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Major depressive disorder (MDD) has been associated with aberrant effective 
connectivity (EC) among the default mode network (DMN), salience network (SN), 
and central executive network (CEN)—collectively referred to as triple networks. 
However, prior research has predominantly concentrated on broad frequency 
bands (0.01–0.08 Hz or 0.01–0.15 Hz), ignoring the influence of distinct rhythms 
on triple network causal dynamics. In the present study, we aim to investigate EC 
alterations within the triple networks across various frequency bands in patients 
with MDD. Utilizing a data-driven frequency decomposition approach and a 
multivariate Granger causality analysis, we characterized frequency-specific EC 
patterns of triple networks in 49 MDD patients and 54 healthy controls. A support 
vector machine classifier was subsequently employed to assess the discriminative 
capacity of the frequency-specific EC features. Our findings revealed that, 
compared to controls, patients exhibited not only enhanced mean EC within 
the CEN in the conventional frequency band (0.01–0.08 Hz), but also decreased 
mean EC from the SN to the DMN in a higher frequency band (0.12–0.18 Hz), and 
increased mean EC from the CEN to the SN in a sub-frequency band (0.04–0.08 
Hz); the latter was significantly correlated with disease severity. Moreover, optimal 
classification performance for distinguishing patients from controls was attained 
by combining EC features across all three frequency bands, with the area under 
the curve (AUC) value of 0.8831 and the corresponding accuracy, sensitivity, and 
specificity of 89.97%, 92.63%, and 87.32%, respectively. These insights into EC 
changes within the triple networks across multiple frequency bands offer valuable 
perspectives on the neurobiological basis of MDD and could aid in developing 
frequency-specific EC features as potential biomarkers for disease diagnosis.
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1. Introduction

Major depressive disorder (MDD) constitutes a debilitating 
psychiatric affliction, impacting approximately 7% of the global 
population (Mathers and Loncar, 2006). The condition is typified by 
persistent emotions of sadness, guilt, and worthlessness, as well as 
heightened suicide risk (Gotlib and Joormann, 2010). Despite the 
unidentified neurological substrates underpinning MDD, 
contemporary neuroimaging investigations have revealed functional 
connectivity (FC) anomalies across extensive brain networks (Otte 
et al., 2016; Li et al., 2018; Yan et al., 2019; Peng et al., 2020; Yang et al., 
2021). These findings have reconceptualized MDD as a disorder of 
brain network dysfunction, offering novel perspectives for 
understanding its pathophysiology.

The triple-network model serves as a notable approach for 
investigating brain dysconnectivity in psychiatric disorders, 
delineating a core connectivity pattern that underlies cognitive, 
perceptual, affective, and social functions, encompassing the default 
mode network (DMN), salience network (SN), and central executive 
network (CEN) (Menon, 2011). In MDD patients, FC disruptions 
within these triple networks have been recurrently observed (Balaev 
et al., 2018; Cheng et al., 2018; Yan et al., 2019). Notably, the bulk of 
prior studies gauged FC by calculating Pearson’s correlation between 
time series of two given brain regions, hindering exploration of the 
influence of one brain region over another. In contrast, more recent 
studies have begun to probe the effective connectivity (EC) within 
MDD’s triple networks, examining the causal or directed influence of 
one brain region upon another. For example, research employing 
spectral dynamic causal modeling uncovered weakened connection 
strength from the SN to the CEN region in MDD patients (Kandilarova 
et al., 2018). Another study involving 336 MDD patients revealed both 
increased and reduced ECs from the SN regions (e.g., temporal pole) 
to other brain regions (Rolls et al., 2018). These findings collectively 
suggest that abnormal directed influences between triple network 
regions may be  pivotal in MDD etiology. However, these studies 
primarily focused on MDD-induced EC changes within a broad 
frequency band (0.01–0.08 Hz or 0.01–0.15 Hz), potentially obscuring 
information regarding physiological fluctuations at 
specific frequencies.

The human brain, a biologically intricate system, features myriad 
oscillatory waves working in concert (Buzsáki and Draguhn, 2004; 
Samaha et al., 2020). Blood oxygen level-dependent (BOLD) signals 
at distinct frequency bands can partially reflect these neural processes 
and corresponding physiological functions (Zuo et al., 2010; Cole and 
Voytek, 2017; Hu et  al., 2021). Previous MDD research has often 
identified frequency-specific alterations in spontaneous brain activity 
and connectivity. For instance, a study examined resting-state signal 
amplitude variability across two discrete frequency bands (slow-5: 
0.01–0.027 Hz and slow-4: 0.027–0.073 Hz), revealing that the balance 
between the DMN and sensorimotor network favored the DMN in 
slow-5 and correlated with clinical depression symptom scores 
(Martino et al., 2016). Similarly, a study analyzing FC patterns in 
bipolar disorder depression across slow-5 and slow-4 found increased 
long-range FC density in the left lingual gyrus in slow-5 and decreased 
density in slow-4 (Yang et  al., 2021). These results suggest that 
analyzing functional abnormalities of MDD at multiple frequencies is 
more rational than examining the routine band. To date, no prior 
study has explored EC at various low-frequency bands in MDD 

patients, and the impact of different rhythms on triple network causal 
processes in the disorder remains uncertain.

This study endeavors to assess EC changes of the triple networks 
at disparate frequency bands in MDD patients. By employing a data-
driven method called complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) (Colominas et al., 
2014), we initially decomposed BOLD oscillations into five distinct 
frequency bands. Subsequently, we quantified frequency-specific EC 
patterns among triple network components by integrating group 
independent component analysis (GICA) with multivariate Granger 
causality analysis (mGCA). We also conducted a correlation analysis 
to evaluate the association between EC changes and clinical measures 
in patients. Moreover, we utilized a support vector machine (SVM) to 
ascertain whether frequency-specific EC features of the triple 
networks could facilitate the differentiation of MDD patients from 
healthy controls (HCs). Based on prior evidence indicating disrupted 
triple networks in MDD, we hypothesized that (a) the EC in the triple 
networks would exhibit alterations in patients across various 
frequency bands; and (b) frequency-specific EC could serve as a 
biomarker for distinguishing patients from controls.

2. Materials and methods

2.1. Participants

This study enrolled 58 patients with MDD and 57 age-, 
gender-, and education-matched HCs. MDD patients were 
recruited from Gansu Provincial Hospital, while the HCs were 
obtained through newspaper advertisements. MDD diagnosis 
followed the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition (DSM-V). Exclusion criteria for MDD 
patients encompassed acute physical illness history, substance 
abuse/dependence, head trauma resulting in unconsciousness, 
claustrophobia, bipolar depression, and other neurological 
disorders. Hamilton Depression Scale (HAMD) and Hamilton 
Anxiety Scale (HAMA) evaluated depression and anxiety severity 
in MDD individuals. HCs were interviewed using the DSM-IV 
non-patient edition. All participants provided written informed 
consent before study procedures. The study adhered to the Helsinki 
Declaration and received approval from the Ethics Committee of 
Gansu Provincial Hospital. After head motion exclusion, the 
remaining 49 MDD patients and 54 HCs were included in the 
subsequent analyses. Demographic and clinical characteristics of 
participants are displayed in Table 1.

2.2. Data acquisition and preprocessing

Resting-state fMRI data for all participants were collected on a 
3.0 T scanner (Siemens, Erlangen, Germany) using a single-shot, 
gradient-recalled echo planar imaging sequence. Scanning parameters 
were as follows: repetition time (TR) = 2000 ms, echo time 
(TE) = 30 ms, flip angle (FA) = 90°, slice thickness = 3.5 mm, in-plane 
matrix = 64 × 64, field of view (FOV) = 220 mm × 220 mm, and 33 slices 
covering the entire brain. Participants were instructed to remain silent 
and awake with eyes closed, minimize movement, and let their 
thoughts wander during the scan. Data preprocessing employed 
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DPARSF software1 based on the SPM12 toolbox,2 including discarding 
the initial 10 functional images, realignment, time-slicing, head 
motion correction, spatial normalization to the Montreal Neurological 
Institute (MNI) template, linear detrending, and nuisance covariate 
regression. Participants with head movement exceeding 1.5 mm 
translation or 1.5° rotation or with mean frame-wise displacement 
(FD) values over 0.5 mm were excluded from the analysis.

2.3. Definition of frequency of interest

A data driven CEEMDAN method was adopted to decompose 
BOLD signals into distinct frequency bands without rigidly predefined 
band-pass filters. Briefly, a time series x t� � can be  represented as 

x t IMF t r t
i

K
i� � � � � � � �

�
�

1
, where IMF t i Ki � � �, , , ,1 2  is a set of 

intrinsic mode functions, r t� � is the monotonic residue signal, and t, 
i, and K are the length of scanning time, the order of IMF, and the 
number of IMF, respectively. CEEMDAN employs an iterative 
technique, the sifting algorithm, based on Empirical Mode 
Decomposition (EMD) to extract IMFs. This algorithm comprises the 
following steps: (1) Initially, EMD is used to derive the first residual 
component; (2) The first IMF is subsequently calculated by subtracting 
this first residual component from the original signal; (3) The second 
residual component is then estimated, and this defines the second 
IMF; (4) These steps are iteratively repeated until the final IMF is 
successfully extracted. Note that each IMF component occupies a 
distinct frequency band. In particular, the first and last IMF occupies 
the highest and lowest frequency bands, while the remaining IMF 
occupy the frequency bands in between. After decomposition, the 
Hilbert weighted frequency (HWF) was utilized to represent the mean 
oscillation frequency of an intrinsic mode function (IMF) using 
amplitude and phase from the instantaneous spectrum. HWF 

1 http://www.restfmri.net

2 https://www.fil.ion.ucl.ac.uk

distribution histograms for each participant were calculated by 
determining the HWF of each IMF. A frequency of interest (FOI) was 
derived from each component of the HWF distribution within 95% 
confidence intervals to isolate frequency bands and minimize the 
influence of extreme values. Detailed procedures for defining FOIs can 
be  found in a previous study (Zhang et al., 2018). Five frequency 
intervals (0.12–0.18 Hz, 0.04–0.08 Hz, 0.02–0.04 Hz, 0.01–0.02 Hz, and 
0–0.01 Hz) were chosen as FOIs to represent EC alterations in MDD 
patients (Figure 1). To simplify, these intervals were designated as 
FOI-1 to FOI-5, with FOI-1 representing the highest frequency 
interval and FOI-5 the lowest. Additionally, for comparative purposes, 
the conventional frequency band ranging from 0.01 to 0.08 Hz was 
selected as the normal frequency of interest (FOI-N).

2.4. Triple network identification

A spatial GICA was applied to decompose resting-state fMRI data, 
using the GIFT toolbox. Global signal regression was first 
implemented within the GICA framework, where the global mean 
signal per time point was removed as a standard processing step 
preceding PCA. PCA was employed to condense subject-specific data 
into 120 principal components. Subsequently, we  concatenated 
subject-reduced data across time for all participants, reducing them 
into 100 ICs using the infomax algorithm (Bell and Sejnowski, 1995). 
To ensure decomposition reliability and stability, the infomax ICA 
algorithm was run 20 times using ICASSO. We employed a group 
information-guided ICA approach to reconstruct subject-specific 
spatial maps and corresponding time courses after estimating group 
spatial maps. ICNs among the 100 ICs were identified through a 
combination of spatial template-matching and visual inspection, using 
templates derived from ICA analyses as previously described (Allen 
et al., 2014; Tu et al., 2019). Components were evaluated based on the 
following criteria: (1) peak activation coordinates primarily located in 
gray matter; (2) minimal spatial overlap with known vascular, 
ventricular, motion, and susceptibility artifacts; (3) time courses 
predominantly characterized by low-frequency fluctuations (Kim 
et al., 2017; Fiorenzato et al., 2019). We further post-processed the 
time courses of ICNs to remove residual noise sources by detrending 
linear, quadratic, and cubic trends, regressing the six realignment 
parameters and their temporal derivatives, despiking detected outliers, 
and applying low pass filtering with a cutoff frequency of 0.15 Hz.

2.5. Granger causality analysis

We employed GCA to investigate EC between ICs in resting-state 
fMRI data, a widely-used method for predicting one system’s causal 
influence over another (David et al., 2008; Deshpande and Hu, 2012). 
GCA, unlike other EC measures, quantified causal influence among 
multiple brain regions in a data-driven manner, without necessitating 
a predefined model (Deshpande and Hu, 2012). GCA’s concept can 
be described as follows: for two signals s1(t) and s2(t), if knowing the 
past information of s1(t) aids in predicting s2(t)'s future, s1(t) has a 
causal influence on s2(t). In this study, we  evaluated the causal 
influences among the time courses of DM components using the 
mGCA method (Liao et  al., 2011). For each participant, the time 
courses set was defined as S(t) = (s1(t), s2(t), …, sn(t)), where n denotes 

TABLE 1 Demographics and clinical characteristics of the participants.

Characteristics
MDD 

(n = 49)
HC (n = 54) p value

Age (years) 34.09 ± 12.06 34.56 ± 12.16 0.83a

Handedness (right/left) 49/0 54/0 0.99b

Gender (males/females) 27/22 29/25 0.87b

Antidepressants (yes/no) 7/42 – –

HAMD 17.40 ± 5.89 – –

HAMA 17.05 ± 7.36 – –

Duration of illness (years) 6.83 ± 7.88 – –

Mean FD 0.14 ± 0.09 0.14 ± 0.07 0.86a

Values represented mean ± SD. SD, standard deviation; HAMD, Hamilton depression scale; 
HAMA, Hamilton anxiety scale; FD, frame-wise displacement; MDD, major depressive 
disorder; HC, healthy control. 
ap value was obtained by two-sample t tests.
bp value was obtained by Chi square test.
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the number of DM components. The influence from all other seed 
components to target component k was evaluated by the multivariate 
auto-regressive model as follow:

 
s t C m S t m R tk

m

p

k k� � � � � �� � � � �
�
�

1

where p, Ck, S and R denote the auto-regressive model order, 
model coefficient matrix, time courses matrix of different components 
and residual error matrix, respectively. The model order p was 
determined using Akaike’s information criterion and the model 
coefficient matrix Ck was calculated using a standard least squares 
optimization, respectively. We  further calculated random-effect 
Granger causality maps for each participant to evaluate the statistical 
significance of Granger causality results, corrected with a false 
discovery rate (p < 0.05).

2.6. Classification analyses

We examined whether frequency-specific EC could differentiate 
MDD patients from controls by employing the SVM classifier. SVM 
is a widely-used, high-performing supervised learning model that 
projects low-dimensional, non-separable data into high-dimensional, 
separable data (Cortes and Vapnik, 1995). A 10-fold cross-validation 
methodology was adopted, which incorporated nested feature 
selection and classifier training using a Lib-SVM framework based on 
a linear kernel function with parameter optimization (Pereira et al., 
2009). A two-step feature selection strategy was implemented to 
identify the optimal feature subset and minimize the risk of overfitting. 
This approach comprised two components: the Minimum 
Redundancy and Maximum Relevance (MRMR) method and the 
Support Vector Machine Recursive Feature Elimination (SVM-RFE) 
technique. Specifically, the MRMR was employed to exclude features 
with weak discriminative capabilities, and the SVM-RFE was further 
utilized for more refined feature selection. The dataset was randomly 
partitioned into 10 approximately equal subsets. For each iteration, a 
single subset served as the test dataset, while a model induced from 
the remaining nine subsets was tested using a classification algorithm. 
Each subset was used precisely once as the testing data, this process 
was iterated 10 times. The feature selection was incorporated within 
the 10-fold cross-validation and was solely performed on the training 

set. Meanwhile, the chosen features were applied to the testing set. The 
entire procedure was conducted 10 times, and the mean value derived 
from the 100 results was taken as the final measure of accuracy. 
Additionally, we employed receiver operating characteristic (ROC) 
curves and the area under the curves (AUC) to evaluate EC’s potential 
as a marker for discriminating MDD patients from controls. The 
LIBSVM 3.22 Matlab toolbox facilitated all classification analyses.

2.7. Statistical analysis

A permutation testing (10,000) was employed to evaluate group 
differences in EC metrics between patients and controls. The 
significance level was established at a threshold of p < 0.05, with false 
discovery rate (FDR) correction. Spearman’s correlation analysis was 
performed to assess the relationship between EC metrics and clinical 
symptoms, controlling for age, gender, and mean FD. Correlations 
with p < 0.05 were considered significant, FDR-corrected.

3. Results

3.1. Independent components of the triple 
networks

As illustrated in Figure 2, we identified 21 ICs via group ICA and 
subsequently classified them into three subsets: DMN (IC 21, 33, 52, 
54, 59, 78, 86, 92, and 100), SN (IC 32, 65, 69, and 71), and CEN (IC 
53, 61, 73, 75, 77, 87, 88, and 96). Figure  2B present the group-
averaged causal influences between each IC pair of the triple networks 
in the conventional low-frequency band (0.01–0.08 Hz) and the 
corresponding EC matrix. Detailed activation information for these 
ICs can be found in Supplementary Table S1.

3.2. Frequency-specific EC alterations in 
MDD

We examined the EC patterns and observed significant differences 
between the two groups. As depicted in Figure 3, patients exhibited 
widespread alterations in the EC patterns of the triple networks across 
FOI-N, FOI-1, and FOI-2 compared to the controls (p < 0.05, 
FDR-corrected). Notably, IC69 (insula), IC21 (medial frontal gyrus), 

FIGURE 1

Histogram of frequency distribution. The histograms of HWF distributions show the first five intrinsic mode functions of each voxel in the whole-brain 
gray matter across all participants by using the CEEMDAN approach. The color bar represents the number of voxels with HWF equal to the frequency 
on the horizontal axis in the whole-brain gray matter. HWF, Hilbert weighted frequency; CEEMDAN, complete ensemble empirical mode 
decomposition with adaptive noise.
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and IC88 (inferior frontal gyrus) demonstrated the most EC 
differences compared to other RNSs in FOI-N, FOI-1, and FOI-2, 
respectively. The corresponding statistical results within each FOI are 
provided in Figures 3B,D,F. No significant differences between groups 
were observed in other frequency bands.

We then explored the causal influences within and between 
subsets of the triple networks across frequency bands. We discovered 
that the mean EC within the CEN was significantly increased in 
patients compared to controls in FOI-N (p = 0.016, FDR-corrected; 
Figure 4A). Meanwhile, the mean EC from SN to DMN and from 
CEN to SN were significantly decreased in patients compared to 
controls in FOI-1 (p = 0.011, FDR-corrected) and FOI-2 (p = 0.014, 
FDR-corrected), respectively (Figure 4B). These analyses suggest that 
the causal influences of the triple networks are altered in patients with 
MDD in a frequency-specific manner.

We further investigated whether EC metrics with significant 
group differences correlated with patients’ clinical symptoms and 
found that the mean EC from CEN to SN in FOI-2 was negatively 
correlated with HAMD scores in patients (r = −0.33, p = 0.02, 
FDR-corrected; Figure 4C). This indicates that lower causal influences 
from CEN to SN in FOI-2 are associated with greater disease severity.

3.3. Classification performance

We used frequency-specific ECs (all ECs in each FOI) as input 
features to discriminate patients from controls. As shown in Table 2, 
our model accurately identified individuals with MDD in each 

frequency band (accuracy of 84.79%, 75.25%, and 82.20% for FOI-N, 
FOI-,1 and FOI-2, respectively). Importantly, when combining the 
EC features across all three frequency bands, we achieved the highest 
classification accuracy of 89.97%, sensitivity of 92.63%, specificity of 
87.32%, and AUC of 0.8831. Figure 5A displays the corresponding 
average ROC curves for each frequency condition. We  further 
analyzed which EC features possessed high discriminative power. The 
frequency of each feature selected in all 10-fold cross-validations was 
calculated to reflect the feature’s contribution to the classification. The 
top 10 most recognizable EC features in each frequency band are 
presented in Figure 5B.

4. Discussion

In this study, we explored the anomalies in EC of triple networks 
across different frequency bands in MDD by combining the 
CEEMDAN and mGCA methodologies. Our analysis not only 
revealed an enhanced mean EC within the CEN in the conventional 
frequency band, but also a decrease in the mean EC from the SN to 
the DMN in FOI-1, as well as an increase in the mean EC from the 
CEN to the SN in FOI-2 in MDD patients. Moreover, a significant 
association between the mean EC from the CEN to the SN and the 
HAMD scores was identified in FOI-2 for individuals with MDD. By 
incorporating EC features across all the three frequency bands, 
optimal classification performance was achieved. These results reveal 
frequency-specific alterations in causal influences among triple 
networks for patients with MDD and highlight the importance of 

FIGURE 2

Triple-networks identified by a group ICA. (A) Three resting-state networks (DMN, SN, and CEN) were identified by grouping subsets of the 21 ICs. 
(B) Whole sample averaged causal influences between ICs was computed in conventional frequency band (0.01–0.08 Hz). Index numbers of ICs are 
written on the left and bottom side of the matrix, along with a color-coded legend, which matches to the overlaid colors of the spatial maps in (A). ICA, 
independent component analysis; DMN, default mode network; SN, salience network; CEN, cognitive executive network; ICs, independent 
components.
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considering multiple frequency bands when developing more precise 
and dependable biomarkers for disease diagnosis.

Our findings demonstrated that the EC within the triple networks 
is altered in a frequency-specific manner in patients with MDD. This 
observation aligns with previous research that has emphasized the 
importance of examining connectivity patterns across multiple 
frequency bands in order to fully understand the neurobiological 
underpinnings of MDD (Wang et  al., 2016; Yang et  al., 2021). 
Specifically, we observed a significant increase in the mean EC within 
the CEN in MDD patients compared to unaffected controls in FOI-N 
ranging from 0.01 to 0.08 Hz. This finding is consistent with prior 
studies that have reported altered FC within the CEN in MDD patients 
(Mulders et  al., 2015; Shen et  al., 2015; Zhang et  al., 2016). The 

increased EC within the CEN may reflect a compensatory mechanism 
in response to the disrupted network communications, as the CEN is 
responsible for higher-order cognitive processes, such as working 
memory and executive control (Menon, 2011). Alternatively, this 
alteration might be indicative of a maladaptive change contributing to 
the cognitive deficits frequently observed in MDD (Mulders et al., 
2015; Otte et al., 2016; Kandilarova et al., 2018). Moreover, we found 
significant decreases in the mean EC from the SN to the DMN in 
patients compared to controls in FOI-1 (0.12–0.18 Hz). This result 
aligns with prior findings of disrupted connectivity between the SN 
and DMN in MDD (Balaev et al., 2018; Fettes et al., 2018; Gong et al., 
2019). The SN plays a crucial role in detecting and processing 
emotionally salient stimuli (Etkin et al., 2011; Seo et al., 2018), while 

FIGURE 3

Group differences of EC across different frequency bands. (A,C,E) Significant between-group differences of EC in FOI-N, FOI-1 and FOI-2, and (B,D,F) 
the corresponding difference numbers of individual IC from and to the rest of ICs in each frequency band. The arrows indicate the directions of causal 
influences. Two sample t-test, significant level was set at p < 0.05, FDR-corrected. EC, effective connectivity; FOI, frequency of interest; IC, independent 
component.
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the DMN is implicated in self-referential thinking and rumination 
(Scheibner et al., 2017). A reduced causal influence from the SN to the 
DMN might indicate an impaired ability to regulate internal emotional 
states and a propensity for excessive rumination in MDD patients 
(Gandelman et  al., 2019). In addition, our study demonstrated 
significant decreases in the mean EC from the CEN to the SN in MDD 
patients compared to controls in FOI-2 (0.04–0.08 Hz). This finding 
expands upon previous research that has reported disrupted 
connectivity between the CEN and SN in MDD (Kaiser et al., 2015). 

A decreased causal influence from the CEN to the SN might suggest 
an impaired top-down regulation of emotional processing in MDD 
patients, potentially contributing to the affective symptom 
characteristic of the disorder (Kennis et al., 2020). Importantly, our 
study expands upon existing research by exploring the multi-
frequency domain, revealing that EC alterations within the triple 
networks in MDD may be governed by specific frequency bands. 
Frequency-specific alterations can reflect distinct biological processes 
or brain features. BOLD signals at different frequencies may signify 
differing neuronal activities or interactions. Thus, our finding suggests 
that varying sensitivities to different frequency bands may exist in the 
causal interactions among core network structure.

Our findings also revealed that the altered mean EC from CEN to 
SN in FOI-2 exhibited a significant correlation with HAMD scores in 
MDD patients, indicating that lower directed interactions correspond 
to increased disease severity. This observation aligns with prior 
research demonstrating associations between brain dysconnectivity 
and depressive symptoms (Kang et  al., 2018; Yang et  al., 2018; 
Gandelman et al., 2019). A recent investigation reported correlations 
between abnormal amygdala connectivity and symptom severity in 
MDD (Ye et  al., 2023), lending further credence to the clinical 

FIGURE 4

Group differences of EC in RSNs over frequency bands. (A) Group differences of EC within RSN in FOI-N, FOI-1 and FOI-2. (B) Group differences of EC 
between RSNs in FOI-N, FOI-1 and FOI-2. (C) Correlation between the HAMD score of patients and EC with significant group differences. Note that the 
values presented are the average ECs of all ROIs in each RSN. *p < 0.05, FDR-corrected. HAMD, Hamilton depression scale.

TABLE 2 Discriminating the patients with MDD from the HCs by ROC 
analyses.

FOI AUC
Accuracy 

(%)
Sensitivity 

(%)
Specificity 

(%)

FOI-N 0.8373 84.79 87.54 81.90

FOI-1 0.7651 75.25 73.61 76.67

FOI-2 0.8163 82.20 86.87 77.34

FOI-N + FOI-

1 + FOI-2

0.8831 89.97 92.63 87.32
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relevance of our results. Our previous work also indicated that 
diminished static and dynamic FCs were associated with greater MDD 
severity (Yao et al., 2019a,b). Importantly, the negative correlations 
observed exclusively in FOI-2 may represent frequency-specific 
symptoms of MDD, corroborating earlier findings that Slow-4 (0.027–
0.073 Hz) (Yang et al., 2021), overlapping with FOI-2, may hold a 
crucial role in MDD diagnosis and progression monitoring. These 
results also suggest that FOI-2 might serve as a specific frequency 
band reflecting clinical symptoms in MDD patients. Furthermore, our 
investigation demonstrated that the highest classification accuracy was 
attained when combining EC features across all three frequency bands 
(FOI-N, FOI-1, and FOI-2), consistent with other studies reporting 
enhanced classification accuracy upon considering multiple frequency 
bands in neuropsychiatric disorders (Chen et  al., 2016; Hu et  al., 
2021). Collectively, these findings underscore the importance of 
incorporating multiple frequency bands when examining the 
pathophysiology of MDD and indicate that a comprehensive, multi-
frequency approach may yield more precise and reliable biomarkers 
for the diagnosis and differentiation of patients from controls.

The implications of our findings may extend to two aspects of 
future MDD therapy. First, this study illuminates the neural 
pathophysiology underpinning MDD and offers a fresh perspective 
on frequency-specific dysconnectivity patterns, potentially revealing 
treatment markers associated with disease severity. The frequency-
specific EC alterations identified provide intricate insights into how 
these functional connections fluctuate across different frequencies. 
These findings could potentially be harnessed for precise therapeutic 
interventions, such as neurofeedback or transcranial magnetic 
stimulation, which can be used to modulate aberrant connectivity 
patterns in MDD patients (Drysdale et  al., 2017). Second, our 
investigation supplies critical information in the pursuit of clinically 
valuable diagnostic markers for MDD. Numerous researchers have 
recently explored the potential of brain connectivity to differentiate 
MDD patients from unaffected controls (Zhong et al., 2017; Geng 
et  al., 2018; Zhang et  al., 2020). Consequently, the identified 
frequency-specific EC features capable of distinguishing patients 
from controls with notable accuracy could contribute to the 
development of more dependable and objective diagnostic 
instruments, assisting clinicians in the early detection of MDD (Guo 
et al., 2020). Nevertheless, given the limited sample sizes in this 
study, the high classification performance warrants validation in 
future research with larger samples.

There are some limitations that should be  noted. First, the 
resting-state fMRI data acquisition employed a relatively lower 
repetition time (2 s), constraining the detection of dynamic 
fluctuations in higher frequency bands (>0.25 Hz). Future research 
would benefit from utilizing a higher sampling frequency. Second, 
while Granger causality analysis (GCA) is regarded as an effective 
method for evaluating EC in resting-state fMRI data, it has been 
postulated that directional changes might result from 
hemodynamic coupling differences among distinct brain regions 
(Pervaiz et al., 2020). Recently, alternative models, specifically the 
dynamic causal model (DCM)—a hemodynamic model (Friston 
et al., 2014), have been proposed to detect directed connectivity 
among hidden neuronal states (Park et al., 2018; Zarghami and 
Friston, 2020). Consequently, future studies employing DCM to 
explore frequency-specific reorganizations of EC in MDD patients 
would be of considerable interest. Third, the patient cohort in this 
study had prolonged exposure to various antidepressant 
medications. Prior research has assessed the impact of 
antidepressants on brain connectivity (Korgaonkar et al., 2019), 
and it cannot be  ruled out that medication effects may have 
influenced our findings. Nonetheless, previous FC investigations 
involving high-risk MDD individuals have indicated that altered 
connectivity between triple networks occurs in the absence of 
antidepressant treatment (Pawlak et al., 2022). A future study with 
a never-medicated sample is required to corroborate our findings.

In conclusion, our study revealed frequency-specific alterations 
in the causal influences among the DMN, SN, and CEN in MDD, 
with potential ramifications for diagnosis and treatment. These 
findings enhance our comprehension of the neurobiological 
underpinnings of MDD and stress the significance of investigating 
EC patterns within the triple networks across multiple frequency 
bands. Future research endeavors should build upon these insights 
to further elucidate the role of frequency-specific EC patterns in 
MDD pathophysiology, examine their potential as therapeutic 
targets, and assess their applicability as objective biomarkers for 
MDD diagnosis.
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FIGURE 5

Classification performance by using EC features. (A) The average receiver operating characteristic curves of classification results over different 
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