 124 (62.9) Basal ganglia, Cortex GSE72778

Healthy control 119 56.13 (18.16) 90 (75.6) Basal ganglia, Cortex GSE72778

Epilepsy 19 39.43 (7.67)* 10 (52.6) Cortex, Hippocampus GSE168916 (53)

Healthy control 14 63.04 (10.76)* 10 (71.4) Cortex, Hippocampus GSE168916

Schizophrenia 20 62.05 (15.87) 11 (55.0) Cortex GSE61431 (47)

Healthy control 23 62.04 (18.74) 17 (73.9) Cortex GSE61431

Total 467

*Horvath methylation age was inferred using the ENMIX due to the lack of age information.
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FIGURE 2

Internal validation of HiBED-predicted cell proportions with true reconstructed cell proportions in fifty in silico synthetic mixtures.

FIGURE 3

External validation of HiBED-predicted cell proportions. (A) Comparison of HiBED-predicted neuron proportions with in-silico mixture neuron 
proportions. (B) Comparison of HiBED-predicted neuron proportions with FANS-based neuron proportions in bulk brain samples. (C) HiBED Layer 1 
deconvolution of sorted neuronal and non-neuronal nuclei samples. (D) HiBED Layer 2 deconvolution of sorted neuronal and non-neuronal nuclei 
samples.
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regionally sampled normal brain tissues (Table 3). We interrogated 
516 normal brain tissue samples from 14 different regions in the 
application data sets (Pidsley et al., 2013, 2014; De Souza et al., 2016; 
Horvath et al., 2016; Watson et al., 2016; Murphy et al., 2017; Viana 
et al., 2017; Gasparoni et al., 2018; Smith et al., 2018). To make a more 
general comparison across the brain, we collapsed those regions into 
four major groups, cerebellum, basal ganglia, hippocampus, and 
cortex. Notched boxplots showing the distribution of HiBED brain 
cells for the four regional groups were presented, respectively 
(Figure 4). Stacked bar plots were made to visualize the comparison 
of cell composition across brain sub-regions (Supplementary Figure S9). 
The results convey the variation and heterogeneity of the brain cell 
composition captured by HiBED across various regions.

HiBED-profiled brain cell alteration with 
aging

We then investigated the relationship of age with neuronal cell 
proportions per brain region. A weak but significant negative 
correlation was observed in the cortex between age and predicted 

neuron proportion (Pearson’s r = −0.15, p = 0.0018). However, when 
stratified by sex, only the male group showed a significant correlation 
(Pearson’s r = −0.20, p = 9.1e-04, Figure 5A). Among neuronal cell 
types, a stronger negative correlation between GABA and age was 
observed in the male group (Pearson’s r  = −0.24, p  = 6.9e-05, 
Figure 5B). In contrast, no significant association of age with GLU 
proportions was observed (Figure 5C). The GABA to GLU ratio also 
demonstrated a significant negative correlation with age in the male 
group (Pearson’s r = −0.21, p = 5.9e-04, Figure 5D). Considering the 
negative correlation between age and predicted GABA proportion in 
the male group in the cortex, when examined, the relationship 
stratified by cortical subregions. We observed that the negative aging 
effect on GABA was primarily driven by their strong negative 
correlation in the cingulate cortex (Pearson’s r = −0.61, p = 0.0016) and 
temporal pole (Pearson’s r  = −0.51, p  = 3.7e-06; 
Supplementary Figure S10). In the cerebellum, no significant 
correlations were observed between neuron proportions and age 
stratified by sex (Supplementary Figure S11A). However, a strong 
negative association of aging with GABA proportion (Pearson’s 
r  = −0.41, p  = 0.04, Supplementary Figure S11B) and a positive 
association of aging with GLU proportion (Pearson’s r  = 0.51, 

FIGURE 4

The distribution of HiBED-predicted brain cells in the cortex (N = 442), hippocampus (N = 20), basal ganglia (N = 14), and cerebellum (N = 40).
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p = 0.008, Supplementary Figure S11C) were observed in males. Also, 
a significant negative correlation between age and GABA to GLU ratio 
was observed in males (Pearson’s r  = −0.45, p  = 0.02, 
Supplementary Figure S11D). No significant correlations were 
observed between age and predicted neuron proportions in the 
hippocampus and basal ganglia, though these regions had smaller 
sample sizes.

HiBED-profiled glia to neuron ratio

Quantification of the glia–neuron ratio (GNR) in the human 
central nervous system has been studied by multiple authors to 
understand the cellular composition, evolution of the brain, and 
brain-related pathophysiology (von Bartheld et al., 2016). Using the 
cell proportions projected from the algorithm, we explored the GNRs 
across the four major regions in the brain. We observed mean (sd) 
GNRs to be  6.97 (6.31), 1.89 (0.25), 1.86 (1.15), 3.74 (1.81), 
respectively, for basal ganglia, cerebellum, cortex, and hippocampus 

(Supplementary Figure S12). We  also calculated the glial cell 
percentage composition in the cortex. We  observed a mean (sd) 
13.79% (4.15%), 20.17% (5.45%), and 66.04% (8.70%) contribution of 
astrocyte, microglia, and oligodendrocyte to glial cell constitution in 
the cortex (Supplementary Figure S13). The results suggest that the 
HiBED deconvolution method added a new layer to neuronal and glial 
cell estimation that enables more granular analyses of cellular 
constituency in the human brain.

HiBED-profiled brain cell alteration with 
health conditions

To probe cell proportion variation in brain-related disorders, 
we  applied the algorithm to independent data sets from GEO to 
investigate the cellular differential between disease and control 
samples (Table 4). By comparing basal ganglia DNA methylation data 
in Alzheimer’s disease patients (n = 16) and controls (n = 14) from 
GSE72778 (Horvath et al., 2016), we observed a significantly higher 

FIGURE 5

Aging effect on HiBED-predicted. (A) Neuron proportion. (B) GABA proportion. (C) GLU proportion and (D) GABA to GLU ratio in cortex stratified by sex 
(N = 442).
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proportion of astrocyte (Δ = 3.83%, p = 0.003, Figure 6A) and a lower 
proportion of GLU (Δ = 2.53%, p = 0.047, Figure 6B) in Alzheimer’s 
disease patients compared to control samples, adjusting for age and 
sex. Using cortex methylation data in Autism patients (n = 22) and 
controls (n = 23) from GSE53924 (Nardone et al., 2014), we observed 
a significantly higher proportion of microglia in Autism patients 
(Δ = 2.14%, p  = 0.004, Figure  6C) compared to control samples, 
adjusting for Horvath methylation age. For epilepsy patients (n = 19) 
and control samples (n = 14) in the cortex and hippocampus regions 
from GSE168916 (Martins-Ferreira et  al., 2022), we  observed 
significantly lower proportions of GLU in the cortex (Δ = 14.98%, 
p  = 0.02, Figure  6D) and hippocampus (Δ = 6.04%, p = 0.001, 
Figure  6E), adjusting for Horvath methylation age and sex. With 
methylation data on Huntington’s disease patients (n  = 197) and 
controls (n  = 119) in the region of basal ganglia and cortex from 
GSE72778 (Horvath et al., 2016), we observed significantly higher 
proportions of microglia in basal ganglia (Δ = 2.25%, p  = 0.04, 
Figure  6F) and cortex (Δ = 0.54%, p  = 0.048, Figure  6G). A lower 

proportion of GLU in the cortex (Δ = 2.00%, p = 0.04, Figure 6H) for 
Huntington’s disease patients compared to control samples, adjusting 
for age and sex. With methylation data on Schizophrenia patients 
(n  = 20) and control samples (n  = 23) in cortex from GSE61431 
(Nardone et al., 2014), we observed a significant increase of GLU 
proportion in Schizophrenia patients compared to control samples 
(Δ = 3.55%, p  = 0.002, Figure  6I), adjusting for age and sex. The 
complete results for each cell type with each condition are shown in 
Supplementary Table S1. The data demonstrated how HiBED could 
infer cell type alterations in the pathogenesis of brain-related disorders.

Discussion

We developed, validated, and applied HiBED, a DNA methylation 
reference-based method for deconvolving seven brain cell types in 
bulk brain tissue samples. DNA methylation has been widely used to 
mark cell fate determination. Initial studies have developed 

FIGURE 6

Comparisons of HiBED-predicted cell proportions between cases and normal controls in (A,B) Alzheimer’s disease, (C) autism, (D,E) epilepsy, (F–H) 
Huntington’s disease, (I) and schizophrenia across different brain regions..
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deconvolution methods based on DNA methylation biomarkers to 
infer the composition of blood leukocytes (Houseman et al., 2012; 
Salas et al., 2022), cells in the tumor microenvironment (Zhang et al., 
2022), fetal origin cells (Salas et  al., 2018), and neuronal cells 
(Guintivano et  al., 2013). The current library for CNS sample 
deconvolution is limited in the number of cell types deconvolved. The 
CETS method deconvolves the brain cells into NeuN+ and NeuN- 
cells (Guintivano et al., 2013). The EpiSCORE method expanded the 
brain cell deconvolution to six cell types but does not include neuronal 
cell subtypes (Zhu et al., 2022). The human brain has high cellular 
heterogeneity, and categorizing the mixed population of brain cells 
with limited cell types provides an incomplete view of the landscape 
of brain samples. Our deconvolution method extends the utility of 
brain cell deconvolution to seven major cell types to offer a more 
comprehensive picture of brain cell heterogeneity.

HiBED was validated by using multiple metrics. We applied the 
algorithm to the in silico synthetic brain cell mixtures with seven cell 
types, and the deconvolution performed very well. We also validated 
the method of brain samples used in the CETS package. We confirmed 
and extended the findings by Guintivano et al. (2013). Although the 
brain samples in the CETS package only quantified neuronal and 
non-neuronal cells, the estimation by using our method is consistent 
with the results from the CETS algorithm. Similar to the CETS 
algorithm, our method’s deconvolution results showed a higher 
estimation variation in bulk brain samples than in artificial mixtures. 
As discussed by Guintivano and colleagues, the variation could 
be induced at the selection of FANS gate parameters used to define the 
neuronal population (Guintivano et al., 2013). Also, experimental 
noise introduced by variation of sectioned bulk tissue samples 
between FANS and methylation array could cause the observed 
variation of cell proportion projections between deconvolution and 
FANS (Guintivano et al., 2013).

Brain regions vary widely by cell constitution, consistent with 
regional functional purposes. The application of HiBED on standard 
brain samples in various brain areas showed that our libraries could 
capture the regional variance of brain cell composition. Fang et  al. 
established 26% excitatory neurons, 11% inhibitory neurons, and 63% 
non-neuronal cells in the human middle temporal gyrus by using 
MERFISH (Fang et al., 2022). The results are consistent with HiBED 
depicted 26.5% excitatory neurons, 7% inhibitory neurons, and 66.5% 
non-neuronal cells in the human cortex. By depicting the cell type 
composition, the cerebellum region showed a significantly higher 
proportion of cells not captured by HiBED while a low level of 
endothelial cells. The cerebellum is known to be  enriched with 
endothelial cells that are actively engaged in microvascular stasis and 
leukocyte infiltration (Stanimirovic and Satoh, 2000). The cerebral 
endothelium is a crucial element of the blood–brain barrier and is 
deemed a unique type of cell that functions in barrier establishment, 
regulation of local cerebral blood flow, and interactions with the 
neurovascular unit (Pretnar-Oblak, 2014; Hainsworth et  al., 2015). 
We hypothesize that the unknown cell proportions in the cerebellum 
majorly attribute to cerebral endothelium. Although the endothelial cell 
is included in HiBED, the uniqueness of cerebral endothelium 
differentiates the cord tissue endothelial cells used in the HiBED 
reference. Researchers described differential epigenomic landscapes of 
CNS and non-CNS vascular endothelial cells, contributing to the blood–
brain barrier (BBB) differentiation (Sabbagh et al., 2018). As a result, 
HiBED deconvolution failed to describe endothelium in the cerebellum. 

Regarding reference-based deconvolution, if a cell type is not well 
represented in the reference library, it will fall into the remaining 
unknown cell proportions from deconvolution (Bell-Glenn et al., 2022).

Investigating the relationship between aging and neuronal cells by 
brain region demonstrated the necessity of adding granularity to brain 
cell deconvolution. In the human cortex, we  observed a negative 
relationship between neuronal cell proportion and age in males. With 
our libraries, we could stratify the neuronal cell by subtypes. The 
stratified results showed that the negative correlation between 
GABAergic neurons and age primarily drives the negative relationship 
between neuronal cell proportion and age. The studies of the effect of 
aging on cortical neurons in the 1970s and 1980s propagated the 
notion that a significant loss of cortical neurons occurs with normal 
aging (von Bartheld, 2018). This concept prevailed until Herbert Haug 
and colleagues concluded that the observed cortical neuron loss with 
aging was mainly attributed to technical artifacts (Haug et al., 1984). 
A recent meta-analysis combined data from four stereology studies to 
investigate the effect of aging on the prevalence of cortical neurons. 
The study reported a 2–4% decrease in the number of cortical neurons 
with age in a lifetime (von Bartheld, 2018), consistent with our finding 
of a 3.75% decrease of neuron proportion in the cortex from age 15 to 
108. Previous research established that aging is not associated with 
massive neuron loss (Wickelgren, 1996), which is consistent with our 
findings of no significant correlation between age and neuron 
proportion in the cerebellum, hippocampus, and basal ganglia but a 
weak negative correlation in the cortex.

However, when stratified by HiBED neuronal subtypes in the 
cerebellum, a significant loss of GABAergic neuron proportion and 
gain of glutamatergic neuron proportion was observed. Mouse models 
reveal that aging-induced impairments of the GABAergic system 
could lead to an inhibitory/excitatory imbalance, decreasing the 
neuron’s ability to respond to plastic changes to environmental and 
cellular challenges (Rozycka and Liguz-Lecznar, 2017). Our findings 
of decreasing GABAergic neuron proportion and GABAergic/
glutamatergic neuron ratio in the cortex and cerebellum support the 
idea of aging-induced impairments of the GABAergic system. The 
aging effect on neuronal proportion varied by brain region and neuron 
subtypes, indicating divergent cellular content alteration by aging in 
the brain. With the additional layer of neuronal deconvolution, 
HiBED was able to provide novel insights into cellular variation over 
the course of aging at a more granular level.

Much effort has been put into quantifying the human brain’s 
cellular composition over the past century (von Bartheld et al., 2016). 
However, the research findings could be more consistent and majorly 
affected by the methods applied (von Bartheld, 2018). The concept of 
a 10:1 GNR for the entire human brain was standard textbook dogma 
that was dominant over decades (von Bartheld, 2018). The reports of 
GNR using different methods varied from 0.7:1 to 50:1 in the past 
century (von Bartheld, 2018). Major common issues causing technical 
variation include unclear delineation and definition distinguishing cell 
types, heterogeneity of sampled tissues, destruction of cells, and 
technological artifacts.

The isotropic fractionator technique is the most advanced method 
for determining the cellular composition of nervous tissue to 
minimize the challenges by labeling the nuclei; however, it could suffer 
from the destruction of nuclei. The method was applied in recent 
studies to investigate the GNR in the human cortex. Azevedo et al. 
reported a 1.05–1.48 GNR in cerebral cortex gray matter, while 
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Andrade-Moraes et al. described a 1.15–1.63 GNR in the same region 
(Azevedo et  al., 2009; Andrade-Moraes et  al., 2013). By applying 
HiBED to normal human cortex DNA methylation data, we observed 
a mean (SD) GNR of 1.86 (1.15). Another common error occurring 
when attempting to measure brain cells is to examine one part of the 
brain and assume the rest of the brain is similarly constituted. In our 
assessment, brain cellular composition varied substantially by 
subregion. While the GNR in human cerebral cortex gray matter 
reported by Azevedo et  al. is 1.05–1.48, the GNR is estimated at 
2.48 in cerebral cortex gray matter with white matter.

Similarly, in Andrade-Moraes et al. study, the GNR in the human 
cerebral cortex changed from 1.15 to 1.64 in the gray matter only to 
3.01 in gray matter plus white matter. Although our human cortex 
samples are not distinguished by gray matter or white matter, 
we observed variations of GNR across major brain subregions. Another 
metric studied for brain cell counts is the composition of glial cells. 
Unsurprisingly, the measurement of glial cell composition is also 
primarily affected by techniques used and specific to brain regions (von 
Bartheld et al., 2016). The number of glial cell compositions reported 
varied immensely over the past century — a study by Pelvig et al. in 
2008 quantified glial cell composition in the neocortex. Using 
stereological cell counting, they observed 75% oligodendrocytes, 19% 
astrocytes, and 6% microglia composing the glial cells (Pelvig et al., 
2008). In 2009, Lyck and colleagues improved the method by 
combining stereological cell counting with immunohistochemical 
visualization and observed 15–18% microglia contributing to glial cell 
composition (Lyck et al., 2009). In our study, the DNA methylation 
quantification revealed cortical glial cell composition with 66.04% 
(±8.70%) oligodendrocytes, 13.79% (±4.15%)astrocytes, and 20.17% 
(±5.45%) microglia. Taken together, brain cell quantification is affected 
mainly by the techniques used. Different challenges associated with the 
methods employed can cause false results. Thus, no uniform 
understanding of brain cell composition is established, even to this day. 
Our deconvolution algorithm utilized differential DNA methylation 
profiles specific to brain cell subtypes, circumventing some of the 
significant challenges, including artificial bias in counting the cells and 
the destruction of the nuclei for estimating the cell proportions.

Brain cell alterations have been studied in various neurological 
and psychiatric diseases (Stockmeier and Rajkowska, 2004; Stark 
et al., 2005; Dorph-Petersen et al., 2007; Reiner et al., 2011; Schmaal 
et al., 2016). Although abnormal glial numbers, neuron numbers, 
or GNRs were implicated in neurological and psychiatric disorders, 
studies lack validity and reliability in the quantitative data (Williams 
and Rakic, 1988; von Bartheld, 2018). Such impediment is majorly 
derived from the inconsistency of techniques applied to measure 
brain cells (von Bartheld et al., 2016; von Bartheld, 2018). Using 
HiBED to investigate neurological and psychiatric disease samples, 
we  have confirmed recent findings on brain cell alteration in 
Alzheimer’s disease, autism, epilepsy, Huntington’s disease, and 
schizophrenia. Reactive astrocyte and decreased glutamate levels 
were observed in Alzheimer’s disease (Fayed et al., 2011; Smit et al., 
2021), consistent with significantly increased astrocyte proportion 
and decreased GLU proportion captured by HiBED in Alzheimer’s 
patients. In Autism, researchers observed microglial activation and 
greater microglial densities in cortical areas (Rodriguez and Kern, 
2011; Tetreault et  al., 2012). Consistently, HiBED illustrated 
significantly higher microglial cell proportion in Autism patients 
compared to controls. Glutamatergic mechanisms are associated 
with epilepsy development (Cho, 2013; Barker-Haliski and White, 

2015). In our data, GLU proportion was lower in epilepsy patients 
compared to normal controls. Microglial activation and reactivity 
are known to play a crucial role in the pathogenesis of Huntington’s 
disease (Yang et al., 2017; Savage et al., 2020), which is consistent 
with elevated microglia proportion estimated by HiBED in 
Huntington’s disease patients compared to control samples.

Furthermore, Andre et  al. observed a decrease of glutamate 
neurotransmission as Huntington’s disease phenotype develops, which 
aligns with the lower level of GLU proportion captured by HiBED in 
Huntington’s disease patients compared to normal controls (Andre 
et al., 2010). Finally, the glutamate hypothesis of schizophrenia was 
proposed by Moghaddam et al. attributed the symptoms and cognitive 
impairment to hypofunction of NMDA receptors and excessive 
glutamate release, especially in the prefrontal cortex (Moghaddam and 
Javitt, 2012). In our study, HiBED described a significant increase in 
GLU proportion in schizophrenia patients compared to normal controls.

While the results strongly suggest that HiBED is a valid method 
for estimating significant cell proportions in CNS samples with many 
potential applications to brain-related research, we also recognize 
some limitations. Firstly, due to the challenges of isolating and 
identifying publicly available DNA methylation data for brain 
endothelial cells and stromal cells, we used cord tissue endothelial cells 
and cord tissue stromal cells as proxies for brain-specific endothelial 
and stromal cells. From an ontogenesis perspective, significant 
epigenomic similarities between those cell types and their counterparts 
are expectedly shared across different tissue types. We, therefore, 
posited a reasonable representation of endothelial and stromal cells in 
the library. However, we hypothesize that the cerebral endothelium is 
unique and distinguished from HiBED-predicted endothelial cells. 
Thus, future studies would be ideal to add cerebral endothelium into 
the reference library. Secondly, although seven major brain cell types 
are included in the libraries, representing the true brain cells’ 
heterogeneity demands a more granular library. For neuron cells, our 
library delineated the excitatory neuron from the inhibitory neuron. 
However, a recent single-nucleus RNA sequencing study identified 16 
neuronal subtypes within the excitatory and inhibitory neurons (Lake 
et al., 2016). Furthermore, a mouse model by Marques et al. in 2016 
identified 12 subpopulations of oligodendrocytes (Marques et  al., 
2016), but our current libraries need to distinguish oligodendrocyte 
subtypes. Other potential cell subtypes that could be added to the 
libraries are infiltrating leukocytes. Brain leukocyte infiltration is 
initiated by neuroinflammation (Schmitt et  al., 2012). Thus, CNS 
samples with neurological diseases would likely contain infiltrating 
leukocytes. The brain infiltrating leukocytes are not included in the 
libraries because of the challenges of isolating and identifying them. 
Using overloading proxies would generate noise that likely would bias 
any estimation. Thirdly, the libraries are mainly validated using in 
silico synthetic mixture samples generated from the discovery data set. 
The external validation data sets do not cover all brain cell subtypes in 
the libraries. Thus, a comprehensive external validation of all cell type 
proportion projections is not feasible in this study. However, the 
validation results from the artificial mixtures and the external 
validation data sets provided strong evidence of the method’s validity.

Future studies aiming to extend the library to comprehend brain 
cell heterogeneity better will be necessary to refine the deconvolution 
model. With the brain cell complexity gradually unveiled by single-cell 
sequencing technology and the advance of cell isolation and 
purification procedure, more brain cell subtypes can be added to the 
library. For HiBED’s application, the deconvolution in EWAS in 
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brain-related research would help identify differentially methylated 
regions independent of cell population confounding. Furthermore, 
applying the method to neurological and psychiatric DNA methylation 
analysis can reveal novel discoveries related to pathobiological brain 
cell alteration and epigenetic regulation of the disease.

Conclusion

We developed, validated, and applied a DNA methylation-based 
brain cell deconvolution method, HiBED, designed to infer the 
proportions of seven major brain cell types. HiBED employed a 
hierarchical deconvolution approach with optimized libraries for 
neuronal, glial, and endothelial and stromal cells. HiBED provides 
higher cell type resolution compared to existing methods for brain 
deconvolution, enabling new opportunities to study cell heterogeneity 
in brain-related diseases and potential therapeutic targets.
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